线性代数期末总复习

合集下载

线性代数期末考试复习资料

线性代数期末考试复习资料

基本概念下方是正文1. 余子式ij M 和代数余子式ij A ,(1)i j ij ij A M +=-,(1)i j ij ij M A +=-。

2. 对称矩阵:T A A =。

3. 伴随矩阵111*1n n nn A A A A A ⎛⎫ ⎪=⎪ ⎪⎝⎭,组成元素ij A ,书写格式:行元素的代数余子式写在列。

4. 逆矩阵AB BA E ==,称A 可逆。

若A 可逆,则11AA A A E --==.5. 分块对角阵12A O A O A ⎛⎫=⎪⎝⎭,12A A A =⋅,11112A O A O A ---⎛⎫= ⎪⎝⎭。

6. 初等行(列)变换:① 对换两行或两列;② 某行或某列乘以非零常数k ;③ 某行(列)的k 倍加到另一行(列)。

7. 等价矩阵:① 初等变换得来的矩阵;② 存在可逆矩阵,P Q ,使得PAQ B =。

8. 初等矩阵:初等变换经过一次初等变换得来的矩阵,① (,)E i j ;② (())E i k ;③(,())E j i k 。

9. 矩阵的秩:最高阶非零子式的阶数。

1()0,0k k r A k D D +=⇔∃≠∀=。

10. 线性表示:存在12,,,n k k k 使得1122n n k k k βααα=+++,等价于非齐次方程组Ax β=有解12,,,n k k k 。

11. 线性相关:存在不全为0的数12,,,n k k k ,使得11220n n k k k ααα+++=,等价于齐次方程组0Ax =有非零解。

12. 线性无关:11220n n k k k ααα+++=成立120n k k k ⇒====,等价于齐次方程组0Ax =仅有零解。

13. 极大无关组:12,,,n ααα中r 个向量12,,,r βββ满足:① 线性无关;②12,,,n ααα中任意向量可由其表示或12,,,n ααα中任意1r +个向量线性相关,则称12,,,rβββ为12,,,n ααα的极大无关组。

线性代数期末总复习

线性代数期末总复习

3. 计算
降阶:按行、按列展开公式,但在展开之前往往先用 性质对行列式做恒等变换,化简之后再展开。 数学归纳法、递推法、公式法、三角化法、定义法 把每一行(列)加至“第”一行(列); 把每一行(列)均减去“第”一行(列); 逐行(列)相加(减); 当零元素多时亦可立即展开. 爪型行列式计算
4. 应用
(ii) AX = 0 只有零解 ⇔ 秩(A)= n = 未知量的个数. (iii) A是方阵时,AX = 0 只有零解 ⇔ | A |≠ 0.
(2)、非齐次线性方程组 AX = b (i) AX = b 有解 ⇔ b可以由 A的列向量组线性表示; ⇔ r ([ A, b])=r ( A) AX = b 无解 ⇔ r ([ A, b]) ≠ r ( A)
有解的充要条件是 a1 + a2 = a3 + a4 ,并在有解时 求出方程组的通解。
解:对方程组的增广矩阵 [A b] 作初等行变换化为阶梯 形矩阵得:
1 0 [ A b] = 0 1
1 0 → 0 0 2 1 0 2
2 1 0 3
0 0
0 0 2 0 1 2 1 −2
2 2 λ1 y12 + λ2 y2 + L + λn yn
A为实对称矩阵.
求正交矩阵 T 使得 T −1 AT=diag{λ1 , λ2 ,L , λn } = T T AT
3、正定矩阵
(1) 定义 f ( x1 , x2 ,L xn ) = X T AX 为 正定(半正定、负定、半负定)二次型 A为正定矩阵:实的、对称的且对任何X ≠ 0, 都有X T AX > 0 对称的 AX (2) 性质 (i) 设A为正定实对称阵,则AT , A−1 , A∗均为正定矩阵; (ii) A, B均为n阶正定矩阵, 则A + B也是正定矩阵. 若

