2011届高考总复习天津101中学精品教学案:复数单元(教师版全套)

合集下载

主题复习课复数教案

主题复习课复数教案

主题复习课复数教案一、教学目标:1. 理解复数的概念及其表示方法;2. 掌握复数的四则运算规则;3. 能够运用复数解决实际问题;4. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 复数的概念及其表示方法;2. 复数的四则运算规则;3. 复数的几何意义;4. 运用复数解决实际问题。

三、教学方法:1. 采用问题驱动的教学方法,引导学生主动探索和解决问题;2. 通过小组合作、讨论和汇报,培养学生的团队合作能力;3. 利用多媒体教学手段,辅助学生直观地理解复数的概念和运算规则;4. 结合数学软件和几何图形,展示复数的几何意义。

四、教学准备:1. 多媒体教学设备;2. 数学软件和几何绘图工具;3. 教案、PPT和教学素材。

五、教学过程:1. 导入新课:通过复习复数的概念和表示方法,引导学生回顾已学知识;2. 学习复数的四则运算规则,通过例题讲解和练习,让学生掌握运算方法;3. 探索复数的几何意义,利用数学软件和几何图形,展示复数在平面坐标系中的位置和运算规律;4. 运用复数解决实际问题,引导学生运用所学的知识和方法解决生活中的问题;5. 课堂小结:对本节课的主要内容和知识点进行总结归纳;6. 布置作业:布置相关的练习题,巩固所学知识。

六、教学评估:1. 课堂问答:通过提问的方式,了解学生对复数概念和运算规则的理解程度;2. 小组讨论:观察学生在小组合作中的表现,评估他们的团队合作能力和问题解决能力;3. 作业批改:对学生的作业进行批改,评估他们对复数知识的掌握情况。

七、教学拓展:1. 介绍复数在工程、物理学等领域的应用,激发学生对复数知识的兴趣;2. 引导学生思考复数运算的算法优化问题,提升学生的逻辑思维能力;3. 组织学生进行数学探究活动,让学生自主发现复数运算的规律。

八、教学反思:1. 总结本节课的教学效果,反思教学方法的适用性;2. 分析学生的学习情况,调整教学策略,以提高教学效果;3. 针对学生的薄弱环节,加强针对性训练,提高学生的复数知识水平。

天津101中学高考数学总复习 复数单元精品教学案(教师版全套)

天津101中学高考数学总复习 复数单元精品教学案(教师版全套)

