线性代数期末总复习
线性代数期末考试复习资料

基本概念下方是正文1. 余子式ij M 和代数余子式ij A ,(1)i j ij ij A M +=-,(1)i j ij ij M A +=-。
2. 对称矩阵:T A A =。
3. 伴随矩阵111*1n n nn A A A A A ⎛⎫ ⎪=⎪ ⎪⎝⎭,组成元素ij A ,书写格式:行元素的代数余子式写在列。
4. 逆矩阵AB BA E ==,称A 可逆。
若A 可逆,则11AA A A E --==.5. 分块对角阵12A O A O A ⎛⎫=⎪⎝⎭,12A A A =⋅,11112A O A O A ---⎛⎫= ⎪⎝⎭。
6. 初等行(列)变换:① 对换两行或两列;② 某行或某列乘以非零常数k ;③ 某行(列)的k 倍加到另一行(列)。
7. 等价矩阵:① 初等变换得来的矩阵;② 存在可逆矩阵,P Q ,使得PAQ B =。
8. 初等矩阵:初等变换经过一次初等变换得来的矩阵,① (,)E i j ;② (())E i k ;③(,())E j i k 。
9. 矩阵的秩:最高阶非零子式的阶数。
1()0,0k k r A k D D +=⇔∃≠∀=。
10. 线性表示:存在12,,,n k k k 使得1122n n k k k βααα=+++,等价于非齐次方程组Ax β=有解12,,,n k k k 。
11. 线性相关:存在不全为0的数12,,,n k k k ,使得11220n n k k k ααα+++=,等价于齐次方程组0Ax =有非零解。
12. 线性无关:11220n n k k k ααα+++=成立120n k k k ⇒====,等价于齐次方程组0Ax =仅有零解。
13. 极大无关组:12,,,n ααα中r 个向量12,,,r βββ满足:① 线性无关;②12,,,n ααα中任意向量可由其表示或12,,,n ααα中任意1r +个向量线性相关,则称12,,,rβββ为12,,,n ααα的极大无关组。
线性代数期末总复习

3. 计算
降阶:按行、按列展开公式,但在展开之前往往先用 性质对行列式做恒等变换,化简之后再展开。 数学归纳法、递推法、公式法、三角化法、定义法 把每一行(列)加至“第”一行(列); 把每一行(列)均减去“第”一行(列); 逐行(列)相加(减); 当零元素多时亦可立即展开. 爪型行列式计算
4. 应用
(ii) AX = 0 只有零解 ⇔ 秩(A)= n = 未知量的个数. (iii) A是方阵时,AX = 0 只有零解 ⇔ | A |≠ 0.
(2)、非齐次线性方程组 AX = b (i) AX = b 有解 ⇔ b可以由 A的列向量组线性表示; ⇔ r ([ A, b])=r ( A) AX = b 无解 ⇔ r ([ A, b]) ≠ r ( A)
有解的充要条件是 a1 + a2 = a3 + a4 ,并在有解时 求出方程组的通解。
解:对方程组的增广矩阵 [A b] 作初等行变换化为阶梯 形矩阵得:
1 0 [ A b] = 0 1
1 0 → 0 0 2 1 0 2
2 1 0 3
0 0
0 0 2 0 1 2 1 −2
2 2 λ1 y12 + λ2 y2 + L + λn yn
A为实对称矩阵.