线性代数期末复习知识点资料整理总结

线性代数期末复习知识点资料整理总结

行列式1.行列式的性质性质1行列式与它的转置行列式相等TD D =.性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a =推论2如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+性质5把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1已知,那么()A.-24B.-12C.-6D.12答案B解析2.余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3.行列式按行(列)展开法则定理1行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++ 或 1122j j j j nj njD a A a A a A =+++ ()1,2,,;1,2i n j n ==定理2行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++= 或,11220.j j j j nj nj a A a A a A i j +++=≠ ()1,2,,;1,2i n j n == 例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____;213122322333a A a A a A ++=___0___.4.行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =-(3)对角行列式1212n nλλλλλλ=,n(m 1)21212nn(1)λλλλλλ-=- (4)三角行列式1111121n 2122222n1122nnn1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素33=1,按该行展开,D=3333,不用忘记B 。

线性代数期末总复习(PPT)

线性代数期末总复习(PPT)
反对称矩阵: AT = -A
A+B = ( aij + bij) A与B同型 kA= ( kaij ) 运 算 AB = C 其中 cij aik bkj , Am s , Bsn ,C mn
k 1 n
AT: AT 的第 i 行是 A 的第 i 列.
|A|= detA , A必须是方阵.
三、重要公式、法则。
1、矩阵的加法与数乘
(1) (2) (3) (4) (5) (6) (7) (8) A+B=B+A; (A + B ) + C = A + ( B + C ); A + O = O + A = A; A + (-A) = O; k(lA) = (kl)A ; (k+l)A = kA+ lA ; k( A + B )= kA + kB ; 1A = A, OA = O 。 (2) A ( B + C ) = AB + AC; ( A + B ) C = AC + BC; (4) AO =OA = O.
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 an1 x1 an 2 x2 ann xn bn 的系数行列式D ≠0 , 原方程组有惟一解 Dn D1 D2 x1 , x2 , xn = . D D D 其中Dj ( j = 1,2,…,n )是把系数行列式D 中的第j 列的元素用 方程组的常数项替换后得到的n阶行列式。
n
i j i j i j i j
●定义法
●递推法
计 算
●加边法

线性代数期末考试复习资料

线性代数期末考试复习资料
11
推论2.1 任意m(m>n)个n维向量线性相关.
(注:由于没有m阶子式,故R(A)<m)
推论2.2 m个n维向量线性无关的充要条件是由它们组成 的m n矩阵的秩为m(m n).
推论2.3 n 个n维向量线性无关(相关)的充要条件 是由它们组成的矩阵行列式不等于0(等于0).
12
如果向量组1, 2 L
则方程组有向量形式 x11 x22 L xnn b 7
2.2 向量的线性关系
定义2.4 设有同维向量1,2 ,L ,n , ,如果存在
一组数 k1, k2 ,L , kn ,使得 k11 k22 L knn 成立,
则称向量 可由向量组 1,2 ,L ,n 线性表示,或称向量
是向量组 1,2 ,L ,n 的线性组合。
26
向量组的等价
如果向量组A 可由向量组B线性表示,且B 可由A线性表示,则称A与B等价。
(1) 自反性:任何向量组都与自身等价。


(2) 对称性: 如果向量组A与B 等价,则B
与A等价。
(3) 传递性: 如果向量组A与B等价,B与C 等价,则A与C等价。
相互等价的线性无关向量组含有相同的向量个数
设A Amn , R( A) r n, 则方程组 Ax 0的基础解系含有n - r个解向量。
基础解系: 1,2 ,L nr
通解定义2.11 x k11 k22 L knr nr
k1, k2 ,L
kn
为任意实数
r
下面来看如何求齐次线性方程组的通解(书上P61)。
30
非齐次线性方程组
a11x1a12 x 2 L a1n xn b1
1
2
3
4

