光电探测器响应时间实验研究-毕业设计论文
光电检测方法研究毕业设计

摘要随着石油、天然气工业以及煤炭工业的发展,煤矿爆炸事故日益增加。
我国是世界上最大的煤炭生产和消费国,也是世界上少数以煤为主要能源的国家之一。
在煤炭的生产、加工过程中产生的大量甲烷(CH4)及一氧化碳(CO)等易燃易爆气体,带来了煤矿安全、环境污染等一系列的问题。
因此,对煤矿生产、加工过程中产生的有害气体进行高灵敏度检测变得十分重要。
通信技术的发展使得光源及各种光纤器件性能更加完善。
因此,在各种气体传感器中光纤气体传感器受到国内外研究者的广泛关注。
光纤气体传感器因其敏感元件与检测电路和信号处理电路实现了完全的电隔离,使系统更加安全可靠。
本文基于差分检测原理,设计了用于气体传感中微弱信号测量的增益可调的便携式双光路光电检测和采集系统。
系统采用以AD795 为核心的低噪声、高灵敏度前置放大器,通过有效的抗干扰措施,实现了微弱信号的高精度低噪声检测,并配以具有极强抗噪性能的24bitsΣ-△模数转换芯片AD7794,完成高分辨率的数据采集。
通过AVR 单片机控制实现电路增益的自动调节,解决了差分检测中存在的小信号放大,大信号饱和的问题。
关键词:气体传感;光电检测;微弱信号测量;可调增益;数据采集AbstractAlong with the development of oil and natural gas industry,the coal mine exploding accident increased everyday.China is the country with the maximal coal yield and consumption,and also is one of the countries using coal as the most energy sources. Many kinds of inflammable and explosive gases such as methane(CH4)and carbon monoxide(CO)coexisting in the process caused a series of problem like the safety problem and environment pollution and so on.So it is very important to detect more sensitive the harmful gases engendering in the coal mine.目录第一章绪论1.1课题的来源及意义1.2光电检测系统概况和发展趋势1.3论文的主要工作第二章气体差分检测中光电检测技术应用的理论基础 2.1 气体差分检测技术原理2.2 光电检测技术原理2.3 气体差分检测中光电检测系统总体设计原理第三章气体差分检测中光电检测系统的设计3.1前置放大电路设计3.2自动控制增益电路设计3.3主放大电路与滤波电路设计3.4数据采集系统结束致谢附录参考文献:英文翻译第一章绪论1.1 选题的来源和意义利用光电传感器实现各类检测。
光电探测器响应时间实验研究-毕业设计论文

光电探测器响应时间实验研究摘要近几十年来,光电探测器在光通信、国防探测、信号处理、传感系统和测量系统等高精尖科技领域得到广泛的应用,在信息为导向的时代,时间就是生命,提高速度的需求日益紧迫,提高光电探测器响应速度的努力几乎从诞生它的一刻起就没停止过。
本实验主要研究光敏电阻和光电二极管的响应时间。
理论分析先从光敏电阻的光谱响应特性、照度伏安特性、频率响应、温度特性和前历效应来考察它的工作影响因素,确定光敏电阻响应时间与其入射光的照度、所加电压、负载电阻及照度变化前电阻所经历的时间的关系。
从光电二极管的模型分析,我们知道光电二极管的响应时间有三个方面决定:①光生载流子在耗尽层附近的扩散时间;②光生载流子在耗尽层内的漂移时间;③与负载电阻并联的结电容所决定的电路时间常数。
文中将详细分析计算对比三个时间的数量级,以确定提高响应速度的最有效途径,并提出改善光电二极管的有效方法和PIN模型。
实验研究时,采用近似脉冲的光源,经探测器的输出信号输入快速响应的CS-1022型示波器,在示波器上直接读出响应时间,分析实验结果,得出影响探测器响应时间的因素。
关键词:光电探测器,响应时间,半导体,影响因素AbstractIn recent decades, photoelectric detectors have been widely used in high-tech areas such as optical communications, national defense detection and signal processing, sensing system and measurement system .in the era which leaded by information, time is life. Improving speed increasingly is urgent needs of photoelectric detector. To improve the response speed, effort haven't been stopped from birth to its moment. This experiment mainly researchs photoconductive resistance and photoelectric diode response time. The