求正交矩阵 T 使得 T −1 AT=diag{λ1 , λ2 ,L , λn } = T T AT
3、正定矩阵
(1) 定义 f ( x1 , x2 ,L xn ) = X T AX 为 正定(半正定、负定、半负定)二次型 A为正定矩阵:实的、对称的且对任何X ≠ 0, 都有X T AX > 0 对称的 AX (2) 性质 (i) 设A为正定实对称阵,则AT , A−1 , A∗均为正定矩阵; (ii) A, B均为n阶正定矩阵, 则A + B也是正定矩阵. 若
线性代数期末复习知识点资料整理总结

行列式1.行列式的性质性质1行列式与它的转置行列式相等TD D =.性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a =推论2如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+性质5把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1已知,那么()A.-24B.-12C.-6D.12答案B解析2.余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3.行列式按行(列)展开法则定理1行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++ 或 1122j j j j nj njD a A a A a A =+++ ()1,2,,;1,2i n j n ==定理2行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++= 或,11220.j j j j nj nj a A a A a A i j +++=≠ ()1,2,,;1,2i n j n == 例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____;213122322333a A a A a A ++=___0___.4.行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =-(3)对角行列式1212n nλλλλλλ=,n(m 1)21212nn(1)λλλλλλ-=- (4)三角行列式1111121n 2122222n1122nnn1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素33=1,按该行展开,D=3333,不用忘记B 。
线性代数期末总复习(PPT)

A+B = ( aij + bij) A与B同型 kA= ( kaij ) 运 算 AB = C 其中 cij aik bkj , Am s , Bsn ,C mn
k 1 n
AT: AT 的第 i 行是 A 的第 i 列.
|A|= detA , A必须是方阵.
三、重要公式、法则。
1、矩阵的加法与数乘
(1) (2) (3) (4) (5) (6) (7) (8) A+B=B+A; (A + B ) + C = A + ( B + C ); A + O = O + A = A; A + (-A) = O; k(lA) = (kl)A ; (k+l)A = kA+ lA ; k( A + B )= kA + kB ; 1A = A, OA = O 。 (2) A ( B + C ) = AB + AC; ( A + B ) C = AC + BC; (4) AO =OA = O.
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 an1 x1 an 2 x2 ann xn bn 的系数行列式D ≠0 , 原方程组有惟一解 Dn D1 D2 x1 , x2 , xn = . D D D 其中Dj ( j = 1,2,…,n )是把系数行列式D 中的第j 列的元素用 方程组的常数项替换后得到的n阶行列式。
n
i j i j i j i j
●定义法
●递推法
计 算
●加边法
线性代数期末考试复习资料

推论2.1 任意m(m>n)个n维向量线性相关.
(注:由于没有m阶子式,故R(A)<m)
推论2.2 m个n维向量线性无关的充要条件是由它们组成 的m n矩阵的秩为m(m n).
推论2.3 n 个n维向量线性无关(相关)的充要条件 是由它们组成的矩阵行列式不等于0(等于0).
12
如果向量组1, 2 L
则方程组有向量形式 x11 x22 L xnn b 7
2.2 向量的线性关系
定义2.4 设有同维向量1,2 ,L ,n , ,如果存在
一组数 k1, k2 ,L , kn ,使得 k11 k22 L knn 成立,
则称向量 可由向量组 1,2 ,L ,n 线性表示,或称向量
是向量组 1,2 ,L ,n 的线性组合。
26
向量组的等价
如果向量组A 可由向量组B线性表示,且B 可由A线性表示,则称A与B等价。
(1) 自反性:任何向量组都与自身等价。
性
质
(2) 对称性: 如果向量组A与B 等价,则B
与A等价。
(3) 传递性: 如果向量组A与B等价,B与C 等价,则A与C等价。
相互等价的线性无关向量组含有相同的向量个数
设A Amn , R( A) r n, 则方程组 Ax 0的基础解系含有n - r个解向量。
基础解系: 1,2 ,L nr
通解定义2.11 x k11 k22 L knr nr
k1, k2 ,L
kn
为任意实数
r
下面来看如何求齐次线性方程组的通解(书上P61)。
30
非齐次线性方程组
a11x1a12 x 2 L a1n xn b1
1
2
3
4
线性代数期末复习要点

注:一般而言, 1o ( AB)k Ak Bk , 正确: ( AB)k (AB)(A B)( AB) ;
k个
2o ( A B)(A B) A2 B2, 正确: ( A B)(A B) A2 AB BA B2 ;
3o ( A B)2 A2 2AB B2 , 正确: ( A B)2 A2 AB BA B2 。
A22
An
2
A2n
Ann
称为
A
的伴随矩阵。
2、n 阶方阵可逆的充要条件:
A
0
A 可逆,且 A1
1 A
A 。
3、逆矩阵的性质: 1o ( A1 )1 A ; 3o ( AT )1 ( A1 )T ;
4、伴随矩阵的性质:
2o ( AB)1 B1 A1 ;
4o
(kA)1
1 k
A1
(k
1、 Ax 0的基础解系:解向量组的一个极大无关组。