线性代数期末复习要点

线性代数期末复习要点

注:一般而言, 1o ( AB)k Ak Bk , 正确: ( AB)k (AB)(A B)( AB) ;
k个
2o ( A B)(A B) A2 B2, 正确: ( A B)(A B) A2 AB BA B2 ;
3o ( A B)2 A2 2AB B2 , 正确: ( A B)2 A2 AB BA B2 。
A22
An
2
A2n
Ann
称为
A
的伴随矩阵。
2、n 阶方阵可逆的充要条件:
A
0
A 可逆,且 A1
1 A
A 。
3、逆矩阵的性质: 1o ( A1 )1 A ; 3o ( AT )1 ( A1 )T ;
4、伴随矩阵的性质:
2o ( AB)1 B1 A1 ;
4o
(kA)1
1 k
A1
(k
1、 Ax 0的基础解系:解向量组的一个极大无关组。
2、 Ax 0解的定理:只有当 R( A) r n 时,才存在基础解 系,且 n r 个线性无关的解向量组成的向量组 v1、v2、、vnr 是 Ax 0的基础解系,其线性组合
v c1v1 c2v2 cnrvnr 是 Ax 0的全部解。 3、基础解系的求法:
组有且仅有唯一解,且
xj
Dj D
( j 1,2,, n )
注:齐次线性方程组有非零解 D 0。 (逆否命题:齐次线性方程组仅有零解 D 0。)
第二章 矩阵
一、矩阵的定义:矩形数表。
二、矩阵的运算
1、矩阵的加法、减法:只有同型矩阵才可以进行加减运算。
2、数与矩阵的乘法:数与矩阵的乘法是数与矩阵每一个元 素相乘;而数与行列式的乘积是数与行列式中某一行(列) 的每一个元素相乘。

