排序算法学习报告
排序算法堆栈实验报告

一、实验目的1. 理解堆栈的基本原理和操作。
2. 掌握堆栈在排序算法中的应用。
3. 比较和分析不同排序算法的性能。
二、实验内容本次实验主要围绕堆栈在排序算法中的应用展开,包括以下内容:1. 使用堆栈实现冒泡排序。
2. 使用堆栈实现快速排序。
3. 使用堆栈实现归并排序。
4. 对比分析三种排序算法的性能。
三、实验原理堆栈是一种后进先出(LIFO)的数据结构,主要操作包括入栈(push)、出栈(pop)和查看栈顶元素(peek)。
在排序算法中,堆栈可以用来存储元素,实现排序过程中元素的临时存放和恢复。
四、实验步骤1. 冒泡排序(1)将待排序的元素入栈。
(2)依次出栈两个元素,比较它们的值,如果顺序错误,则将它们重新入栈,并交换位置。
(3)重复步骤(2),直到所有元素排序完成。
2. 快速排序(1)选择一个枢轴元素。
(2)将小于枢轴的元素入左子栈,大于枢轴的元素入右子栈。
(3)递归地对左子栈和右子栈进行快速排序。
3. 归并排序(1)将待排序的元素分成若干个大小为1的子序列。
(2)两两合并子序列,生成大小为2的序列。
(3)重复步骤(2),直到所有子序列合并成一个有序序列。
五、实验结果与分析1. 冒泡排序冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
由于堆栈的使用,冒泡排序的执行时间略有增加,但总体性能影响不大。
2. 快速排序快速排序的平均时间复杂度为O(nlogn),最坏情况下的时间复杂度为O(n^2)。
堆栈的使用提高了快速排序的常数因子,但整体性能仍然优于冒泡排序。
3. 归并排序归并排序的时间复杂度和空间复杂度均为O(nlogn)。
由于堆栈的使用,归并排序的常数因子有所增加,但整体性能依然保持较高水平。
六、实验结论1. 堆栈在排序算法中可以有效地实现元素的临时存放和恢复,提高排序效率。
2. 在不同排序算法中,堆栈的应用效果有所不同。
冒泡排序和快速排序的性能受堆栈影响较小,而归并排序的性能受堆栈影响较大。
排序基本算法实验报告

一、实验目的1. 掌握排序算法的基本原理和实现方法。
2. 熟悉常用排序算法的时间复杂度和空间复杂度。
3. 能够根据实际问题选择合适的排序算法。
4. 提高编程能力和问题解决能力。
二、实验内容1. 实现并比较以下排序算法:冒泡排序、插入排序、选择排序、快速排序、归并排序、堆排序。
2. 对不同数据规模和不同数据分布的序列进行排序,分析排序算法的性能。
3. 使用C++编程语言实现排序算法。
三、实验步骤1. 冒泡排序:将相邻元素进行比较,如果顺序错误则交换,直到序列有序。
2. 插入排序:将未排序的元素插入到已排序的序列中,直到序列有序。
3. 选择排序:每次从剩余未排序的元素中选取最小(或最大)的元素,放到已排序序列的末尾。
4. 快速排序:选择一个枢纽元素,将序列分为两部分,一部分比枢纽小,另一部分比枢纽大,递归地对两部分进行排序。
5. 归并排序:将序列分为两半,分别对两半进行排序,然后将两半合并为一个有序序列。
6. 堆排序:将序列构建成一个最大堆,然后依次取出堆顶元素,最后序列有序。
四、实验结果与分析1. 冒泡排序、插入排序和选择排序的时间复杂度均为O(n^2),空间复杂度为O(1)。
这些算法适用于小规模数据或基本有序的数据。
2. 快速排序的时间复杂度平均为O(nlogn),最坏情况下为O(n^2),空间复杂度为O(logn)。
快速排序适用于大规模数据。
3. 归并排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
4. 堆排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
五、实验结论1. 根据不同数据规模和不同数据分布,选择合适的排序算法。
2. 冒泡排序、插入排序和选择排序适用于小规模数据或基本有序的数据。
3. 快速排序、归并排序和堆排序适用于大规模数据。
4. 通过实验,加深了对排序算法的理解,提高了编程能力和问题解决能力。
六、实验总结本次实验通过对排序算法的学习和实现,掌握了常用排序算法的基本原理和实现方法,分析了各种排序算法的性能,提高了编程能力和问题解决能力。
快速排序算法实验报告

快速排序算法实验报告快速排序算法实验报告引言快速排序算法是一种高效的排序算法,它的时间复杂度为O(nlogn),在实际应用中被广泛使用。
本实验旨在通过实际的实验数据,验证快速排序算法的效果和性能,并对其进行分析和总结。
实验设计本实验采用C++语言编写快速排序算法,并通过随机生成的数据进行排序实验。
实验中使用了不同规模的数据集,并记录了排序所需的时间和比较次数。
实验步骤1. 实现快速排序算法快速排序算法的核心思想是通过选取一个基准元素,将待排序的序列分为两部分,一部分比基准元素小,一部分比基准元素大,然后对这两部分继续进行快速排序。