theoretical analysis studys photoconductive resistance properties, intensity of illumination volt-ampere characteristics, frequency response and temperature characteristic and former calendar effect to examine its working influence factors, and find out the influencing factors between photoconductive resistance response time and incident light intensity of illumination, voltage, load resistance and the time experienced before intensity of illumination change. From the model analysis of the photoelectric diode, we know that the response time of the photoelectric diode has three aspects: (1) The diffusion time of photon-generated carrier near depletion layer.(2) The drift time of photon-generated carrier in depletion layer .(3) The constant of the circuit decided by junction capacitor which parallel with the load resistance . The detailed analysis and calculation of the order of magnitude of three time will be contrasted to determine the effective ways to improve photoelectric diode’s reaction speed,and the effective PIN model.In the experimental study, we use a pulse generator as light source, and the detector pulse output signal input quick response CS - 1022 type scillograph. So we can read direct response time in oscilloscope directly, then analyze the results, find out the factors which affect the probe response time.Key word:Photoelectric detector, response time, semiconductor, influencing factors目录1 绪论 (1)1.1光电探测器发展历程 (1)1.2近年高速探测器的发展成果 (2)1.3光电探测器的分类 (4)1.4光电探测器的物理基础 (6)2 典型光电探测器响应时间的研究 (10)2.1光电导探测器 (10)2.1.1光电转换原理 (10)2.1.2工作特性分析 (12)2.1.3时间响应特性及改善 (17)2.2 PN结光伏探测器 (17)2.2.1光电转换原理 (18)2.2.2 光伏探测器的工作模式 (19)2.2.3 Si光电二极管的构造与特性分析 (21)2.2.4 频率响应特性及改善探讨 (24)3光电探测器响应时间实验研究 (32)3.1实验原理 (32)3.1.1脉冲响应 (32)3.1.2幅频特性 (33)3.2实验仪器 (34)3.3实验步骤 (35)3.4实验结果与分析 (37)结论 (39)参考文献 (40)致谢 (41)1 绪论自年第一台红宝石激光器问世以来,古老的光学发生了革命性的变化与此同时,电子学也突飞猛进地向前发展。
光电探测器响应时间的测试实验报告模板

通常,光电探测器输出的电信号都有要在时间上落后于作用在其上的光信号,即光电探测器的输出相对于输入的光信号要发生沿时间轴扩展。
扩展的程序可由响应时间来描述。
光电探测器的这种响应落后于作用信号的特性称为惰性。
由于惰性的存在,会使先后作用的信号在输出端相互交叠,从而降低了信号的调制度。
如果探测器观测的是随时间快速变化的物理量,则由于惰性的影响会造成输出严重畸变。
因此,深入了解探测器的时间响应特性是十分必要的。
一、实验目的(1)了解光电探测器的响应度不仅与信号光的波长有关,而且与信号光的调制频率有关;(2)掌握发光二极管的电流调制法;(3)熟悉测量控测器响应时间的方法。
二、实验内容(1)用探测器的脉冲响应特性测量响应时间;(2)利用探测器的幅频特性确定其响应时间。
三、基本原理表示时间响应特性的方法主要有两种,一种是脉冲响应特性法,另一种是幅频特性法。
1. 脉冲响应响应落后于作用信号的现象称为弛豫。
对于信号开始作用时产弛豫称为上升弛豫或起始弛豫;信号停止作用时的弛豫称为衰减弛豫。
弛豫时间的具体定义如下:如用阶跃信号作用于器件,则起始弛豫定义为探测器的响应从零上升为稳定值的(1-1/e)(即63%)时所需的时间。
