数学北师大版八年级上册5.3应用二元一次方程组——鸡兔同笼
北师大版初二数学上册5.3 应用二元一次方程组---鸡兔同笼

第五章二元一次方程组5.3 鸡兔同笼平川区王家山中学赵进芳一、教材分析《鸡兔同笼》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元一次方程组》第三节.本节安排1个课时。
借助"鸡兔同笼"这一中国古代名题,让学生经历列二元一次方程组解决实际问题的过程,进行根据实际问题情境列二元一次方程组的训练,强化方程的模型思想,培养了学生列方程(组)解决实际问题的意识和应用能力.,同时将解方程组的技能训练与实际问题的解决融为一体。
当然,在题材的选择上,教科书注意了题材的现实性、科学性和趣味性;在题材的呈现顺序上,遵循了由易到难的原则,教学中,教师可以根据学生的生活实际和认知实际,选择更贴近学生实际的素材进行教学,此外,在教学过程中,教师应更多地关注学生的建模过程,关注学生是否能顺利地列出正确的二元一次方程组.二、学情分析●学生的年龄特点和认知特点初中二年级的学生,正处于少年期,已具备了初步的抽象、概括和分析问题解决问题能力,要培养他们敢于面对挑战和勇于克服困难的意志.鼓励他们大胆尝试,敢于发表自己的看法,以从中获得成功的体验,激发学习激情.●在学习本课之前,应具备的基础知识和基本技能(1)方程的思想;(2)能整体地系统地审清题意,找出等量关系;(3)能从具体问题中的数量关系列出二元一次方程组;(4)熟练解二元一次方程组.●学习者对即将学习的内容已经具备的水平(1)本课是在学生已对一元一次方程、二元一次方程、二元一次方程组解法有了足够的认识的基础上来学习的,也学过了列一元一次方程解决实际问题,因此,大部分学生学习本课应该没有太大的困难的.(2)初二的学生已经初步的具备了初步的抽象、想象、逻辑思维能力,初步的分析问题和解决问题的能力.三、教学目标●知识目标在具体问题的解决过程中提高学生的解二元一次方程组的技能;●能力目标使学生掌握运用方程组解决实际问题的一般步骤,让学生亲自经历和体验运用方程(组)解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型,培养学生的抽象、概括、分析解决实际问题的能力;●情感目标1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心.●教学重点根据等量关系列二元一次方程组解应用题.●教学难点1.读懂古算题;2根据题意找出等量关系,列出方程.四、教学方式采用"先学后教,当堂训练"的模式展开教学..五、教学媒体和教学技术选用多媒体课件及微课辅助教学.六、教学活动过程本节课设计了五个教学环节:第一环节:引入课题;第二环节:出示学习目标;第三环节:先学后教,当堂训练;第四环节:感悟和收获;第五环节:作业布置.第一环节:引入课题活动1:应用幻灯片1中的图片提问并采用相应文字说明引入新课。
北师大版数学八年级上册5.3应用二元一次方程组鸡兔同笼教案

§5.3 应用二元一次方程组—鸡兔同笼【内容】北师大版八年级上第五章第三节《应用二元一次方程组—鸡兔同笼》【基于目标】能根据具体问题中的数量关系列出方程组,体会方程是刻画现实世界数量关系的有效模型。
【基于对教材的理解】《鸡兔同笼》是义务教育课程标准北师大版八年级(上)第五章《二元一次方程组》第三节,本节安排1个课时。
首先学生在小学阶段学习了简单的方程,并会用列表法,假设法解此类型的题,在七年级重点进一步学习了一元一次方程,一元一次方程的解及其应用。
而且八年级第五章前两节也学习了二元一次方程组的概念及其解法,因此本节课是对方程知识学习的补充和完善。
其次,借助“鸡兔同笼”这一中国古代名题的一题多解,强化方程的模型思想,又结合“牛羊直金”和习题的训练,将解方程组的技能训练与实际问题的解决融为一体,体会列二元一次方程组解决实际问题的必要性,紧扣目标进行设计。
再次,本节题材选择注重现实性和趣味性,题材呈现由易到难。
同时学习本节课也为今后学习《增收节支》和《里程碑上的数》等复杂的应用题奠定基础。
【基于对学情的分析】1、学生已有的知识基础本节课是在学生之前对方程和一次函数有了一定的探索和认识的基础上来学习的,初步具有了一定的分析问题和解决问题的能力,因此,大部分学生在寻找等量关系上没有太大的困难。