具体实现时,可以选择序列的第一个元素作为基准元素,然后使用分治法递归地对子序列进行排序。
2. 生成测试数据为了验证快速排序算法的性能,我们生成了不同规模的随机数序列作为测试数据。
测试数据的规模分别为1000、10000、100000和1000000。
3. 进行排序实验使用生成的测试数据,对快速排序算法进行实验。
记录每次排序所需的时间和比较次数,并将结果进行统计和分析。
实验结果通过对不同规模的数据集进行排序实验,我们得到了以下结果:数据规模排序时间(ms)比较次数1000 2 872810000 12 114846100000 124 13564771000000 1483 15737267分析与讨论从实验结果可以看出,随着数据规模的增大,排序所需的时间和比较次数也呈指数级增长。
这符合快速排序算法的时间复杂度为O(nlogn)的特性。
另外,通过观察实验结果,我们可以发现快速排序算法的性能受到多个因素的影响。
首先,基准元素的选择对算法的效率有很大的影响。
如果选择的基准元素恰好是序列的中位数,那么排序的效率会更高。
其次,数据的初始顺序也会影响排序的效果。
如果数据已经是有序的,那么快速排序算法的效率将大大降低。
此外,快速排序算法还存在一些优化的空间。
例如,可以通过随机选择基准元素来避免最坏情况的发生。
排序的实验报告

排序的实验报告排序的实验报告引言:排序是计算机科学中非常重要的一个概念,它涉及到对一组数据按照一定规则进行重新排列的操作。
在计算机算法中,排序算法的效率直接影响到程序的运行速度和资源利用率。
为了深入了解各种排序算法的原理和性能,我们进行了一系列的排序实验。
实验一:冒泡排序冒泡排序是最简单的排序算法之一。
它的原理是通过相邻元素的比较和交换来实现排序。
我们编写了一个冒泡排序的算法,并使用Python语言进行实现。
实验中,我们分别对10、100、1000个随机生成的整数进行排序,并记录了排序所需的时间。
实验结果显示,随着数据规模的增加,冒泡排序的时间复杂度呈现出明显的增长趋势。
当数据规模为10时,排序所需的时间约为0.001秒;而当数据规模增加到1000时,排序所需的时间则增加到了1.5秒左右。
这说明冒泡排序的效率较低,对大规模数据的排序并不适用。
实验二:快速排序快速排序是一种常用的排序算法,它的核心思想是通过分治的策略将数据分成较小的子集,然后递归地对子集进行排序。
我们同样使用Python语言实现了快速排序算法,并对相同规模的数据进行了排序实验。
实验结果显示,快速排序的时间复杂度相对较低。
当数据规模为10时,排序所需的时间约为0.0005秒;而当数据规模增加到1000时,排序所需的时间仅为0.02秒左右。
这说明快速排序适用于大规模数据的排序,其效率较高。
实验三:归并排序归并排序是一种稳定的排序算法,它的原理是将待排序的数据分成若干个子序列,然后将子序列两两合并,直到最终得到有序的结果。
我们同样使用Python 语言实现了归并排序算法,并进行了相同规模数据的排序实验。
实验结果显示,归并排序的时间复杂度相对较低。
当数据规模为10时,排序所需的时间约为0.0008秒;而当数据规模增加到1000时,排序所需的时间仅为0.03秒左右。
这说明归并排序同样适用于大规模数据的排序,其效率较高。
讨论与结论:通过以上实验,我们可以得出以下结论:1. 冒泡排序虽然简单易懂,但对于大规模数据的排序效率较低,不适用于实际应用。
排序算法实训报告

一、实验目的通过本次实训,掌握常用的排序算法,包括直接插入排序、冒泡排序、选择排序、希尔排序等,并了解其基本原理、实现方法以及优缺点。
通过实际编程,加深对排序算法的理解,提高编程能力。
二、实验环境1. 开发工具:Visual Studio 20222. 编程语言:C++3. 操作系统:Windows 10三、实验内容本次实训主要涉及以下排序算法:1. 直接插入排序2. 冒泡排序3. 选择排序4. 希尔排序四、实验过程1. 直接插入排序(1)原理:将无序序列中的元素逐个插入到已有序序列的合适位置,直到整个序列有序。
(2)实现方法:遍历无序序列,对于每个元素,从已有序序列的末尾开始,将其与前面的元素进行比较,找到合适的插入位置,然后将该元素插入到序列中。
(3)代码实现:```cppvoid insertionSort(int arr[], int n) {int i, j, key;for (i = 1; i < n; i++) {key = arr[i];j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}}```2. 冒泡排序(1)原理:通过相邻元素的比较和交换,将序列中的元素按从小到大(或从大到小)的顺序排列。
(2)实现方法:遍历序列,比较相邻元素,如果顺序错误,则交换它们的位置。
重复此过程,直到整个序列有序。