衰减弛豫定义为信号撤去后,探测器的响应下降到稳定值的1/e(即37%)所需的时间。
这类探测器有光电池、光敏电阻及热电探测器等。
另一种定义弛豫的时间的方法是:起始弛豫为响应值从稳态值的10%上升到90%所用的时间;衰减弛豫为响应从稳态值的90%下降到10%所用的时间。
这种定义多用于响应速度很快的器件,如光电二极管、雪崩光电二极管和光电倍增管等。
若光电探测器在单位跃信号作用下的起始阶跃响应函数为[1-exp(-t/τ1)],衰减响应函数为exp(-t/τ2),则根据第一种定义,起始弛豫时间为τ1,衷减弛豫时间性为τ2。
此外,如果测出了光电探测器的单位冲激响应函数,则可直接用其半值宽度来表示时间特性。
为了得到具有单位冲激函数形式的信号光源,即δ函数光源,可以采用脉搏冲式发光二极管、锁模激光器以及火花源等光源来近似。
光电探测器的性能分析及优化设计研究

光电探测器的性能分析及优化设计研究光电探测器是一种能够将光信号转化为电信号的器件,广泛应用于光通信、半导体制造、军事和医疗等领域。
光电探测器的性能分析和优化设计对于提高其灵敏度、响应速度和稳定性至关重要。
本文将对光电探测器的性能进行详细分析,并提出优化设计的策略。
首先,光电探测器的主要性能指标包括灵敏度、响应速度、暗电流和噪声等。
灵敏度是指光电探测器对光信号的响应能力,通常用光电流来衡量。
光电流正比于入射光功率,并且与光电探测器的面积成正比。
因此,增大光电探测器的面积可以提高灵敏度。
响应速度是指光电探测器对光信号响应的时间,通常用上升时间和下降时间来衡量。
为了提高响应速度,可以采用减小响应电路的负载电容,增加极间电容和缩短载流子的寿命等方法。
暗电流是指在没有光照射的情况下,光电探测器内部自发产生的电流。
为了减小暗电流,可以采用冷却元件和优化材料选择等措施。
噪声是指引起光电探测器输出波形变化的非理想因素。
减小噪声可以通过优化电路设计、改善阻抗匹配等方式实现。
其次,优化设计的研究是光电探测器性能改进的关键环节。
首先,在光电探测器的材料选择上,应考虑到其光捕获效率和载流子运动速度等因素。
例如,寻求高光捕获效率的半导体材料可以提高探测器的灵敏度。
其次,在结构设计上,可以采用表面等离子体共振、光栅和多孔等表面结构技术来增强光吸收和增加光电流。
此外,在电路设计方面,采用低噪声放大器和快速电路可以有效提高光电探测器的性能。
在优化设计时,还需要考虑光电探测器的工作环境和应用场景。
例如,在高温环境下,可以采用冷却装置或温度补偿技术来提高探测器的稳定性。
在光通信应用中,需要对光电探测器的带宽和速度进行优化,以满足高速数据传输的需求。
同时,对于特殊应用场景,如军事和医疗领域,对光电探测器的防护和抗干扰能力也需要进行优化设计。
此外,光电探测器的性能优化还需要利用先进的模拟和仿真工具进行辅助。
通过建立精确的数学模型,可以定量评估不同参数对性能的影响,并找到最佳的参数组合。
光电探测器的灵敏度与响应时间研究与探索

光电探测器的灵敏度与响应时间研究与探索哎呀,说起光电探测器,这可真是个有趣又重要的东西!你想想,在我们生活的这个科技飞速发展的时代,从智能手机的摄像头到太空望远镜,从医疗设备到自动驾驶汽车,到处都有光电探测器的身影。
我记得有一次,我参加了一个科技展览。
在那里,我看到了一个展示光电探测器应用的展台。
展示人员拿着一个小小的光电探测器模块,给我们演示它是如何工作的。
他用一束很微弱的光线照射在探测器上,旁边的仪器立刻就显示出了光线的强度和相关的数据。
我当时就特别好奇,这么小的一个东西,怎么就能这么灵敏地检测到光线的变化呢?这就不得不提到光电探测器的灵敏度啦。
灵敏度可是衡量光电探测器性能的一个关键指标。
简单来说,就是它能多敏锐地察觉到光的存在和变化。
比如说,在夜晚拍摄星空的时候,如果光电探测器的灵敏度不够高,那可能就捕捉不到那些微弱的星光,我们看到的星空照片就会是一片漆黑,啥也看不清。
但要是灵敏度高呢,就能把那些暗淡的星星都清晰地呈现出来,给我们带来美轮美奂的星空图。
那光电探测器的灵敏度到底是怎么实现的呢?这就得从它的工作原理说起。
光电探测器就像是一个超级敏感的“小眼睛”,当光线照射到它上面时,会引发一系列的物理和化学变化。
就好比是一场微小的“光的派对”,光子们和探测器内部的材料相互作用,产生了电流或者电压的变化。
而这个变化的大小,就决定了探测器的灵敏度高低。
为了提高光电探测器的灵敏度,科学家们可是绞尽了脑汁。
他们不断地研究和改进探测器的材料,寻找那些对光更加敏感的物质。
就像在一堆水果中,挑选出最甜、最饱满的那一个一样。
比如说,有些材料能够吸收更多的光子,转化效率更高;有些材料则能够在更低的光强度下就产生明显的响应。
除了材料,探测器的结构设计也很重要。
想象一下,一个精心设计的房子,每个房间的布局都恰到好处,通风采光都极佳。
光电探测器也是这样,合理的结构能够让光线更好地被接收和处理,从而提高灵敏度。
比如说,增加探测器的接收面积,就像给“小眼睛”戴上了一副大眼镜,能看到更多的光;或者优化内部的电路设计,让信号传输更加顺畅,减少损耗。
光电探测器光谱响应度和响应时间的测量(刘1)

光电探测器光谱响应度的测量光谱响应度是光电探测器的基本性能之一,它表征了光电探测器对不同波长入射辐射的响应。
通常热探测器的光谱响应比较平坦,而光子探测器的光谱响应却具有明显的选择性。
一般情况下,以波长为横坐标,以探测器接受到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。