2、已有的活动经验八年级的学生已经具备了一定的学习能力,包括自学、交流和展示;具备有条理的思考、分析和表达能力,思维正逐步由具体走向抽象,但更倾向于利用生动的实例来分析和解决问题。
3、学习本节可能出现的难点学生仅能寻找两个等量关系,但在设出两个未知数并将等量关系转化为方程组上可能存在困难。
【学习目标】1、通过对“鸡兔同笼”问题一题多解,会找出等量关系列出方程,感受方程是刻画现实世界数量关系的有效模型,初步体会用二元一次方程组也能解决实际问题;2、通过对“牛羊直金”问题的分析,体会用二元一次方程组解决实际问题的有效性,并能类比一元一次方程解应用题的步骤,归纳出用二元一次方程组解应用题的一般步骤;3、感受解题方法的多样化,培养数学应用意识和小组合作交流能力,发展数学模型思想,感受中国数学家的伟大和中国古代文化的博大精深。
北师版八年级上册数学5.3 应用二元一次方程组——鸡兔同笼1

5.3应用二元一次方程组——鸡兔同笼1.能根据具体问题的数量关系,列出二元一次方程组解决简单的实际问题.(重点)一、情境导入古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问有几客几房中?”题目大意:一些客人到李三公的店中住宿,若每间房里住7人,就会有7人没地方住;若是每间房住9人,就会空一间房.问有多少间房?多少客人?你能解答这个问题吗?二、合作探究探究点一:二元一次方程组在古代问题中的应用列方程组解古算题:“巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?”解析:题目大意是:一座寺庙内不知有多少僧人,但饭碗和汤碗共有364只.如果3人共用一个饭碗吃饭,4人共用一个汤碗喝汤,都正好用完所有的碗,问寺庙内共有多少僧人?本题如果直接将僧人的人数设为x,则不易列方程组求解,因此需采用间接设法.解:设饭碗有x只,汤碗有y只.由题意,得⎩⎪⎨⎪⎧x+y=364,3x=4y.解得⎩⎪⎨⎪⎧x=208,y=156.则僧人数量为3×208=624(人).所以寺庙内共有僧人624人.方法总结:古诗型问题是应用题中的一个常见类型,这种题型是通过诗歌的形式向大家说明几个量之间的关系,进而提出问题.解决这类问题的关键是要读懂题意,分清各量之间的关系,找出题中隐含的相等的量,列出方程组,从而解决实际问题.探究点二:列二元一次方程组解决实际问题某中学七年级甲、乙两班共有93人,其中参加数学课外兴趣小组的共有27人,已知甲班有14的学生,乙班有13的学生参加数学课外兴趣小组,求这两个班各有多少人.解析:本题的未知数有两个,即甲班的人数和乙班的人数;本题所含的等量关系有:①甲班人数+乙班人数=93;②甲班人数×14+乙班人数×13=27.解:设甲班的人数为x 人,乙班的人数为y 人,根据题意,得⎩⎪⎨⎪⎧x +y =93,14x +13y =27,解得⎩⎪⎨⎪⎧x =48,y =45. 答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)⎩⎪⎨⎪⎧一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.。
北师大版八年级上册数学《应用二元一次方程组―鸡兔同笼》二元一次方程组说课教学复习课件

别是以直角边基础向外所作图形的面积.
探究新知
2.求非直角三角形的面积
例3 如图,在△ABC中,AB=AC=13,BC=10,求△ABC的面积.
解:作AD⊥BC于D,
在等腰△ABC中,因为AB=AC=13,BC=10,
所以BD=CD=5,
三个正方形,面积分别为S1,S2,S3,已知S1=6,S2=8,则
S3= 14 .
连接中考
1. 在直角三角形中,若勾为3,股为4,则弦为( A )
A.5
B.6
C.7
D.8
2. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,
那么正方形ABCD的面积为 3 .
课堂检测
基 础 巩 固 题
边长是___________.
( )2018
课堂小结
勾
股
定
理
的
解:设有x人,该物品价值为y元,
由题意,得
8x-3=y
7x+4=y
x =7,
解此方程组得:
y=53.