(3)代码实现:```cppvoid bubbleSort(int arr[], int n) {int i, j, temp;for (i = 0; i < n - 1; i++) {for (j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```3. 选择排序(1)原理:每次从无序序列中选出最小(或最大)的元素,放到已有序序列的末尾。
排序算法实验报告2:冒泡排序及选择排序(分割策略)

排序算法实验报告2:冒泡排序及选择排序(分割策略)1. 引言本实验旨在研究和分析冒泡排序和选择排序算法,并通过对比它们的性能来评估它们在排序过程中的效率和效果。
冒泡排序和选择排序都是经典的排序算法,它们在不同的场景下都有着广泛的应用。
2. 冒泡排序2.1 算法原理冒泡排序是一种通过比较和交换相邻元素来排序的算法。
它的基本思想是重复地遍历待排序序列,每次比较相邻的两个元素,并根据排序规则对它们进行交换,直到整个序列有序。
2.2 算法实现冒泡排序的算法实现可以分为以下几个步骤:1. 遍历待排序序列,从第一个元素开始,依次比较相邻的两个元素。
2. 如果相邻元素的顺序不符合排序规则,则交换它们的位置。
3. 继续遍历序列,重复以上步骤,直到整个序列有序。
2.3 算法性能冒泡排序的时间复杂度为O(n^2),其中n是待排序序列的长度。
它是一种稳定的排序算法。
3. 选择排序(分割策略)3.1 算法原理选择排序是一种通过选择最小(或最大)元素并将其放置到已排序序列的末尾(或开头)来排序的算法。
它的基本思想是将待排序序列划分为已排序和未排序两部分,每次从未排序部分选择最小(或最大)的元素,并将其加入到已排序部分。
3.2 算法实现选择排序的算法实现可以分为以下几个步骤:1. 遍历待排序序列,先假定第一个元素为最小(或最大)元素。
2. 将该元素与未排序部分的元素依次比较,找到最小(或最大)的元素。
3. 将最小(或最大)元素与未排序部分的第一个元素交换位置,将其加入到已排序部分。
4. 继续遍历未排序部分,重复以上步骤,直到整个序列有序。
3.3 算法性能选择排序的时间复杂度为O(n^2),其中n是待排序序列的长度。
它是一种不稳定的排序算法。
4. 实验结果与分析通过对冒泡排序和选择排序的实验,我们得到了它们在不同规模的输入数据下的排序时间。
根据实验结果,我们可以发现:- 冒泡排序相对于选择排序来说,其性能较差。
在相同规模的输入数据下,冒泡排序的排序时间要长于选择排序。
排序算法设计实验报告总结

排序算法设计实验报告总结1. 引言排序算法是计算机科学中最基础的算法之一,它的作用是将一组数据按照特定的顺序进行排列。
在现实生活中,我们经常需要对一些数据进行排序,比如学生成绩的排名、图书按照标题首字母进行排序等等。
因此,了解不同的排序算法的性能特点以及如何选择合适的排序算法对于解决实际问题非常重要。
本次实验旨在设计和实现几种经典的排序算法,并对其进行比较和总结。
2. 实验方法本次实验设计了四种排序算法,分别为冒泡排序、插入排序、选择排序和快速排序。
实验采用Python语言进行实现,并通过编写测试函数对算法进行验证。
测试函数会生成一定数量的随机数,并对这些随机数进行排序,统计算法的执行时间和比较次数,最后将结果进行记录和分析。
3. 测试结果及分析3.1 冒泡排序冒泡排序是一种简单且常用的排序算法,其基本思想是从待排序的数据中依次比较相邻的两个元素,如果它们的顺序不符合要求,则交换它们的位置。
经过多轮的比较和交换,最小值会逐渐冒泡到前面。
测试结果显示,冒泡排序在排序1000个随机数时,平均执行时间为0.981秒,比较次数为499500次。
从执行时间和比较次数来看,冒泡排序的性能较差,对于大规模数据的排序不适用。
3.2 插入排序插入排序是一种简单但有效的排序算法,其基本思想是将一个待排序的元素插入到已排序的子数组中的正确位置。
通过不断将元素插入到正确的位置,最终得到排序好的数组。
测试结果显示,插入排序在排序1000个随机数时,平均执行时间为0.892秒,比较次数为249500次。
插入排序的性能较好,因为其内层循环的比较次数与待排序数组的有序程度相关,对于近乎有序的数组排序效果更好。
3.3 选择排序选择排序是一种简单但低效的排序算法,其基本思想是在待排序的数组中选择最小的元素,将其放到已排序数组的末尾。
通过多次选择和交换操作,最终得到排序好的数组。
测试结果显示,选择排序在排序1000个随机数时,平均执行时间为4.512秒,比较次数为499500次。
关于算法的实验报告(3篇)

第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排序算法学习报告一、学习内容所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。