线性代数期末复习题

线性代数期末复习题

线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 假设一个行列式等于零,则它必有一行〔列〕元素全为零,或有两行〔列〕完全一样,或有两行〔列〕元素成比例. () 3. 假设行列式D 中每个元素都大于零,则D > 0. () 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. () 5. 假设矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. () 6. 假设矩阵A 与矩阵B 等价,则矩阵的秩R (A )=R (B ). () 7. 零向量一定可以表示成任意一组向量的线性组合. () 8. 假设向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. () 9. 向量组s ααα,...,,21中,假设1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. () 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. () 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. () 12. 齐次线性方程组一定有解. ()13. 假设λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. () 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. () 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. () 16. 假设矩阵A 与矩阵B 相似,则R R =A B ()(). () 二、单项选择题 1.设行列式,,2123121322211211n a a a a m a a a a ==则行列式=++232221131211a a a a a a ()2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )3.四阶行列式111111111111101-------x 中*的一次项系数为 ( )4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )5.n 阶行列式a b b a bab a D n 0000000000=的值为 ( )6. ,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则以下运算结果是m 阶方阵的是 ( ) 9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ( )10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( ) 11. 设A 是方阵,假设有矩阵关系式AC AB =,则必有 ( ) 12. 方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )13. 设A 、B 为n 阶对称阵且B 可逆,则以下矩阵中为对称阵的是 ( ) 14. 设A 、B 均为n 阶方阵,下面结论正确的选项是 ( )(A) 假设A 、B 均可逆,则A +B 可逆 (B) 假设A 、B 均可逆,则AB 可逆 (C) 假设A+B 均可逆,则A -B 可逆 (D) 假设A +B 可逆,则A 、B 均可逆15. 以下结论正确的选项是 ( )(A) 降秩矩阵经过假设干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过假设干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为017. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E , (2) BAC = E , (3) CAB = E , (4) CBA = E 中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )19. 矩阵⎪⎪⎪⎭⎫⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6 (B) 6 (C) 2 (D) -220. A 为三阶方阵,R (A ) = 1,则 ( )21. 43⨯矩阵A 的行向量组线性无关,则矩阵A T的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性无关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得 (C) 存在不全为0的数s λλλ ..., , ,21使得(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( ) 25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示(C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 以下命题中正确的选项是 ( )(A) 任意n 个n +1维向量线性相关 (B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( ) 31. n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A 1)( )B (-=n R A 0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则以下结论错误的选项是 ( )(A) 21ηη+是0=Ax 的一个解 (B) )(2121ηη+是b Ax =的一个解(C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 假设4321 , , ,v v v v 是线性方程组0=Ax 的根底解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 根底解系(C) 通解(D) A 的行向量35. 假设η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)36. n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( ) 37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n 0 )B (≠A (C) A 的特征值都等于零(D)A 的特征值都不等于零38. A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则以下矩阵中是可逆矩阵的是 ( )39. 21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的积等于零40. A 是一个)3( ≥n 阶方阵,以下表达中正确的选项是 ( )(A) 假设存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 假设存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 假设321 , ,λλλ是A 的三个互不一样的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )42. 矩阵A 与B 相似,则以下说法不正确的选项是 ( )(A) R (A ) = R (B ) (B) A = BB A = )C ((D) A 与B 有一样的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D)A 的n 个列向量是一个正交向量组45. A 是正交矩阵,则以下结论错误的选项是 ( )1 )A (2=A A )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有一样的特征值(D) A 与B 合同三、填空题1. 44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++ 对应的三阶行列式为.3. 022150131=---x ,则* = . 4. A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 三阶矩阵A 的三个特征值分别为123-,,,则=---*134A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是阶矩阵,AB 是行 列矩阵.8. 矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是,阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,假设321 , ,ααα线性相关,则*,y 满足关系式.11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大.13. 设A 是43⨯矩阵,3)(=A R ,假设21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为.14. A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个根底解系中含有解的个数为.15. 方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+32121232121321x x x a a 无解,则a =.16. 假设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足.17. 矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则* =.18. 向量α、β的长度依次为2和3,则向量积[, ]+-=αβαβ. 19. 向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ,c =.20. ⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a =,b =. 21. 三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为.22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规形),,,,(54321z z z z z f 为.23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为.24. 二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足. 四、行列式计算1. A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010 (201) (02)=n D ,其中主对角线上的元素都是2,另外两个角落的元素是1,其它元素都是0.4. 计算n 阶行列式xaa a xa a ax D n .........=.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012 =n D .6. 计算行列式dx c b ad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (32)12121+++=n n n n x x x x x x x x x D .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求*.3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 均为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵*满足关系式E B C X =-T )(,求*.5. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求*.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;假设是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x kx x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A =,A 经过初等行变换为⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λA ,则 (1) 求对应的齐次线性方程组0=Ax 的一个根底解系; (2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,假设方阵A 与B 相似,求*、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值. 3. 三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵. 8. 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵. 九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型? 2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =++化成标准形.十、证明题1. 向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n A A .6. 向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个根底解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. A 为正交阵,k 为实数,证明:假设A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 假设A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。

