系统辨识与自适应控制

合集下载

系统辨识与自适应控制

系统辨识与自适应控制

关于系统辨识
写出最小相位系统开环传递函数的过程就是一个辨
识过程(是对数幅频渐近特性曲线绘制的逆问题)。
L/ dB
20dB/ dec 6
40dB / dec
G j
k
j1 j 1 j
1 5
0
1
5
20lg G j1 6dB
c
20 lg k 20 lg1 20lg 1 6dB
60dB / dec
关于系统辨识
在经典的控制理论中,为了确定闭环系统是否稳定,我们 就需要数学模型。可以①在已知系统微分方程的情况下,求取 闭环传递函数,求解闭环特征方程,判断根是否都具有负实部, 或利用劳斯判据(霍尔维茨判据),确定是否所有极点位于S平 面的左半平面;②获得开环系统传递函数,绘制根轨迹,确定 系统特征方程的根在S平面的分布情况;③在没有获得系统数学 模型的情况下,实验室的方法变得切实可行,利用开环系统的 对数幅频特性曲线(Bode图)或者奈奎斯特曲线(奈氏图), 判断闭环系统的稳定性。
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
L( )
40
20
1 20
① ④
10 ②
100

( )
0


45
② 90

180
G j
10
j0.1 j 1
二阶I型系统的波特图
关于系统辨识
什么是数学模型; 系统辨识的基本方法; 系统辨识的基本内容;
什么是数学模型
数学模型是对这个对象的特征和变化规律的 一种表示或抽象,它不是对象本身,而是把对象 本质的部分信息表达成有用的描述形式。
求得k 2
开环对数幅频特性