当待排序记录的关键字都不相同时,排序结果是惟一的,否则排序结果不惟一。
在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生改变,则称这种排序方法是不稳定的。
要注意的是,排序算法的稳定性是针对所有输入实例而言的。
即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。
常见的排序算法2.1插入排序插入排序是这样实现的:首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。
它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
【示例】:[初始关键字][49] 38 65 97 76 13 27 49J=2(38) [38 49] 65 97 76 13 27 49J=3(65) [38 49 65] 97 76 13 27 49J=4(97) [38 49 65 97] 76 13 27 49J=5(76) [38 49 65 76 97] 13 27 49J=6(13) [13 38 49 65 76 97] 27 49J=7(27) [13 27 38 49 65 76 97] 49J=8(49) [13 27 38 49 49 65 76 97]2.2冒泡排序冒泡排序是这样实现的:首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法【示例】:49 13 13 13 13 13 13 1338 49 27 27 27 27 27 2765 38 49 38 38 38 38 3897 65 38 49 49 49 49 4976 97 65 49 49 49 49 4913 76 97 65 65 65 65 6527 27 76 97 76 76 76 7649 49 49 76 97 97 97 972.3选择排序选择排序是这样实现的:设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1 从数组的第i个元素开始到第n 个元素,寻找最小的元素将上一步找到的最小元素和第i位元素交换。
如果i=n —1算法结束,否则回到第3步【示例】:初始关键字[49 38 65 97 76 13 27 49]第一趟排序后13 [ 38 65 97 76 49 27 49]第二趟排序后13 27 [ 65 97 76 49 38 49]第三趟排序后13 27 38 [97 76 49 65 49]第四趟排序后13 27 38 49 [49 97 65 76]第五趟排序后13 27 38 49 49 [97 97 76]第六趟排序后13 27 38 49 49 76 [76 97]第七趟排序后13 27 38 49 49 76 76 [ 97]最后排序结果13 27 38 49 49 76 76 972.4快速排序基本思想:在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..l-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..l-1] <X.Key W R[I+1..H](1 < I < H),当R[1..l-1] 和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。
【示例】:初始关键字[49 38 65 97 76 13 27 49 ]第一次交换后[27 38 65 97 76 13 49 49 ]第二次交换后[27 38 49 97 76 13 65 49 ]J向左扫描,位置不变,第三次交换后[27 38 13 97 76 49 65 49 ]I向右扫描,位置不变,第四次交换后[27 38 13 49 76 97 65 49 ]J 向左扫描 [27 38 13 49 76 97 65 49 ](一次划分过程)初始关键字 [49 38 65 97 76 13 27 49 ]一趟排序之后[27 38 13 ] 49 [ 76 97 65 49 ]二趟排序之后[13 ] 27 [ 38 ] 49 [ 49 65] 76 [ 97 ]三趟排序之后13 27 38 49 49 [ 65 ] 76 97最后的排序结果13 27 38 49 49 65 76 972.5堆排序基本思想:堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
堆的定义:N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:Ki < K2i Ki < K2i+1(1 < I < [N/2])堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。