5.100匹马恰好拉了100片瓦,已知一匹大马能拉3片
瓦,3匹小马能拉一片瓦,问有多少匹大马、多少
匹小马?
解:设有x匹大马, y匹小马,
由题意,得
x+y=100
1
3x+ 3 y=100
解此方程组得:
解:因为∠ACB=90°,AC=3,BC=4,
所以AB2=AC2+BC2=25,即AB=5.
根据三角形面积公式,
AC×BC= AB×CD.
所以CD=
北师大版八年级数学上册第五章5.3应用二元一次方程组-鸡兔同笼

3×(井深+5)=绳长 或绳长÷3-5=井深
或绳长÷3-井深=5
4×(井深+1)=绳长 或绳长÷4-1=井深 或绳长÷4-井深=1
3×(井深+5)=绳长
4×(井深+1)=绳长
解:设绳长x尺,井深y尺,由题意,得
解得 x =48,y=11. 答:所以绳长48尺,井深11尺.
1.今有牛五、羊二,直金十两.牛二、羊五, 直金八两.牛、羊各直金几何?
舍住6人,则有3人住不下;若每间宿舍住8人,
则有一间只住3人,且空一间宿舍。求该年级
寄宿人数及宿舍间数? 解:设该年级寄宿人数是x,宿舍y间
6y x 3 8( y 1) 3 x
解得x=27, y=4 答该年级寄宿人数是27,宿舍4间
4.4辆小卡车和5辆大卡车一次共可以运货物 27吨,6辆小卡车和10辆大卡车一次共可以运货 物51吨,问小卡车
B. 鸡11兔13
C. 鸡12兔12
D. 鸡13兔11
2.一队敌人一队狗,两队并成一队走,脑
袋共有八十个,却有二百条腿走,请君仔
细数一数,多少敌军多少狗? 解:设敌人x,狗y只
x y 80 2x 4 y 200 解得x=60 , y= 20 答:敌人有60个,狗有20只
3.某校为初一年级学生安排宿舍,若每间宿
不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今
有人合伙买羊,若每人出 5 钱,还差 45 钱;若每人出 7 钱,还差 3 钱,
问合伙人数、羊价各是多少?设合伙人数为 x 人,羊价为 y 钱,根据题
意,可列方程组为( A )
y=5x+45
y=5x-45
y=5x+45
y=5x-45
5.3 应用二元一次方程组——鸡兔同笼北师大版八年级上册数学 5.3 应用二元一次方程组——鸡兔同笼教案1

5.3应用二元一次方程组——鸡兔同笼1.能根据具体问题的数量关系,列出二元一次方程组解决简单的实际问题.(重点)一、情境导入古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问有几客几房中?”题目大意:一些客人到李三公的店中住宿,若每间房里住7人,就会有7人没地方住;若是每间房住9人,就会空一间房.问有多少间房?多少客人?你能解答这个问题吗?二、合作探究探究点一:二元一次方程组在古代问题中的应用列方程组解古算题:“巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?”解析:题目大意是:一座寺庙内不知有多少僧人,但饭碗和汤碗共有364只.如果3人共用一个饭碗吃饭,4人共用一个汤碗喝汤,都正好用完所有的碗,问寺庙内共有多少僧人?本题如果直接将僧人的人数设为x,则不易列方程组求解,因此需采用间接设法.解:设饭碗有x只,汤碗有y只.由题意,得⎩⎪⎨⎪⎧x+y=364,3x=4y.解得⎩⎪⎨⎪⎧x=208,y=156.则僧人数量为3×208=624(人).所以寺庙内共有僧人624人.方法总结:古诗型问题是应用题中的一个常见类型,这种题型是通过诗歌的形式向大家说明几个量之间的关系,进而提出问题.解决这类问题的关键是要读懂题意,分清各量之间的关系,找出题中隐含的相等的量,列出方程组,从而解决实际问题.探究点二:列二元一次方程组解决实际问题某中学七年级甲、乙两班共有93人,其中参加数学课外兴趣小组的共有27人,已知甲班有14的学生,乙班有13的学生参加数学课外兴趣小组,求这两个班各有多少人.解析:本题的未知数有两个,即甲班的人数和乙班的人数;本题所含的等量关系有:①甲班人数+乙班人数=93;②甲班人数×14+乙班人数×13=27.解:设甲班的人数为x人,乙班的人数为y人,根据题意,得⎩⎪⎨⎪⎧x+y=93,14x+13y=27,解得⎩⎪⎨⎪⎧x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计 列方程组,解决问题)⎩⎪⎨⎪⎧一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.。
5.3 应用二元一次方程组——鸡兔同笼
5.3 应用二元一次方程组 ——鸡兔同笼
导入新知
5.3 应用二元一次方程组——鸡兔同笼
《孙子算经》是我国 古代一部较为普及的算书,
许多问题浅显有趣,其中
下卷第31题“雉兔同笼” 流传尤为广泛,飘洋过海
流传到了日本等国.