数系的扩充与复数的引入1、了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用.2、理解复数的基本概念以及复数相等的充要条件3、了解复数的代数表示法及其几何意义,能进行复数代数形式的四则运算,了解复数代数重视复数的概念和运算,注意复数问题实数化.第1课时 复数的有关概念1.复数:形如 ),(R b a ∈的数叫做复数,其中a , b 分别叫它的 和 .2.分类:设复数 (,)z a bi a b R =+∈:(1) 当 =0时,z 为实数;(2) 当 ≠0时,z 为虚数;(3) 当 =0, 且 ≠0时,z 为纯虚数.3.复数相等:如果两个复数 相等且 相等就说这两个复数相等.4.共轭复数:当两个复数实部 ,虚部 时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).5.若z =a +bi, (a, b ∈R), 则 | z |= ; z z ⋅= .6.复平面:建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做 , 叫虚轴.7.复数z =a +bi(a, b ∈R)与复平面上的点 建立了一一对应的关系.8.两个实数可以比较大小、但两个复数如果不全是实数,就 比较它们的大小.例1. m 取何实数值时,复数z =362+--m m m +i m m )152(2--是实数?是纯虚数?解:① z 是实数503015122=⇒⎩⎨⎧≠+=--⇒m m m m ② z 为纯虚数2303060151222-==⇒⎪⎩⎪⎨⎧≠+=--≠--⇒m m m m m m m 或变式训练1:当m 分别为何实数时,复数z=m 2-1+(m 2+3m +2)i 是(1)实数?(2)虚数?(3)纯虚数?(4)零?解:(1)m=-1,m=-2;(2)m≠-1,m≠-2;(3)m=1;(4)m=-1.例2. 已知x 、y 为共轭复数,且i xyi y x 643)(2-=-+,求x .解:设),(,R b a bi a y bi a x ∈-=+=则代入由复数相等的概念可得1,1±=±=b a 变式训练2:已知复数z=1+i ,如果221z az b z z ++-+=1-i,求实数a,b 的值.由z=1+i 得221z az b z z ++-+=()(2)a b a i i+++=(a +2)-(a +b)i 从而21()1a a b +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.例3. 若方程0)2()2(2=++++mi x i m x 至少有一个实根,试求实数m 的值.解:设实根为o x ,代入利用复数相等的概念可得o x =222±=⇒±m 变式训练3:若关于x 的方程x 2+(t 2+3t +tx )i=0有纯虚数根,求实数t 的值和该方程的根.解:t=-3,x 1=0,x 2=3i .提示:提示:设出方程的纯虚数根,分别令实部、虚部为0,将问题转化成解方程组.例4. 复数 (,)z x yi x y R =+∈满足|22|||i z z --=,试求y x 33+的最小值.设),(R y x yi x z ∈+=,则2=+y x ,于是692332=≥+-x x 变式训练4:已知复平面内的点A 、B 对应的复数分别是i z +=θ21sin 、θθ2cos cos 22i z +-=,其中)2,0(πθ∈,设AB 对应的复数为z .(1) 求复数z ;(2) 若复数z 对应的点P 在直线x y 21=上,求θ的值.解:(1) θ212sin 21i z z z --=-=(2) 将)sin 2,1(2θ--P 代入xy 21=可得21sin ±=θ611,67,65,6ππππθ=⇒.1.要理解和掌握复数为实数、虚数、纯虚数、零时,对实部和虚部的约束条件.2.设z =a +bi (a ,b ∈R),利用复数相等和有关性质将复数问题实数化是解决复数问题的常用方法.第2课时 复数的代数形式及其运算1.复数的加、减、乘、除运算按以下法则进行:设12, (,,,)z a bi z c di a b c d R =+=+∈,则(1) 21z z ±= ;(2) 21z z ⋅= ;(3) 21z z = (≠2z ).2.几个重要的结论:⑴ )|||(|2||||2221221221z z z z z z +=-++⑵ z z ⋅= = .⑶ 若z 为虚数,则2||z = ()2 z =≠填或3.运算律⑴ n m z z ⋅= .⑵ n m z )(= .⑶ n z z )(21⋅= ),(R n m ∈.例1.计算:ii i i i 2121)1()1(20054040++-++--+ 解:提示:利用i i i i =±=±20052,2)1(原式=0变式训练1:2=(A )1- (B )122+ (C )122-+ (D )1解:212===-+ 故选C ; 例2. 若012=++z z ,求2006200520032002z z z z +++解:提示:利用z z z ==43,1原式=2)1(432002-=+++z z z z变式训练2:已知复数z 满足z 2+1=0,则(z 6+i )(z 6-i )= ▲ .解:2例3. 