模糊系统的辨识与自适应控制

模糊系统的辨识与自适应控制

模糊系统的辨识与自适应控制在现代控制理论研究中,模糊控制是一种重要的控制方法。

模糊控制是对非线性系统的一种解决方案,这种控制方法利用模糊逻辑来处理不确定性和信息丢失问题,从而提高了控制的效率和精度,因此在自适应控制中得到了广泛的应用。

一、模糊系统辨识模糊系统辨识是指对模糊控制系统进行参数辨识和模型识别,目的是为了找到最佳的控制方案。

模糊系统的辨识过程也是确定模糊控制系统结构和参数的过程。

模糊控制系统需要依赖于模糊规则库和隶属函数来完成参数辨识和模型识别。

模糊规则库是一个包含了各种规则的数据库,其中每个规则由一组条件和一组相应的控制动作组成。

隶属函数用来描述输入变量和输出变量之间的映射关系。

在模糊系统辨识的过程中,需要收集大量的数据来分析和处理,以便从中提取有用的信息。

这里的数据包括输入数据和输出数据,输入数据包括控制输入和环境输入,输出数据包括控制输出和系统响应。

通过对这些数据进行分析、模型识别和参数辨识,可以得到一个模糊控制系统的模型,并对其进行优化调整,以使其更好地适应所需的控制任务。

二、自适应控制模糊系统的自适应控制是利用模糊控制系统的动态特性,不断根据控制系统的变化自动调整控制参数,以达到最优的控制效果。

因此,自适应控制算法是一种重要的控制算法,它可以自动调整控制参数以快速响应外部变化。

自适应控制有多种方法,包括自适应模糊控制、自适应神经网络控制、自适应PID控制、自适应模型预测控制等。

其中,自适应模糊控制是一种广泛应用的控制方法,它可以自动调整模糊规则库、隶属函数以及控制输出,以适应不同的控制任务和环境条件。

三、结论总之,在现代控制领域中,模糊控制方法是一种重要的控制方法之一,具有较高的鲁棒性和鲁棒性。

模糊控制方法除了能够处理非线性系统,还可以处理模糊系统,因此在实际控制中被广泛应用。

模糊系统的辨识和自适应控制是模糊控制方法的两个基本方面,它们为模糊控制的优化和应用提供了基础和保障。

系统辨识与自适应控制 教材

系统辨识与自适应控制 教材

系统辨识与自适应控制教材
系统辨识与自适应控制是一门涉及自动化控制、信号处理、人工智能等多个领域的交叉学科。

这门学科主要研究如何从系统的输入输出数据中,通过一定的方法和技术,辨识出系统的数学模型,进而实现对系统的有效控制。

系统辨识的主要方法包括:基于频率响应的方法、基于时间序列的方法、基于状态空间的方法等。

这些方法可以通过对系统的输入输出数据进行处理和分析,提取出系统的模型参数和结构。

自适应控制是一种特殊的控制系统,它可以根据环境的变化或者系统参数的变化,自动调整控制参数,以实现最优的控制效果。

自适应控制的主要方法包括:模型参考自适应控制、自校正控制、多变量自适应控制等。

系统辨识与自适应控制教材有很多种,以下是一些经典的教材:
1. 《System Identification and Adaptive Control》(第二版)- John H. Holland
2. 《Adaptive Control of Linear Systems》- Michael C. Corsini
3. 《Nonlinear System Identification and Control》- Massimo Ippolito
4. 《System Identification: Theory for the User》- Jack W. Newbold
5. 《Introduction to System Identification》- Mark H. Sager
这些教材都是系统辨识与自适应控制的经典之作,它们详细介绍了系统辨识与自适应控制的基本概念、方法和技术,以及它们在各个领域的应用。

如果您想深入学习系统辨识与自适应控制,建议阅读这些教材。

自动控制系统中的模型辨识与自适应控制策略

自动控制系统中的模型辨识与自适应控制策略

自动控制系统中的模型辨识与自适应控制策略引言自动控制系统是现代工程领域中很重要的一个研究方向,它涉及到各种各样的应用,如工业自动化、航天技术、机器人技术等。

在自动控制系统中,模型辨识和自适应控制策略是两个关键领域。

本文将讨论自动控制系统中的模型辨识和自适应控制策略的原理、方法和应用。

模型辨识模型辨识是自动控制系统中的一个重要研究领域,它旨在从系统的输入和输出数据中构建出一个有效的数学模型。

该数学模型能够描述和预测系统的动态行为,从而为系统设计和控制提供依据。

常用的模型辨识方法包括参数辨识、结构辨识和非参数辨识。

参数辨识方法是基于假设系统模型是已知结构的情况下进行的。

通过对系统的输入和输出数据进行拟合,参数辨识方法能够估计出系统模型中的参数。

这些参数可以被用于描述系统的动态性能,并且可以用于设计稳定的自适应控制器。

结构辨识方法是在没有先验知识的情况下,通过试探不同的系统结构来辨识系统模型。

这种方法常常使用组合算法和优化算法,通过对系统数据进行训练,筛选出最符合系统动态特性的模型结构。

结构辨识方法在辨识非线性系统和复杂系统方面具有很大的优势。

非参数辨识方法是一种基于经验分布函数和核函数的统计方法。

该方法不依赖于特定模型的假设,而是直接从数据中提取系统的动态信息。

非参数辨识方法可以用于辨识非线性系统和时变系统,适用范围广泛。

自适应控制策略自适应控制策略是一种可以根据系统的实时信息进行不断更新和优化的控制策略。

自适应控制器能够自动调整控制参数,以适应系统的变化和不确定性。

常用的自适应控制策略包括模型参考自适应控制和直接自适应控制。

模型参考自适应控制是一种基于模型参考思想的控制策略。

该策略通过引入一个参考模型来指导控制器的参数调整。

控制器的目标是使系统的输出与参考模型的输出保持一致。

模型参考自适应控制可以有效地抑制扰动和噪声的影响,提高系统的鲁棒性。

直接自适应控制是一种通过在线辨识系统模型的控制策略。

该策略通过对系统的输入和输出数据进行递归估计,不断更新模型参数。

(哈工大)系统辨识与自适应控制——第一讲..

(哈工大)系统辨识与自适应控制——第一讲..

第一讲 系统辨识的基本概念
一、什么是系统辨识?
1. 机理分析建模方法 (白箱法)
图1 单级倒立摆实验装置 2010-02-20 控制理论与制导技术研究中心 第2 页
Harbin Institute of Technology– HIT