2、 Ax 0解的定理:只有当 R( A) r n 时,才存在基础解 系,且 n r 个线性无关的解向量组成的向量组 v1、v2、、vnr 是 Ax 0的基础解系,其线性组合
v c1v1 c2v2 cnrvnr 是 Ax 0的全部解。 3、基础解系的求法:
组有且仅有唯一解,且
xj
Dj D
( j 1,2,, n )
注:齐次线性方程组有非零解 D 0。 (逆否命题:齐次线性方程组仅有零解 D 0。)
第二章 矩阵
一、矩阵的定义:矩形数表。
二、矩阵的运算
1、矩阵的加法、减法:只有同型矩阵才可以进行加减运算。
2、数与矩阵的乘法:数与矩阵的乘法是数与矩阵每一个元 素相乘;而数与行列式的乘积是数与行列式中某一行(列) 的每一个元素相乘。
线性代数期末复习题

线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 假设一个行列式等于零,则它必有一行〔列〕元素全为零,或有两行〔列〕完全一样,或有两行〔列〕元素成比例. () 3. 假设行列式D 中每个元素都大于零,则D > 0. () 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. () 5. 假设矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. () 6. 假设矩阵A 与矩阵B 等价,则矩阵的秩R (A )=R (B ). () 7. 零向量一定可以表示成任意一组向量的线性组合. () 8. 假设向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. () 9. 向量组s ααα,...,,21中,假设1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. () 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. () 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. () 12. 齐次线性方程组一定有解. ()13. 假设λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. () 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. () 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. () 16. 假设矩阵A 与矩阵B 相似,则R R =A B ()(). () 二、单项选择题 1.设行列式,,2123121322211211n a a a a m a a a a ==则行列式=++232221131211a a a a a a ()2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )3.四阶行列式111111111111101-------x 中*的一次项系数为 ( )4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )5.n 阶行列式a b b a bab a D n 0000000000=的值为 ( )6. ,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则以下运算结果是m 阶方阵的是 ( ) 9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ( )10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( ) 11. 设A 是方阵,假设有矩阵关系式AC AB =,则必有 ( ) 12. 方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )13. 设A 、B 为n 阶对称阵且B 可逆,则以下矩阵中为对称阵的是 ( ) 14. 设A 、B 均为n 阶方阵,下面结论正确的选项是 ( )(A) 假设A 、B 均可逆,则A +B 可逆 (B) 假设A 、B 均可逆,则AB 可逆 (C) 假设A+B 均可逆,则A -B 可逆 (D) 假设A +B 可逆,则A 、B 均可逆15. 以下结论正确的选项是 ( )(A) 降秩矩阵经过假设干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过假设干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为017. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E , (2) BAC = E , (3) CAB = E , (4) CBA = E 中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )19. 矩阵⎪⎪⎪⎭⎫⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6 (B) 6 (C) 2 (D) -220. A 为三阶方阵,R (A ) = 1,则 ( )21. 43⨯矩阵A 的行向量组线性无关,则矩阵A T的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性无关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得 (C) 存在不全为0的数s λλλ ..., , ,21使得(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( ) 25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示(C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 以下命题中正确的选项是 ( )(A) 任意n 个n +1维向量线性相关 (B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( ) 31. n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A 1)( )B (-=n R A 0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则以下结论错误的选项是 ( )(A) 21ηη+是0=Ax 的一个解 (B) )(2121ηη+是b Ax =的一个解(C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 假设4321 , , ,v v v v 是线性方程组0=Ax 的根底解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 根底解系(C) 通解(D) A 的行向量35. 