已知4,a a R >∈,问是否存在复数z ,使其满足ai z i z z +=+⋅32(a ∈R ),如果存在,求出z 的值,如果不存在,说明理由解:提示:设),(R y x yi x z ∈+=利用复数相等的概念有⎩⎨⎧==++ax y y x 23222 0034222>∆⇒=-++⇒a y y i a a z a 216224||2-±-+=⇒≤⇒ 变式训练3:若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 解:3例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为2||(1)(1)1 3.z i z i z i +--+=-设yi x z += (x 、y ∈R ,代入上述方程得22221 3.x y xi yi i +--=-221(1)223(2)x y x y ⎧+=⎪∴⎨+=⎪⎩ 将(2)代入(1),整理得281250.x x -+=160,()f x ∆=-<∴方程无实数解,∴原方程在复数范围内无解.变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R, 若12z z -<1z ,求a 的取值范围.解:由题意得 z 1=151i i-++=2+3i,于是12z z -=42a i -+,1z =13.13,得a 2-8a +7<0,1<a<7.1.在复数代数形式的四则运算中,加减乘运算按多项式运算法则进行,除法则需分母实数化,必须准确熟练地掌握.2.记住一些常用的结果,如ω,i 的有关性质等可简化运算步骤提高运算速度.3.复数的代数运算与实数有密切联系但又有区别,在运算中要特别注意实数范围内的运算法则在复数范围内是否适用.复数章节测试题一、选择题1.若复数ii a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A 、-6 B 、13 C.32D.13 2.定义运算bc ad d c b a -=,,,则符合条件01121=+-+ii i z ,,的复数_z 对应的点在( ) A .第一象限; B .第二象限; C .第三象限; D .第四象限;3.若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( )A.-4;B.4;C.-1;D.1;4.复数i i ⋅--2123=( )A .-IB .IC . 22-iD .-22+i6.若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,则实数a 的取值范围是( )A .1>aB .11<<-aC .1-<aD .11>-<a a 或7.已知复数z 满足2)1()1(i z i +=-,则z =( ) (A) -1+ i (B) 1+i (C) 1-i (D) -1-i8.若复数12,1z a i z i =+=-,且12z z 为纯虚数,则实数a 为 ( )A .1B .-1C .1或-1D .09.如果复数)2)(1(i ai ++的实部和虚部相等,则实数a 等于( )(A )1- (B )31 (C )21 (D )1 10.若z 是复数,且i z 432+-=,则z 的一个值为 ( )A .1-2iB .1+2iC .2-iD .2+i11.若复数15z a i =-+为纯虚数,其中,a R i ∈为虚数单位,则51a i ai+-=( ) A . i B . i - C . 1 D . 1-12.复数1i i+在复平面中所对应的点到原点的距离为( ) A .12 B .22C .1D . 2二、填空题13.设z a bi =+,a ,b ∈R ,将一个骰子连续抛掷两次,第一次得到的点数为a ,第二次得到的点数为b ,则使复数z 2为纯虚数的概率为 .14.设i 为虚数单位,则41i i +⎛⎫= ⎪⎝⎭. 15.若复数z 满足方程1-=⋅i i z ,则z= .16..已知实数x ,y 满足条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,i z x y =+(i 为虚数单位),则|12i |z -+的最小值是 .17.复数z=12i+,则|z|= . 18.虚数(x -2)+ y i 其中x 、y 均为实数,当此虚数的模为1时,xy 的取值范围是( ) A .[-33,33] B .033[-∪(]330 C .[-3,3] D .[-3,0∪(0,3]19.已知ii a z --=1 (a>0),且复数)(i z z +=ω的虚部减去它的实部所得的差等于23,求复数ω的模.20..复平面内,点1Z 、2Z 分别对应复数1z 、2z ,且i a a z )10(5321-++=,22(25)1z a i a =+--, )(R a ∈其中,若21z z +可以与任意实数比较大小,求21OZ OZ ⋅的值(O 为坐标原点).复数章节测试题答案一、选择题1. A 2.答案:A 3.答案:B4.答案:B6.答案:A7.A8.B9.B10.B11.D12.B二、填空题13. 61 14.2i15.1i +16.答案:221718. 答案:B ∵⎩⎨⎧≠=+-0y 1y )2x (22, 设k =x y , 则k 为过圆(x -2)2 + y 2 = 1上点及原点的直线斜率,作图如下, k≤3331=, 又∵y≠0 ,∴k≠0.由对称性 选B .【帮你归纳】本题考查复数的概念,以及转化与化归的数学思维能力,利用复数与解析几何、平面几何之间的关系求解.虚数一词又强调y≠0,这一易错点.【误区警示】本题属于基础题,每步细心计算是求解本题的关键,否则将会遭遇“千里之堤,溃于蚁穴”之尴尬. 19.解:i a a a i z z 221)(2+++=+=ω i a 3232+=⇒=⇒ω523||=⇒ω 20.解:依题意21z z +为实数,可得。