导入新知
5.3 应用二元一次方程组——鸡兔同笼
A.34xx
6y 5y
38 48
B.34yy
6x 5x
48 38
C.4x 6y 48
5x 3y 38
D.34xx
6y 5y
48 38
课堂检测
5.3 应用二元一次方程组——鸡兔同笼
基础巩固题
1.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实
力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比
x y 100
3x
1 3
y
100
解此方程组得: x =25, y=75.
答:有25匹大马,75匹小马.
课堂小结
二元 一次 方程 组的 应用
5.3 应用二元一次方程组——鸡兔同笼
简单实际问题
应
用
几何问题
审题:弄清题意和题目中的 数量关系
设元:用_字__母__ 表示题目中的未知数 步 列方程组:根据_2_个等量关系列出方程组 骤
D
200m F
C 解:过点E作EF⊥AB,交CD于点F.
设AE=xm,BE=ym.
100m 甲种作物
乙种 作物
根据题意列方程组为
x+y=200
A
x
y EB
100x:200y=3:4
北师大版八年级数学上册-5.3应用二元一次方程组——鸡兔同笼(共26张PPT)
智力提升
古有一捕快,一天晚上他在野外的一个茅屋里, 听到外边来了一群人在吵闹,他隐隐约约地听到几个 声音,下面有这一古诗为证:
隔壁听到人分银, 不知人数不知银. 只知每人五两多六两, 每人六两少五两, 问你多少人数多少银?
3.列出两个方程.
变式训练:
(1)今有鸡兔同笼,鸡比兔多10,下有九十四足,问
鸡兔各多少?
鸡头-兔头=10
鸡脚+兔脚=94
解:设鸡有
x只,兔有
y只,依题意得
x y 10 2x 4y
94
(2)今有鸡兔同笼,鸡是兔的2倍少1,下有九十四足, 问鸡兔各多少?
鸡头=兔头×2-1
鸡脚+兔脚=94
5.3 鸡兔同笼
民谣:
一队兔子一队鸡,两队合并在一起.数头 一共三十五,数脚一共九十四.问你兔 子有多少、有多少?
回顾
1.二元一次方程组的解法:
①加减消元法 ②代入消元法
2.列一元一次方程解应用题的步骤: (1)审 (2)设 (3)列(等量关系) (4)解 (5)验(合理性)、答
一队兔子一队鸡,两队合并在一起.数头 一共三十五,数脚一共九十四.问你兔 子有多少、有多少?
和为15 ,列出方程为 2x+3y=15
.
2.一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘蛛 共10只,共有68条腿,若设蛐蛐有x只,蜘蛛有y只,则 列出方程组
X+y=10
为 6x+8y=68 .
3.小刚有5角硬币和一元硬币有8枚,币值共有6元5角, 设5角的有x枚,一元X的+y有=8y枚,
列出的方程组为 0.5x+y=6.5 .