假设η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)36. n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( ) 37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n 0 )B (≠A (C) A 的特征值都等于零(D)A 的特征值都不等于零38. A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则以下矩阵中是可逆矩阵的是 ( )39. 21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的积等于零40. A 是一个)3( ≥n 阶方阵,以下表达中正确的选项是 ( )(A) 假设存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 假设存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 假设321 , ,λλλ是A 的三个互不一样的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )42. 矩阵A 与B 相似,则以下说法不正确的选项是 ( )(A) R (A ) = R (B ) (B) A = BB A = )C ((D) A 与B 有一样的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D)A 的n 个列向量是一个正交向量组45. A 是正交矩阵,则以下结论错误的选项是 ( )1 )A (2=A A )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有一样的特征值(D) A 与B 合同三、填空题1. 44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++ 对应的三阶行列式为.3. 022150131=---x ,则* = . 4. A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 三阶矩阵A 的三个特征值分别为123-,,,则=---*134A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是阶矩阵,AB 是行 列矩阵.8. 矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是,阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,假设321 , ,ααα线性相关,则*,y 满足关系式.11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大.13. 设A 是43⨯矩阵,3)(=A R ,假设21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为.14. A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个根底解系中含有解的个数为.15. 方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+32121232121321x x x a a 无解,则a =.16. 假设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足.17. 矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则* =.18. 向量α、β的长度依次为2和3,则向量积[, ]+-=αβαβ. 19. 向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ,c =.20. ⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a =,b =. 21. 三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为.22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规形),,,,(54321z z z z z f 为.23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为.24. 二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足. 四、行列式计算1. A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010 (201) (02)=n D ,其中主对角线上的元素都是2,另外两个角落的元素是1,其它元素都是0.4. 计算n 阶行列式xaa a xa a ax D n .........=.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012 =n D .6. 计算行列式dx c b ad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (32)12121+++=n n n n x x x x x x x x x D .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求*.3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 均为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵*满足关系式E B C X =-T )(,求*.5. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求*.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;假设是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x kx x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A =,A 经过初等行变换为⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λA ,则 (1) 求对应的齐次线性方程组0=Ax 的一个根底解系; (2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,假设方阵A 与B 相似,求*、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值. 3. 三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵. 8. 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵. 九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型? 2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =++化成标准形.十、证明题1. 向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n A A .6. 向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个根底解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. A 为正交阵,k 为实数,证明:假设A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 假设A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。
线性代数期末复习

二、相似矩阵 1、相似矩阵的定义与性质。 、相似矩阵的定义与性质。 性质 2、区分矩阵相似、矩阵等价(P.54 定义 1. 15) 、矩阵合 、区分矩阵相似、矩阵等价( 等价 ) 同的概念。 同的概念。
三、矩阵的对角化 1、矩阵可以对角化的判定(定理 4 . 9 及其推论 、 、矩阵可以对角化的判定( 判定 定理 4 . 10 ) 。 2、当矩阵 A 可以对角化时,求出可逆矩阵 P、对角矩阵 、 可以对角化时, 、 Λ,使 P −1 A P = Λ 。 进而, 可以对角化时, 进而,当矩阵 A 可以对角化时,r ( A ) = 矩阵 A 的非零特 征值的个数。 征值的个数。 3、实对称矩阵 A 的对角化:求出正交矩阵 Q、对角矩阵 、实对称矩阵 对角化: 、 Λ , 使 Q− 1 A Q = Λ 。 4、当矩阵 A 可以对角化时,利用矩阵 A 的特征值和特征 、 可以对角化时, 向量, 向量,求出矩阵 A 以及 A k 。
9、练习1. 6 的 3、求解下列矩阵方程: 、练习 求解下列矩阵方程:
2 1 0 5 1 1 (3*)X 1 1 2 = 0 0 − 6 3*) 1 2 5 1 0 − 1
0 0 1 ( − 1 2 − 1 )、 0 2 − 1
16、习题二的 8 : 、 考题有时会更难; 注:① 考题有时会更难; ② 题中方程组的两个解 γ1 ,γ2 可能会以另一种形式给 出: 设 4 × 3 矩阵 A 分块为 A = ( α1 ,α2 ,α3 ) ,其中 α i ∈ R4 ,i = 1,2,3,− α1 + α2 = β ,α1 + α3 = β ,且线性 , , , 方程组 A x = β 满足 r ( A ) = r (A ) = 2 ,试求出该方程组 的全部解。 的全部解。 17、习题二的 10 ; 、 18、习题二的 12 。 、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性
其中每一个向量都不能
无 关
由其余 m -1 个向量线性表示
上页 下页 返回
部分 与 整体 长短变化
线性代数总复习
向量个数 与 维数
线
若向量组中
性 相
部分相关 => 整体相关
缩短不变性
向量个数 > 向量维数
关
必线性相关
线
性 无
整体无关 => 部分无关
加长不变性
R n 中,任一无关组
向量个数 ≤ 向量维数 n
线性代数总复习
1.理解矩阵的特征值和特征向量的概念及性质,会求 矩阵的特征值和特征向量。
2.了解相似矩阵的概念、性质及掌握矩阵可相 似对角化的充分必要条件。
3.掌握用相似变换化实对称矩阵为对角矩阵的 方法。
4.了解内积的概念,掌握线性无关向量组标准规范化的施密特 正交化方法。向量的单位化等。
结论 上页 下页 返回
线
阵化为各首非零元为1,所在
性
列其余元素为零的矩阵
方
step4. 写出非齐次线性方程组的同解方程组
程
组
step5. 求出非齐次线性方程组的特解
求
解
step6. 写出齐次线性方程组的同解方程组
过
程
step7. 求出齐次线性方程组的通解
怎样求?
step8. 写出非齐次线性方程组的通解上页 下页 返回
第五章教学要求:
关
上页 下页 返回
线性代数总复习
• 向量组 a1 , a2 ,···, am 线性无关, 而添加 β 形成的向量组 a1 , a2 ,···, am ,β 线性相关, 则 β 可由 a1 , a2 ,···, am 线性表示,且表示唯一。
结论1结束
上页 下页 返回
计算问题
1)怎样求矩阵 A 的秩?------ 行、列
上页 下页 返回
线性代数总复习
5)存在可逆矩阵C,使实对称矩阵A= CTC 6)实对称矩阵A合同于I 7)实对称矩阵A的n个特征值 全大于零。
(8)矩阵A的每一个顺序主子式均大于零, 即:Ak 0, i 1, 2,L , n。
上页 下页 返回
线性代数总复习
充要条件 1
一般情况
当向量个数=向量维数
二次型不出现平方项,只有xixj的乘积项.
型
为
标
准 形 的
正交变换法.