复数的概念教案

复数的概念教案

复数的概念教案复数的有关概念教案作为一名老师,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。

教案应该怎么写才好呢?以下是店铺为大家收集的复数的概念教案,欢迎大家借鉴与参考,希望对大家有所帮助。

复数的概念教案篇1教学目标(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。

(2)正确对复数进行分类,掌握数集之间的从属关系;(3)理解复数的几何意义,初步掌握复数集c和复平面内所有的点所成的集合之间的一一对应关系。

(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.教学建议(一)教材分析1、知识结构本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.2、重点、难点分析(1)正确复数的实部与虚部对于复数,实部是,虚部是 .注意在说复数时,一定有,否则,不能说实部是,虚部是,复数的实部和虚部都是实数。

说明:对于复数的定义,特别要抓住这一标准形式以及是实数这一概念,这对于解有关复数的问题将有很大的帮助。

(2)正确地对复数进行分类,弄清数集之间的关系分类要求不重复、不遗漏,同一级分类标准要统一。

根据上述原则,复数集的分类如下:注意分清复数分类中的界限:①设,则为实数② 为虚数③ 且。

④ 为纯虚数且(3)不能乱用复数相等的条件解题.用复数相等的条件要注意:①化为复数的标准形式②实部、虚部中的字母为实数,即(4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:①任何一个复数都可以由一个有序实数对( )唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的.②复数用复平面内的点z( )表示.复平面内的点z的坐标是( ),而不是( ),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于=0+1· ,所以用复平面内的点(0,1)表示时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数时,不能以为这一点到原点的距离就是虚数单位,或者就是纵轴的单位长度.③当时,对任何,是纯虚数,所以纵轴上的点( )( )都是表示纯虚数.但当时,是实数.所以,纵轴去掉原点后称为虚轴.由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.④复数z=a+bi中的z,书写时小写,复平面内点z(a,b)中的z,书写时大写.要学生注意.(5)关于共轭复数的概念设,则,即与的实部相等,虚部互为相反数(不能认为与或是共轭复数).教师可以提一下当时的特殊情况,即实轴上的点关于实轴本身对称,例如:5和-5也是互为共轭复数.当时,与互为共轭虚数.可见,共轭虚数是共轭复数的特殊情行.(6)复数能否比较大小教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:①根据两个复数相等地定义,可知在两式中,只要有一个不成立,那么 .两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”:(i)对于任意两个实数a, b来说,a(ii)如果a<b,b<c,那么a<c;< p="">(iii)如果a<b,那么a+c<b+c;< p="">(iv)如果a0,那么ac<bc.(不必向学生讲解)< p="">(二)教法建议1.要注意知识的连续性:复数是二维数,其几何意义是一个点,因而注意与平面解析几何的联系.2.注意数形结合的数形思想:由于复数集与复平面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学思想.3.注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能本节它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答.复数的概念教案篇2教学目标1.了解复数的实部,虚部;2.掌握复数相等的意义;3.了解并掌握共轭复数,及在复平面内表示复数.教学重点复数的概念,复数相等的充要条件.教学难点用复平面内的点表示复数m.教学用具:直尺课时安排:1课时教学过程:一、复习提问:1.复数的定义。

2011届高考总复习天津101中学精品教学案:排列组合二项式定理单元(教师版全套)

2011届高考总复习天津101中学精品教学案:排列组合二项式定理单元(教师版全套)

排列、组合、二项式定理1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.排列与组合高考重点考察学生理解问题、综合运用分类计数原理和分步计数原理分析问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时 两个计数原理n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.3.解题方法:枚举法、插空法、隔板法.(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种(3)4150C (4)4150A 变式训练1:在直角坐标x-o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4 条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。

天津101中学高考数学总复习 平面向量单元精品教学案(教师版全套)