m
u
M
F
r
O
图2 单级倒立摆示意图 2010-02-20 控制理论与制导技术研究中心 第3 页
Harbin Institute of Technology– HIT
图中所示变量名的物理含义如表1所示。
2010-02-20
控制理论与制导技术研究中心
第4 页
Harbin Institute of Technology– HIT
步骤一:对小车进行受力分析,小车的受力分析如图3所 P 示。
u M
N
F
r
图3 小车受力分析图
图中,P表示摆杆对小车水平方向上的作用力,单位N; N 表示摆杆对小车垂直方向上的作用力,单位(N)。 根据牛顿定律,小车水平方向上的力平衡方程为:
2010-02-20 控制理论与制导技术研究中心 第5 页
Harbin Institute of Technology– HIT
步骤四:化成状态空间描述。
1 x 2 x 2 m 2 l 2 x2 cos x1 sin x1 m lucos x1 x 4 m l cos x1 ( M m)m glsin x1 ( M m) fx2 x 2 ( M m)(J m l2 ) m 2 l 2 cos2 x1 3 x4 x 2 m lfx2 cos x1 m 2 l 2 g sin x1 cos x1 ( J m l2 ) x 4 ( J m l2 )m lx2 sin x1 ( J m l2 )u 4 x ( M m)(J m l2 ) m 2 l 2 cos2 x1

系统辩识与自适应控制 教材(电子版)

系统辩识与自适应控制 教材(电子版)

系统辩识与自适应控制教材(电子版)第一章系统辩识引论§1—1系统辨识的基本概念(要求:掌握什么是系统系统辨识、定义、主要步骤,对系统辨识有比较全面的初步了解)一、什么是系统辨识System Identification系统辩识,又译为“系统识别”和“系统同定”,目前尚无公认的统一定义。

《中国大百科全书》中记述为:系统辩识是根据系统的输入/输出时间函数,确定系统行为的数学模型,是现代控制理论的一个分支(中国大百科自动控制卷486-488页)。

通俗地说,系统辩识是研究怎样利用对未知系统的试验数据或在线运行数据(输入/输出数据)建立描述系统的数学模型的科学。

钱学森把系统广义概括为“依一定顺序相互联系着的一组事物”。

“系统辩识”是“系统分析”和“控制系统设计”的逆问题。

基于实际系统的复杂性,描述其特性的数学模型具有“近似性”和“非唯一性”;辩识方法亦有多样性。

没有绝对好的数学模型和绝对好的辩识方法。

什么是较好的模型?依据辩识的不同目的,有不同答案。

一般说,能够满足目的要求的,比较简单的模型,是较好的模型。

二、系统辩识的目的通常有四类:1.为了估计具有特定物理意义的参数(如:时间常数;转动惯量;经济、生物、生态系统的参数);2.为了预测(如:气象、大气污染、市场、故障等);3.为了仿真(“性能仿真”与“过程仿真”对模型的要求不同);4.为了控制(如设计控制系统的需要)。

三、统辩识的基本步骤系统辩识包括结构辩识和参数估计两个主要内容。

辩识的内容和一般步骤如下:(1)明确目的和获取先验知识首先要尽可能多的获取关于辨识对象的先验知识和明确辩识的目的。

明确目的和掌握尽可能多的先验知识往往是辨识结果好坏的重要先决条件。

(2)实验设计(§3—3)实验设计主要包括以下六个方面内容:a)选择观测点;b)输入信号的形状和幅度(可持续激励条件);c)采样间隔T0;d)开环和闭环辩识(§3—2闭环可辩识条件);e)在线和离线辩识;f) 测量数据的存储和预处理。

系统辨识与自适应控制实验

系统辨识与自适应控制实验

中南大学系统辨识及自适应控制实验指导老师贺建军姓名史伟东专业班级测控1102班0909111814号实验日期2014年11月实验一 递推二乘法参数辨识设被辨识系统的数学模型由下式描述:2341231232.0 1.51()()()1 1.50.70.11 1.50.70.1z z z y k u k k z z z z z zξ---------++=+-++-++ 式中ξ(k )为方差为0.1的白噪声。

要求:(1) 当输入信号u (k )是方差为1的白噪声序列时,利用系统的输入输出值在线辨识上述模型的参数;(2) 当输入信号u (k )是幅值为1的逆M 序列时,利用系统的输入输出值在线辨识上述模型的参数;分析比较在不同输入信号作用下,对系统模型参数辨识精度的影响。