线性代数期末复习

线性代数期末复习

二、相似矩阵 1、相似矩阵的定义与性质。 、相似矩阵的定义与性质。 性质 2、区分矩阵相似、矩阵等价(P.54 定义 1. 15) 、矩阵合 、区分矩阵相似、矩阵等价( 等价 ) 同的概念。 同的概念。
三、矩阵的对角化 1、矩阵可以对角化的判定(定理 4 . 9 及其推论 、 、矩阵可以对角化的判定( 判定 定理 4 . 10 ) 。 2、当矩阵 A 可以对角化时,求出可逆矩阵 P、对角矩阵 、 可以对角化时, 、 Λ,使 P −1 A P = Λ 。 进而, 可以对角化时, 进而,当矩阵 A 可以对角化时,r ( A ) = 矩阵 A 的非零特 征值的个数。 征值的个数。 3、实对称矩阵 A 的对角化:求出正交矩阵 Q、对角矩阵 、实对称矩阵 对角化: 、 Λ , 使 Q− 1 A Q = Λ 。 4、当矩阵 A 可以对角化时,利用矩阵 A 的特征值和特征 、 可以对角化时, 向量, 向量,求出矩阵 A 以及 A k 。
9、练习1. 6 的 3、求解下列矩阵方程: 、练习 求解下列矩阵方程:
2 1 0 5 1 1 (3*)X 1 1 2 = 0 0 − 6 3*) 1 2 5 1 0 − 1
0 0 1 ( − 1 2 − 1 )、 0 2 − 1
16、习题二的 8 : 、 考题有时会更难; 注:① 考题有时会更难; ② 题中方程组的两个解 γ1 ,γ2 可能会以另一种形式给 出: 设 4 × 3 矩阵 A 分块为 A = ( α1 ,α2 ,α3 ) ,其中 α i ∈ R4 ,i = 1,2,3,− α1 + α2 = β ,α1 + α3 = β ,且线性 , , , 方程组 A x = β 满足 r ( A ) = r (A ) = 2 ,试求出该方程组 的全部解。 的全部解。 17、习题二的 10 ; 、 18、习题二的 12 。 、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


其中每一个向量都不能
无 关
由其余 m -1 个向量线性表示
上页 下页 返回
部分 与 整体 长短变化
线性代数总复习
向量个数 与 维数
线
若向量组中
性 相
部分相关 => 整体相关
缩短不变性
向量个数 > 向量维数

必线性相关
线
性 无
整体无关 => 部分无关
加长不变性
R n 中,任一无关组
向量个数 ≤ 向量维数 n
线性代数总复习
1.理解矩阵的特征值和特征向量的概念及性质,会求 矩阵的特征值和特征向量。
2.了解相似矩阵的概念、性质及掌握矩阵可相 似对角化的充分必要条件。
3.掌握用相似变换化实对称矩阵为对角矩阵的 方法。
4.了解内积的概念,掌握线性无关向量组标准规范化的施密特 正交化方法。向量的单位化等。
结论 上页 下页 返回
线
阵化为各首非零元为1,所在

列其余元素为零的矩阵

step4. 写出非齐次线性方程组的同解方程组


step5. 求出非齐次线性方程组的特解


step6. 写出齐次线性方程组的同解方程组


step7. 求出齐次线性方程组的通解
怎样求?
step8. 写出非齐次线性方程组的通解上页 下页 返回
第五章教学要求:

上页 下页 返回
线性代数总复习
• 向量组 a1 , a2 ,···, am 线性无关, 而添加 β 形成的向量组 a1 , a2 ,···, am ,β 线性相关, 则 β 可由 a1 , a2 ,···, am 线性表示,且表示唯一。
结论1结束
上页 下页 返回
计算问题
1)怎样求矩阵 A 的秩?------ 行、列
上页 下页 返回
线性代数总复习
5)存在可逆矩阵C,使实对称矩阵A= CTC 6)实对称矩阵A合同于I 7)实对称矩阵A的n个特征值 全大于零。
(8)矩阵A的每一个顺序主子式均大于零, 即:Ak 0, i 1, 2,L , n。
上页 下页 返回
线性代数总复习
充要条件 1
一般情况
当向量个数=向量维数
二次型不出现平方项,只有xixj的乘积项.



准 形 的
正交变换法.