天津101中学高考数学总复习 平面向量单元精品教学案(教师版全套)

平面向量1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法和减法的运算法则及运算律.3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式.向量由于具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为多项内容的媒介.主要考查:1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则.2.向量的坐标运算及应用.3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用.4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.第1课时向量的概念与几何运算⑴既有又有的量叫向量.的向量叫零向量. 的向量,叫单位向量.⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .⑶ 且 的向量叫相等向量.2.向量的加法与减法⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .3.实数与向量的积⑴ 实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下:① | λ |= .② 当λ>0时,λ的方向与的方向 ; 当λ<0时,λ的方向与的方向 ; 当λ=0时,λ .⑵ λ(μ)= . (λ+μ)= .λ(+b )= .⑶ 共线定理:向量b 与非零向量共线的充要条件是有且只有一个实数λ使得 .4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 .⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .例1.已知△ABC 中,D 为BC 的中点,E 为AD 的中点.设=,=,求.解:=AE -=41(+)-=-43a +41b 变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量等于( )A .-+21B .--BA 21C .-21D .+21解:A例2. 已知向量2132e e -=,2132e e +=,2192e e -=,其中1e 、2e 不共线,求实数λ、μ,BC使μλ+=.解:c =λ+μb ⇒21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ⇒2λ+2μ=2,且-3λ+3μ=-9⇒λ=2,且μ=-1变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:4=+++证明 +PC =2PO ,+=2PO ⇒++PC +=4PO例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC和AB 的中点,若a =,b =,试用a 、b 表示和.解:连NC ,则==-=+=+=4141;21-=-=变式训练3:如图所示,OADB 是以向量=,=为邻边的平行四边形,又=31,=31,试用、表示,,.解:=61a +65b ,=32a +32b ,=21-61b 例4. 设,是两个不共线向量,若与起点相同,t ∈R ,t 为何值时,,t ,31(+)三向量的终点在一条直线上?解:设])(31[t +-=-λ (λ∈R)化简整理得:)31()132(=-+-t λλ∵不共线与,∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-2123030132t t λλλ故21=t 时,)(31,,t +三向量的向量的终点在一直线上.变式训练4:已知,,,,OA a OB b OC c OD d OE e ===== ,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?解:由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条直线上的充要条件是存在实数k ,使得CE kCD = ,即(3)32t a tb ka kb -+=-+,整理得(33)(2)t k a k t b -+=-.①若,a b共线,则t 可为任意实数;②若,a b 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.综上,,a b 共线时,则t 可为任意实数;,a b 不共线时,65t =.D1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.第2课时 平面向量的坐标运算1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .2.向量的坐标表示与起点为 的向量是一一对应的关系.3.平面向量的坐标运算:若=(x 1、y 1),=(x 2、y 2),λ∈R ,则:+= -= λ=已知A(x 1、y 1),B(x 2、y 2),则= .4.两个向量=(x 1、y 1)和=(x 2、y 2)共线的充要条件是 .例1.已知点A (2,3),B (-1,5),且=31AB ,求点C 的坐标.解=31=(-1,32),=+=(1, 311),即C(1, 311)变式训练1.若(2,8)OA = ,(7,2)OB =- ,则31AB= .解: (3,2)--提示:(9,6)AB OB OA =-=--例2. 已知向量=(cos 2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值.解:|-|=55222552=--⇒)cos(βα2cos 22552βα--⇒=55222552=--⇒)cos(βα⇒cos 2βα-=53⇒cos(α-β)=257-变式训练2.已知-2b =(-3,1),2+b =(-1,2),求+b .解 a =(-1,1),b =(1,0),∴a +b =(0,1)例3. 已知向量=(1, 2),=(x, 1),1e =+2,2e =2-,且1e ∥2e ,求x .