(1)clear all; close all;a=[1 -1.5 0.7 0.1]';b=[1 2 1.5]';d=3; %对象参数na=length(a)-1;nb=length(b)-1; %计算阶次L=500; %数据长度uk=zeros(d+nb,1);yk=zeros(na,1); %输入输出初值u=randn(L,1); %输入采用方差为1的白噪声序列xi=sqrt(0.1)*randn(L,1); % 方差为0.1的白噪声干扰序列theta=[a(2:na+1);b]; %对象参数真值thetae_1=zeros(na+nb+1,1); %参数初值P=10^6*eye(na+nb+1);for k=1:Lphi=[-yk;uk(d:d+nb)]; %此处phi为列向量y(k)=phi'*theta+xi(k); %采集输出数据%递推公式K=P*phi/(1+phi'*P*phi);thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1);P=(eye(na+nb+1)-K*phi')*P;%更新数据thetae_1=thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endplot([1:L],thetae); %line([1:L],[theta,theta]); xlabel('k');ylabel('参数估计a,b');legend('a_1','a_2','a_3','b_0','b_1','b_2');axis([0 L -2 2]);(2)clear all;a=[1 -1.5 0.7 0.1]';b=[1 2 1.5]';d=2; %对象参数na=length(a)-1;nb=length(b)-1; %计算阶次L=20; %数据长度uk=zeros(d+nb,1);yk=zeros(na,1); %输入初值x1=1;x2=1;x3=1;x4=0;S=1;%移位寄存器初值,方波初值xi=rand(L,1);%白噪声序列theta=[a(2:na+1);b]; %对象参数真值for k=1:Lphi(k,:)=[-yk;uk(d:d+nb)]'; % phi(k,:)为行向量,便于组成phi矩阵y(k)=phi(k,:)*theta+xi(k); %采集输出数据IM=xor(S,x4);if IM==0u(k)=-1;elseu(k)=1;endS=not(S);M=xor(x3,x4); %产生M序列%更新数据x4=x3;x3=x2;x2=x1;x1=M;for i=nb+d:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);End实验二 最小方差自校正控制实验设二阶纯滞后被控对象的数学模型参数未知或慢时变,仿真实验时用下列模型:34112122.5 1.510.5()()()1 1.50.71 1.50.7z z z y k u k k z z z zξ-------++=+-+-+ 式中ξ(k )为方差为0.1的白噪声。

系统辨识及自适应控制实验..

系统辨识及自适应控制实验..

Harbin Institute of Technology系统辨识与自适应控制实验报告题目:渐消记忆最小二乘法、MIT方案与卫星振动抑制仿真实验专业:控制科学与工程姓名:学号: 15S******指导老师:日期: 2015.12.06哈尔滨工业大学2015年11月本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用;第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响;第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。

针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。

一、系统辨识1. 最小二乘法的引出在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。

设单输入-单输出线性定长系统的差分方程为:()()()()()101123n n x k a x k a k n b u k b u x k n k +-+⋯+-=+⋯+-=,,,, (1.1) 错误!未找到引用源。