例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。
这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。
反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
排序过程:堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。
我们不妨利用大根堆来排序。
每一趟排序的基本操作是:将当前无序区调整为一个大根堆,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。
这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。
2.6希尔排序希尔(Shell)排序的基本思想是:先取一个小于n的整数di作为第一个增量把文件的全部记录分成di 个组。
所有距离为di的倍数的记录放在同一个组中。
先在各组内进行直接插入排序;然后,取得第二个增量d2<d1重复上述的分组和排序,直至所取的增量di=1,即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法。
一般取d1= n/2, di+1=di/2。
如果结果为偶数,贝U加1,保证di为奇数。
2.7归并排序归并排序是将两个或两个以上的有序子表合并成一个新的有序表。
初始时,把含有n个结点的待排序序列看作由n个长度都为1的有序子表组成,将它们依次两两归并得到长度为2的若干有序子表,再对它们两两合并。
直到得到长度为n的有序表,排序结束。
归并排序是一种稳定的排序,可用顺序存储结构,也易于在链表上实现,对长度为n的文件,需进行log2n趟二路归并,每趟归并的时间为0(n)故其时间复杂度无论是在最好情况下还是在最坏情况下均是0(nl og2 n)。
归并排序需要一个辅助向量来暂存两个有序子文件归并的结果,故其辅助空间复杂度为0( n),显然它不是就地排序。
常见排序算法比较稳定性分析首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说一下稳定性的好处。
排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。
基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。
回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。
⑴冒泡排序冒泡排序就是把小的元素往前调或者把大的元素往后调。
比较是相邻的两个元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
(2)选择排序选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。
那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。
比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5 的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
(3)插入排序插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。
当然,冈寸开始这个有序的小序列只有1个元素,就是第一个元素。
比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。
如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。
所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
(4)快速排序快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index] ,其中center_index是中枢元素的数组下标,一般取为数组第0个元素。
而右边的j下标一直往左走,当a[j] > a[center_index] 。
如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。
交换a[j]和a[center_index],完成一趟快速排序。
在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11,现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。