上页 下页 返回
线性代数总复习
判别n元实二次型正定的充要条件是:
1)A是正定矩阵 2)f 的正惯性指数为 n
3)f
的 规范形为
z12
z
2 2
z
2 n
4)f 的 标准形
g( y1, y2 , , yn ) d1 y12 d2 y22 dn yn2 di 0, i 1,2, , n
3.了解向量组的极大线性无关组和向量组的秩的概念,理解矩 阵的秩的概念,掌握用初等变换求矩阵的秩和求向量组的极大 线性无关组及秩。
4 .了解向量组等价的概念,了解向量组 的秩与矩阵秩的关系。
重要结论2
上页 下页 返回
线性代数总复习
5.理解齐次线性方程组有非零解的充分必要条件及非 齐次线性方程组有解的充分必要条件。
线性代数总复习
A (行)初等变换行阶梯形矩阵
则 秩(A)= 行阶梯形矩阵中非零行的行数
--最常用
上页 下页 返回
线性代数总复习
2)怎样求向量组 1, 2 , , s 的秩? ------ 行、列 ⑴ 以向量组 1,2 , , s 中各向量作为列向量,
第五章教学要求:
线性代数总复习
1.掌握二次型 及其矩阵表示,了解二次型秩的概念, 了解二次型秩的标准形、规范形的概念,了解正、负 惯性指标(数)。
2.掌握化二次型为标准形的方法(配方法)。
3.会判定二次型和对应矩阵的正定性等。
上页 下页 返回
线性代数总复习
化 二 次



平方项系数至少有一个不等于零。
5.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概 念,掌握用初等变换求逆矩阵的方法;及求矩阵的秩的方法。
6.了解分块矩阵及其运算。
上页 下页 返回
第四章教学要求:
1.了解n维向量的概念。
线性代数总复习
重要结论1
2.理解向量组线性相关、线性无关的定义,了解并会用有关 向量组线性相关、线性无关的重要结论。
线
性 相
相应的齐次线性方程组
பைடு நூலகம்

x1a1+x2a2+…+xmam=θ
有非零解
系数行列式 D=0
线 相应的齐次线性方程组
性 无
x1a1+x2a2+…+xmam=θ

只有唯一零解
系数行列式 D≠0
上页 下页 返回
充要条件 2
线性代数总复习
线

其中至少有一个向量可以由
相 关
其余 m -1 个向量线性表示
线
克拉默法则,x j
Dj D
初等变换,d1 d2 dn T
齐次方程的基础解系 非齐次方程的一个特解 非齐次方程的通解
上页 下页 返回
step1. 系数矩阵初等行变换

化为行阶梯形矩阵
线性代数总复习

线
step2. 讨论方程组的解

step3.(无穷解时) 进一步将矩

阵化为各首非零元为1,所在

算法 2. 降阶展开法
上页 下页 返回
第二、三章教学要求:
线性代数总复习
1.理解矩阵的概念。
2.了解单位矩阵、对角矩阵、三角矩阵、对称矩阵和反对称
矩阵,以及它们的性质。
3.掌握矩阵的线性运算、乘法、转置,以及它们的运算规律, 了解方阵的幂、方阵乘积的行列式。
4.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的 充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆。
列其余元素为零的矩阵

step4. 选择自由未知量,基本

未知量
怎样选择?


step5. 写出同解方程

step6. 求出基础解系
怎样求?
step7. 写出通解
上页 下页 返回
step1. 增广矩阵初等行变换化为行阶梯形矩阵 线性代数总复习


step2. 讨论方程组的解

step3.(无穷解时) 进一步将矩
6.理解齐次线性方程组的基础解系、通解的概念及 求法。
3.理解非齐次线性方程组解的结构及通解的概念。
4.掌握用行初等变换求非齐次线性方程组通解的方 法。
上页 下页 返回
r(A) r(A,b)无解
线性代数总复习
r(A)=r(A,b)=n 有唯一解
Ax=b
b=0
b≠0
r(A)=r(A,b)<n
有无穷多解
一、行列式 二、矩阵 三、向量之间的关系 四、线性方程组的解 五、特征值与特征向量
第一章教学要求:
线性代数总复习
1.了解行列式的概念,掌握行列式的性质。
2.会应用行列式的性质和行列式按行(列) 展开定理计算行列式。
3.理解克莱姆法则及其应用。
上页 下页 返回
行列式的计算
线性代数总复习
n阶行列式的计算方法很多,除直接按 定义计算外,一般还有下列方法: 1.利用行列式的性质化为三角形行列式计
相关文档
最新文档