当堂训练
4.甲、乙两人参加植树活动,两人共 植树20棵,已知甲植树数是乙的1.5倍。 如果设甲植树x棵,乙植树y棵,那么可 列方程组为( C )
5.3应用二元一次方程组-鸡兔同笼(教案)
3.重点难点解析:在讲授过程中,我会特别强调如何建立方程组和选择合适的解法这两个重点。对于难点部分,如如何从问题中抽象出数量关系,我会通过具体的鸡兔同笼例子和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二元一次方程组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用代币或模型模拟鸡兔同笼问题,演示如何用代入法和消元法解方程组。
其次,在解方程组的过程中,我发现有的学生对于代入法和消元法的适用场景还不够明确,容易混淆。这可能是因为我在讲解时没有充分强调它们的特点和适用范围。在以后的教学中,我要加强对比讲解,让学生能够更加明确各种解法的优势和局限。
此外,学生在小组讨论中表现出较高的积极性,但也有一些学生在讨论中显得比较被动。为了提高学生的参与度,我打算在接下来的课堂中,多设置一些开放性问题,鼓励学生积极思考,勇于表达自己的观点。
-学生可能会困惑于如何将问题中的信息转化为数学表达式,需要教师引导分析头和脚的对应关系,并示范如何列出方程。
-难点二:选择合适的解法解二元一次方程组。
-学生可能会在选择代入法或消元法时感到困惑,需要教师通过具体例子讲解两种方法的适用场景,并展示解题步骤。
-难点三:在解决实际问题时,如何检验答案的正确性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二元一次方程组的基本概念。二元一次方程组是由两个未知数和它们对应的线性方程构成的,是解决许多实际问题的有力工具。它在数学和现实生活中有着广泛的应用。
北师大版初二数学上册5.3 应用二元一次方程组——鸡兔同笼
5.3 应用二元一次方程组----鸡兔同笼备课: 曹玉辉一、学习准备:解方程组{,112;10=+=-y x y x二、学习目标:1、掌握运用方程组解决实际问题的一般步骤,提高解二元一次方程组的技能;2、体会数学中的"趣"及数学的实际价值三、学习提示: 1、活动一:自主探究 认真读题。
理解题意例1 今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 你能根据题中的数量关系列出方程组解决这个有趣的问题吗?2、活动二:合作探究例2 (课本P115例1) 以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之, 绳多一尺。
绳长、井深各几何?四、学习小结:根据上面几例,总结列二元一次方程组解应用题的步骤:审清题意,设 ;(2)弄清各个量之间的关系,找出等量关系;(3)列出方程,联立方程,得二元一次方程组;(4)解二元一次方程组; (5)作答。
关键是: 。
五、夯实基础:1、古有一捕快,一天晚上他在野外的一个茅屋里,听到外边来了一群人,在分赃,在吵闹,他隐隐约约地听到几个声音,下面有这一古诗为证:隔壁听到人分银,不知人数不知银,只知每人五两多六两,每人六两少五两,问你多少人数多少银?2、《一千零一夜》故事:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子是整个鸽群的三分之一;若从树上飞下去一只,则树上、树下鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?六、能力提升:某车间有工人54人,每人平均每天加工轴杆15个或轴承24个,一个轴杆与两个轴承配成一套.如何分配工人,正好使每天加工的产品成套,则可列方程组为?评价反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 应用二元一次方程组——鸡兔同笼
一、教学目标
(一)知识与技能
在具体问题的解决的过程中,提高学生解二元一次方程组的技能
(二)过程与方法
使学生掌握运用方程组解决实际问题的一般步骤,让学生亲自体验运用方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型,培养学生的抽象、概括、分析解决实际问题的能力.
(三)情感态度与价值观
1、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
2、通过“鸡兔同笼”,把同学们带入古代数学问题情景,学生体会到数学中的“趣”;进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神.
二、教学重难点
教学重点:根据等量关系列二元一次方程组解应用题.
教学难点:1、读懂古算题
2、根据题意找出等量关系,列出方程.
教学过程
一、前置诊测
解方程组
引出问题情景
二、学习目标
1、理解具体问题中的数量关系.
2、能根据实际问题中的数量关系列出方程组解决问题.
3、体会方程(组)是刻画现实世界的有效数学模型.
三、自主学习
“鸡兔同笼”问题以古文形式给出需要学生理解题意,让学
生用多种方法来解决此问题,并比较各种方法的优缺点.
例1先理解题意再用幻灯片演示以绳测井,学生自己找出题
中的等量关系,设出未知量列出方程组解决问题.
四、小组合作
给出一道古算题:“今有牛五、羊二,直金十两。
牛二、羊
五,直金八两。
牛羊各直金几何?”以小组为单位,理解题
意,找出等量,列出方程解决问题.
五、小结
列二元一次方程组解应用题的步骤
六、达标检测
以题签形式给学生,用幻灯片公布答案,复杂问题给予提示.
七、课后作业
书116页习题5.4第2,3,4题。