典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。
一、实验目的(1)加深对光谱响应概念的理解; (2)掌握光谱响应的测试方法;(3)熟悉热释电探测器和硅光电二极管的使用。
二、实验内容(1)用热释电探测器测量钨丝灯的光谱辐射特性曲线; (2)用比较法测量硅光电二极管的光谱响应曲线。
三、基本原理光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λV ℜ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为()()()λλλP V V =ℜ (1-1)而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示()()()λλλP I i =ℜ (1-2) 式中, P (λ)为波长为λ时的入射光功率;V (λ)为光电探测器在入射光功率P (λ)作用下的输出信号电压;I (λ)则为输出用电流表示的输出信号电流。
为简写起见,()λV ℜ和()λi ℜ均可以用()λℜ表示。
但在具体计算时应区分()λV ℜ和()λi ℜ,显然,二者具有不同的单位。
通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长辐射照射下光电探测器输出的电信号V (λ)。
然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率P (λ)需要利用参考探测器(基准探测器)。
即使用一个光谱响应度为()λfℜ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。
光电探测器的设计及性能研究

光电探测器的设计及性能研究随着科技的不断发展,光电探测器不仅仅是在研究领域中广泛使用,而且在工业、医疗等领域也具有越来越广泛的应用。
因此,对于光电探测器的设计和性能研究具有非常重要的意义。
本文介绍了光电探测器设计的基本原理以及常用的探测方法,并分析了光电探测器的性能参数和评估方法。
一、光电探测器设计的基本原理光电探测器(photodetector)是一种能将光信号转化成电信号的器件,一般由光电传感器和信号处理电路组成。
在设计光电探测器时,需要考虑以下基本原理。
1. 光电传感器的结构光电传感器的结构通常由光敏二极管、光电二极管、PIN二极管、APD(avalanche photodiode)等构成。
其中,光敏二极管(phototransistor)是以基极(base)、发射极(emitter)和集电极(collector)构成的三极管,其基极区通过光照射后形成一个电路,产生电流;光电二极管(photodiode)则是一种可以将光信号转化成电流信号的器件;PIN二极管(p-i-n diode)由正、反向偏压三层半导体材料构成;APD则是一种特殊结构的光电二极管,在一定反向偏压下,通过电子和空穴的雪崩扩散增加光电流信号的强度。
2. 灵敏度和响应时间光电探测器的灵敏度和响应时间是设计中的两个关键因素。
灵敏度一般定义为入射光功率与电流信号的比值,响应时间是指光电探测器从暗态到光照反应后,输出光电流达到最大值所需时间。
3. 光谱响应和量子效率光电探测器的光谱响应和量子效率是指光电探测器对不同波长光的响应能力和接收光子的效率,一般用光谱响应曲线和量子效率曲线表示。
二、光电探测器常用的探测方法1. 光电二极管探测方法光电二极管是一种基本的光电探测器件,常用于电路中的信号检测、测量等。
其探测方法根据不同的应用可以分为直接检测和交流检测两种方式。
直接检测的原理是利用光敏二极管的光电效应,将光信号转换为电信号;交流检测则是将光敏二极管作为中间件与电路之间相互交流的信号转换。
光电探测器实验报告

光电探测器特性测量实验摘 要:本实验中探测并绘制了光电二极管的光谱响应曲线。
分别运用脉冲法,幅频特性法和截止频率法对二极管和光敏电阻的响应时间进行了测量,并分析比较了这三种方法的利弊。
最后自己设计连接电路测量光敏电阻的响应时间,更深入地理解了响应时间及测量原理。
一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
通常,光电探测器的光电转换特性用响应度表示。
响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。
主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。
本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。
二、 实验原理1. 光电探测器光谱响应度的测量光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,即()()()λλλP V Rv =;同理,电流光谱响应度()()()λλλP I R i =式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。
实验中用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。
若用f R 表示热释电探测器的响应度,则()()ff f K R V P λλ=(f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。