式中:()u k 错误!未找到引用源。

为控制量;错误!未找到引用源。

为理论上的输出值。

错误!未找到引用源。

只有通过观测才能得到,在观测过程中往往附加有随机干扰。

错误!未找到引用源。

的观测值错误!未找到引用源。

可表示为: 错误!未找到引用源。

(1.2)式中:()n k 为随机干扰。

由式(1.2)得错误!未找到引用源。

()()()x k y k n k =- (1.3)将式(1.3)带入式(1.1)得()()()()()()()101111()nn n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+⋯+-=+-+⋯+-++-∑ (1.4)我们可能不知道()n k 错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于系统辨识
写出最小相位系统开环传递函数的过程就是一个辨
识过程(是对数幅频渐近特性曲线绘制的逆问题)。
L/ dB
20dB/ dec 6
40dB / dec
G j
k
j1 j 1 j
1 5
0
1
5
20lg G j1 6dB
c
20 lg k 20 lg1 20lg 1 6dB
60dB / dec
关于系统辨识
在经典的控制理论中,为了确定闭环系统是否稳定,我们 就需要数学模型。可以①在已知系统微分方程的情况下,求取 闭环传递函数,求解闭环特征方程,判断根是否都具有负实部, 或利用劳斯判据(霍尔维茨判据),确定是否所有极点位于S平 面的左半平面;②获得开环系统传递函数,绘制根轨迹,确定 系统特征方程的根在S平面的分布情况;③在没有获得系统数学 模型的情况下,实验室的方法变得切实可行,利用开环系统的 对数幅频特性曲线(Bode图)或者奈奎斯特曲线(奈氏图), 判断闭环系统的稳定性。
SI的基本方法
机理分析与系统辨识相结合
这种方法适用于系统的运动机理不是完全未知 的情况。首先,利用系统的运动机理和运行经验确 定出模型的结构(如状态方程的维数或差分方程的 阶次),或分析出部分参数的大小或可能的取值范 围,再根据采集到的系统In-Out数据,由辨识的 方法估计或修正模型中的参数,使其精确化。称之 为“灰箱问题(Grey-box)”。
由于一般的“黑箱问题”无法解决,通常所指 的 SI就是“灰箱问题”。
SI的基本内容和步骤
实验设计; 模型结构辨识; 模型参数辨识; 模型验证;
系统辨识的应用与发展
SI已经在系统建模与仿真(Simulation)、预测预 报(Prediction)、故障诊断(Fault Diagnosis)、自 适应控制、质量监控等方面得到成功地应用。
关于自适应控制
什么是自适应控制 ( AC,Adaptive Control)? 它与一般的反馈控制有什么不同?
在控制系统的运行过程中,系统本身不断地识别实 践被控系统的状态、性能或参数,而从“认识”或“掌 握”系统当前的运行指标并与期望的指标相比较,进而 做出决策,来改变控制器的结构、参数或根据适应性的 规律来改变控制作用,以保证系统运行在某种意义下的 最优或次优状态下,称之为“自适应控制”。
SI的基本方法
机理建模
利用各个专业学科提出的物质和能量守恒定律 或连续性原理等,建立描述系统的数学关系,这种 建模方法称为“白箱问题(White-box)”。
系统辨识(实验建模)
这是一种在没有任何可利用的验前信息(即相 关学科专业知识与相关数据)的情况下,应用所采 集系统的输入和输出数据提取信息进行建模的方法。 这是一种实验建模(Experiment Testing Method)的方法,称为“黑箱问题(Black-
自适应控制系统的应用与发展
但是一个实际系统,只具备稳定性是不够的,还要 具备一定的稳定速度,太慢了是没有意义的。
自适应控制所着力追求的是具有真正适应能力的 系统,自适应是生命系统的一种基本能力,体现为系统 的学习能力和智能水平。因此,自适应控制的进一步发 展将借鉴人工智能(AI)的推动。
系统辨识篇
幅频响应实验原理
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
c(t ) 误差带 :0.05 或 0.02
Mp 1
0.5
0 td
t
tr
tp
ts
二阶系统欠阻尼时的单位阶跃响应
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
1 j( jT1 1)( jT2 1)
Im
Re
三阶I型系统的奈氏图
关于自适应控制
自校正控制系统(STC, Self-Tuning Controller ); 这是在实际应用较广的、与系统辨识技术联系最
为紧密的一类自适应控制系统,它将在线辨识技术与 最优设计方法相结合。整个控制系统由两个环构成, 内环是由被控对象和通常的反馈控制器组成,控制器 的参数通过外环来调整。调整方法是通过在线递推估 计 (即系统辨识)和控制器在线设计来实现。
关于自适应控制
经典控制
现代控制
智能控制
整个控制科学制;--“没有最好,只有更好” 随机控制; 自适应控制;--“以变制变” 鲁棒控制;--“以静制动” 自学习控制; 智能控制;
关于自适应控制