方
法
上页 下页 返回
线性代数总复习
判别n元实二次型正定的充要条件是:
1)A是正定矩阵 2)f 的正惯性指数为 n
3)f
的 规范形为
z12
z
2 2
z
2 n
4)f 的 标准形
g( y1, y2 , , yn ) d1 y12 d2 y22 dn yn2 di 0, i 1,2, , n
3.了解向量组的极大线性无关组和向量组的秩的概念,理解矩 阵的秩的概念,掌握用初等变换求矩阵的秩和求向量组的极大 线性无关组及秩。
4 .了解向量组等价的概念,了解向量组 的秩与矩阵秩的关系。
重要结论2
上页 下页 返回
线性代数总复习
5.理解齐次线性方程组有非零解的充分必要条件及非 齐次线性方程组有解的充分必要条件。
线性代数总复习
A (行)初等变换行阶梯形矩阵
则 秩(A)= 行阶梯形矩阵中非零行的行数
--最常用
上页 下页 返回
线性代数总复习
2)怎样求向量组 1, 2 , , s 的秩? ------ 行、列 ⑴ 以向量组 1,2 , , s 中各向量作为列向量,
第五章教学要求:
线性代数总复习
1.掌握二次型 及其矩阵表示,了解二次型秩的概念, 了解二次型秩的标准形、规范形的概念,了解正、负 惯性指标(数)。
2.掌握化二次型为标准形的方法(配方法)。
3.会判定二次型和对应矩阵的正定性等。
上页 下页 返回
线性代数总复习
化 二 次
配
方
法
平方项系数至少有一个不等于零。
5.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概 念,掌握用初等变换求逆矩阵的方法;及求矩阵的秩的方法。
6.了解分块矩阵及其运算。
上页 下页 返回
第四章教学要求:
1.了解n维向量的概念。
线性代数总复习
重要结论1
2.理解向量组线性相关、线性无关的定义,了解并会用有关 向量组线性相关、线性无关的重要结论。
线
性 相
相应的齐次线性方程组
பைடு நூலகம்
关
x1a1+x2a2+…+xmam=θ
有非零解
系数行列式 D=0
线 相应的齐次线性方程组
性 无
x1a1+x2a2+…+xmam=θ
关
只有唯一零解
系数行列式 D≠0
上页 下页 返回
充要条件 2
线性代数总复习
线
性
其中至少有一个向量可以由
相 关
其余 m -1 个向量线性表示
线
克拉默法则,x j
Dj D
初等变换,d1 d2 dn T
齐次方程的基础解系 非齐次方程的一个特解 非齐次方程的通解
上页 下页 返回
step1. 系数矩阵初等行变换
齐
化为行阶梯形矩阵
线性代数总复习
次
线
step2. 讨论方程组的解
性
step3.(无穷解时) 进一步将矩
方
阵化为各首非零元为1,所在
程
算法 2. 降阶展开法
上页 下页 返回
第二、三章教学要求:
线性代数总复习
1.理解矩阵的概念。
2.了解单位矩阵、对角矩阵、三角矩阵、对称矩阵和反对称
矩阵,以及它们的性质。
3.掌握矩阵的线性运算、乘法、转置,以及它们的运算规律, 了解方阵的幂、方阵乘积的行列式。
4.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的 充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆。
列其余元素为零的矩阵
组
step4. 选择自由未知量,基本
求
未知量
怎样选择?
解
过
step5. 写出同解方程
程
step6. 求出基础解系
怎样求?
step7. 写出通解
上页 下页 返回
step1. 增广矩阵初等行变换化为行阶梯形矩阵 线性代数总复习
非
齐
step2. 讨论方程组的解
次
step3.(无穷解时) 进一步将矩
6.理解齐次线性方程组的基础解系、通解的概念及 求法。
3.理解非齐次线性方程组解的结构及通解的概念。
4.掌握用行初等变换求非齐次线性方程组通解的方 法。
上页 下页 返回
r(A) r(A,b)无解
线性代数总复习
r(A)=r(A,b)=n 有唯一解
Ax=b
b=0
b≠0
r(A)=r(A,b)<n
有无穷多解
一、行列式 二、矩阵 三、向量之间的关系 四、线性方程组的解 五、特征值与特征向量
第一章教学要求:
线性代数总复习
1.了解行列式的概念,掌握行列式的性质。
2.会应用行列式的性质和行列式按行(列) 展开定理计算行列式。
3.理解克莱姆法则及其应用。
上页 下页 返回
行列式的计算
线性代数总复习
n阶行列式的计算方法很多,除直接按 定义计算外,一般还有下列方法: 1.利用行列式的性质化为三角形行列式计