在本实验中,K f =100×300,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,f R =900V/W )。
然后在相同的光功率()λP 下,用硅光电二极管测量相应的单色光,得到输出电压()λb V ,从而得到光电二极管的光谱响应度()()()()()ff f b bK R V K V P V R //λλλλλ==式中K b 为硅光电二极管测量时总的放大倍数,这里K b =150×300。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电探测器响应时间实验研究摘要近几十年来,光电探测器在光通信、国防探测、信号处理、传感系统和测量系统等高精尖科技领域得到广泛的应用,在信息为导向的时代,时间就是生命,提高速度的需求日益紧迫,提高光电探测器响应速度的努力几乎从诞生它的一刻起就没停止过。
本实验主要研究光敏电阻和光电二极管的响应时间。
理论分析先从光敏电阻的光谱响应特性、照度伏安特性、频率响应、温度特性和前历效应来考察它的工作影响因素,确定光敏电阻响应时间与其入射光的照度、所加电压、负载电阻及照度变化前电阻所经历的时间的关系。
从光电二极管的模型分析,我们知道光电二极管的响应时间有三个方面决定:①光生载流子在耗尽层附近的扩散时间;②光生载流子在耗尽层内的漂移时间;③与负载电阻并联的结电容所决定的电路时间常数。
文中将详细分析计算对比三个时间的数量级,以确定提高响应速度的最有效途径,并提出改善光电二极管的有效方法和PIN模型。
实验研究时,采用近似脉冲的光源,经探测器的输出信号输入快速响应的CS-1022型示波器,在示波器上直接读出响应时间,分析实验结果,得出影响探测器响应时间的因素。
关键词:光电探测器,响应时间,半导体,影响因素AbstractIn recent decades, photoelectric detectors have been widely used in high-tech areas such as optical communications, national defense detection and signal processing, sensing system and measurement system .in the era which leaded by information, time is life. Improving speed increasingly is urgent needs of photoelectric detector. To improve the response speed, effort haven't been stopped from birth to its moment. This experiment mainly researchs photoconductive resistance and photoelectric diode response time. The theoretical analysis studys photoconductive resistance properties, intensity of illumination volt-ampere characteristics, frequency response and temperature characteristic and former calendar effect to examine its working influence factors, and find out the influencing factors between photoconductive resistance response time and incident light intensity of illumination, voltage, load resistance and the time experienced before intensity of illumination change. From the model analysis of the photoelectric diode, we know that the response time of the photoelectric diode has three aspects: (1) The diffusion time of photon-generated carrier near depletion layer.(2) The drift time of photon-generated carrier in depletion layer .(3) The constant of the circuit decided by junction capacitor which parallel with the load resistance . The detailed analysis and calculation of the order of magnitude of three time will be contrasted to determine the effective ways to improve photoelectric diode’s reaction speed,and the effective PIN model.In the experimental study, we use a pulse generator as light source, and