古典控制理论是将微分方程通过拉氏变换,变换到 复频域进行分析,得到系统的传递函数,当闭环系统特 征方程的根均位于S平面的左半平面时,系统稳定。特征 方程的根取决于ai、bi。
自适应系统原理图
关于自适应控制
自适应控制的划分形式多样,按照设计原理与结 构不同,分为两种: 模型参考自适应控制(MRAC);
这类自适应系统的突出特点就是本身附加一个参 考模型,其体现人们对被控对象的要求,也就是说, 参考模型的特性就是被控对象的理想特性,根据两者 状态(或输出)之间的偏差,实时进行调整,使得在 某种指标下,被控对性的动态特性与参考特性尽量接 近。
建立数学模型的方法有分析法和实验法。实验法是 人为地给系统施加某种测试信号,记录其输出响应,并 用适当的数学模型去逼近,称为SI。
不论是现代控制理论还是最优控制,都假设系统数 学模型已知,显然,对于自动控制系统的设计研究者来 说,建立对象的数学模型是不可少的。
关于系统辨识
例如:我们需要利用民航旅客数年份月的统计数据 建立的数学模型,来预测未来行为;利用股市行情近期 走势预测未来走势;在故障诊断方面,在生产过程中, 例如反应堆、大型化工和动力装置等,希望经常监视和 检测可能出现的故障,以便及时排除故障,这就意味着 必须不断地从过程中搜集信息,推断过程动态特性的变 化情况,进而根据特性的变化情况判断故障是否发生、 何时发生、故障大小、故障位置等。
而现代控制理论状态空间法是在时域进行分析。将 微分方程转化为状态方程,求解状态方程的时域解-状态
x(t)(n维)。当时间t 时,状态x(t)是收敛的,则系
统是稳定的,否则是不稳定的。 x(t)的性能仍取决于ai、 bi。
关于自适应控制
讨论参数ai、bi是未知定常或慢时变情况,上述分析 方法就不再适用了。必须采取其他的控制方法,如鲁棒
关于系统辨识
有的系统的数学模型可用理论分析方法(解析法)推导出 来,例如飞行器运动的数学模型,一般可根据力学原理较准确 地推导出来。但是,当考虑飞行器运动模型的参数随飞行高度 和飞行速度变化时,为了实现对飞行器运动的自适应控制,就 要不断估计飞行器在飞行过程中的模型参数。
关于系统辨识
有些控制对象,如化学生产过程,由于其复杂性,很难用 理论分析方法推导数学模型。只能知道数学模型的一般形式及 其部分参数,有时甚至连数学模型的形式也不知道。因此提出 怎样确定系统的数学模型及其参数的问题,即所谓的系统辨识 问题。既然有的系统很难用理论分析方法推导出数学模型,只 有求助于试验方法。
System Identification
讲述内容
Chapter1系统辨识理论、方法及应用; Chapter2系统辨识的经典方法; Chapter3系统辨识的脉冲响应法 Chapter4智能技术在系统辨识中的应用;
Chapter1
SI是研究如何利用系统试验或运行的、含有噪声的 输入输出数据来建立被研究对象数学模型的一种理论和 方法[3]。
当今,SI已经成为系统理论中的一个重要分支。这 其中,对于单变量线性的SI相关理论及方法取得了令人 满意的效果,而对于多变量的系统辨识,尤其是结构辨 识,还不很理想。
一方面,要借助其他理论加深对系统内在性质的理 解,并提供新的估算方法;一方面,要根据实际观测提 出新问题(如实验设计、准则函数选取、模型验证)。
控制、自适应控制等。
目前的自适应方法主要是参数自适应,即用调整上
述微分方程参数ai、bi的方法,使控制系统的性能达到预 期的性能。但在调整时,系统不再是线性的了。
可以用各种方法调整参数,当时间t 时,调整
ai、bi的方法不收敛,则系统一定是不稳定的(除混沌
外)。当ai、bi收敛于某一常数值a
i
、bi时,则系统不一
SI就是一种利用数学方法从输入输出数据序列中提 取对象数学模型的方法[4]。
常用的数学模型有代数方程、微分方程、差 分方程、偏微分方程和状态方程等。在系统辨识 中,常用的有:
a. 微分方程;b. 差分方程;c. 状态方程
什么是数学模型
根据模型不同的基本特征,数学模型划分为: (1)静态模型与动态模型; (2)线性模型与非线性模型; (3)参数模型与非参数模型; (4)确定性模型与随机性模型; (5)连续时间模型与离散时间模型; (6)时不变模型与时变模型; (7)时间域模型与频域模型; (8)集中参数模型与分布参数模型;
1 绪论
关于“系统辨识”; 系统辨识的应用与发展; 关于“自适应控制”; 自适应控制系统的应用与发展;
关于系统辨识
什么是SI( System Identification)?人们在生产 实践和科学实验中,对所研究的复杂对象通常要求通过 观测和计算来定量地判断其内在规律,那么就必须建立 所研究对象的数学模型(Mathematical Model),从 而进行分析、设计、预测、控制的决策。
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
L( )
40
20
1 20
① ④
10 ②
100

( )
0


45
② 90

180
G j
10
j0.1 j 1
二阶I型系统的波特图
关于系统辨识
什么是数学模型; 系统辨识的基本方法; 系统辨识的基本内容;
什么是数学模型
相关文档
最新文档