the detector pulse output signal input quick response CS - 1022 type scillograph. So we can read direct response time in oscilloscope directly, then analyze the results, find out the factors which affect the probe response time.Key word:Photoelectric detector, response time, semiconductor, influencing factors目录1 绪论 (1)1.1光电探测器发展历程 (1)1.2近年高速探测器的发展成果 (2)1.3光电探测器的分类 (4)1.4光电探测器的物理基础 (6)2 典型光电探测器响应时间的研究 (10)2.1光电导探测器 (10)2.1.1光电转换原理 (10)2.1.2工作特性分析 (12)2.1.3时间响应特性及改善 (17)2.2 PN结光伏探测器 (17)2.2.1光电转换原理 (18)2.2.2 光伏探测器的工作模式 (19)2.2.3 Si光电二极管的构造与特性分析 (21)2.2.4 频率响应特性及改善探讨 (24)3光电探测器响应时间实验研究 (32)3.1实验原理 (32)3.1.1脉冲响应 (32)3.1.2幅频特性 (33)3.2实验仪器 (34)3.3实验步骤 (35)3.4实验结果与分析 (37)结论 (39)参考文献 (40)致谢 (41)1 绪论自年第一台红宝石激光器问世以来,古老的光学发生了革命性的变化与此同时,电子学也突飞猛进地向前发展。
光学和电子学紧密联合形成了光电子学这一崭新的学科。
由此发展起来的光电子高新技术,已深入到人们生活的各个领域,从光纤通信,镭射唱盘到海湾战争中的现代化武器,都和光电子技术密切相关。
而光电探测器则是光电子系统中不可缺少的重要器件。
可以毫不夸大地说,没有光电探测器件,就没有今天的光电子学系统。
1.1光电探测器发展历程1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。
第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。
在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。
60年代初,中远红外波段灵敏的Ge、Si 掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au (锗掺金)和Ge:Hg光电导探测器。
70年代,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。
至今,光电导探测器在军事和国民经济的各个领域有广泛用途。
在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。
光电导体的另一应用是用它做摄像管靶面。
为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。
其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。
同样,光伏探测器等利用不同光电效应、光热效应制成的各种光电探测器也得到飞速的发展。
由于体积小,重量轻,响应速度快,灵敏度高,易于与其它半导体器件集成,是光源的最理想探测器,广泛应用于光通信、信号处理、传感系统和测量系统。
尤其在近代高速信息传输的需求推动下,光伏探测器的响应频率从几百兆发展到几十吉赫兹,在西方发达国家,甚至几百吉赫兹的超高速通信传输网已投入试验。
1.2近年高速探测器的发展成果为满足超高速光通信、信号处理、测量和传感系统的需要,半导体光电探测器正朝着超高速、高灵敏度、宽带宽以及单片集成的方向发展。
以下介绍几种近年来研究最多的几种光电探测器。
1、谐振腔增强型(RCE)光电探测器高带宽的光信号探测,需要光电探测器的最佳典型结构是薄的光吸收区。
然而,薄的光吸收层必定导致半导体材料在吸收系数比较小的波长位置的量子时效率减小。
虽然带宽超过200GHz的光电探测器也已研制成功,但带宽效率积仍然受材料特性的限制。
在肖特基光电探测器中,金属接触中的光损耗进一步受到顶部照射器件量子效率的限制,增加器件的响应度只靠采用半透明的肖特基接触。
最近几年发展的光电子器件新种类--谐振腔增强型结构光电探测器,靠有源器件结构内部的法布里-泊罗谐振腔,使器件的量子效率在谐振波长位置猛烈增强,带宽效率积惊人地改善,致使允许制作薄的光吸收区。
所以,RCE结构探测器方案对肖特基型光电探测器特别有吸引力。
2、金属-半导体-金属行波光电探测器低温生长GaAs(LTG-GaAs)基光电探测器(PD)由于它们短的响应时间、高的电带宽、低的暗电流,以及它们能够与其微波器件例如微波天线集成而受到大大关注。
然而,LTG-GaAs的宽吸收能隙(~800nm)限制了它在长波长(1300-1500nm)光通信的应用。
在长波长制式,几个PS的响应时间已从LTG-InGaAs基PD得到了,但这比短波长制式的LTG-GaAs基PD的亚PS响应时间长得多。
近来,有几个研究组在长波长光通信制式使用垂直照射结构或边缘耦合行波结构,演示了LTG-GaAs基p-i-n/n-i-n和MSM PD。
通过使用内部能隙对导带的欠态跃迁,在LTG-GaAs中得到了低于带隙的光子吸收。