解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ⇒3(1+2x)=4(2-x)⇒x =21变式训练3.设=(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),∥,求证:k≥3.证明: k =θθsin cos 2- ∴k -3=θπθsin )3cos(22--≥0 ∴k≥3例4. 在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标;(2) 当||=||时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),)5,1()5,9()0,6()5,3(00--==+=+=y x得x 0=10 y 0=6 即点C(10,6)(2) ∵= ∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1) ∵M 为AB 的中点∴P 分的比为21设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且||=2,求的坐标.解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==∴)5103,510(1032-==1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.第3课时 平面向量的数量积1.两个向量的夹角:已知两个非零向量和b ,过O 点作=,=b ,则∠AOB =θ (0°≤θ≤180°) 叫做向量a 与b 的 .当θ=0°时,a 与b ;当θ=180°时,a 与b ;如果与b 的夹角是90°,我们说与b 垂直,记作 .2.两个向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量叫做与b 的数量积(或内积),记作·b ,即·b = .规定零向量与任一向量的数量积为0.若=(x 1, y 1),b =(x 2, y 2),则·b = . 3.向量的数量积的几何意义:|b |cosθ叫做向量b 在方向上的投影 (θ是向量与b 的夹角).·b 的几何意义是,数量·b 等于 .4.向量数量积的性质:设、b 都是非零向量,是单位向量,θ是与b 的夹角.⑴ ·=·= ⑵ ⊥b ⇔⑶ 当与b 同向时,·b = ;当与b 反向时,·b = . ⑷ cos θ= .⑸ |·b |≤ 5.向量数量积的运算律:⑴ ·b = ; ⑵ (λ)·b = =·(λb ) ⑶ (+)·c =4,|b |=5,且与b 的夹角为60°,求:(2+3b )·(3-2b ). 解:(2+3b )(3-2b )=-4变式训练1.已知||=3,|b |=4,|+b |=5,求|2-3b |的值. 解:56例2. 已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a ⊥b ,求θ; (2) 求|a +b |的最大值.解:(1)若⊥,则0cos sin =+θθ 即1tan -=θ 而)2,2(ππθ-∈,所以4πθ-=(2))4sin(223)cos (sin 23πθθθ++=++=+当4πθ=时,+的最大值为12+变式训练2:已知(cos ,sin )a αα= ,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求证:a b + 与a b -互相垂直;(2)若ka →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数).证明:222222()()(cos sin )(cos sin )0a b a b a b ααββ+⋅-=-=+-+= a b ∴+ 与a b -互相垂直(2)k a →+(cos cos ,sin sin )b k k αβαβ→=++,a k →-(cos cos ,sin sin )b k k αβαβ→=--,k a b →+= a kb →-= ,cos()0βα-=,2πβα-=例3. 已知O 是△ABC 所在平面内一点,且满足(-)·(+-2)=0,判断△ABC 是哪类三角形.解:设BC 的中点为D ,则(-)(2-+)=0⇒2·=0⇒BC ⊥AD ⇒△ABC 是等腰三角形.变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 .解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-⋅=⊥例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=528,求cos(82πθ+)的值.解:+=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25128化简:cos 257)4(=+πθ又cos 225162)4cos(1)82(=++=+πθπθ∵θ∈(π, 2π) ∴cos 25162)4cos(1)82(=++=+παπθ<0 ∴cos 25162)4cos(1)82(=++=+παπθ=-54 变式训练4.平面向量11),(2a b =-=,若存在不同时为0的实数k 和t ,使2(3)x a t b =+- ,,y ka tb =-+ 且x y ⊥ ,试求函数关系式()k f t =. 解:由11),(2a b =-=得0,||2,||1a b a b ⋅===22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +-⋅-+=-+⋅--⋅+-=33311(3),()(3)44k t t f t t t =-=- 1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意·b 与ab 的区别.·b =0≠>=,或b =. 3.应根据定义找两个向量的夹角。

高中数学《复数》复习课教案

高中数学《复数》复习课教案

高中数学《复数》复习课教案
【教学目标】
1、理解复数的基本概念以及复数相等的充要条件,了解复数的代数表示及其几何意义。

2、能进行复数代数形式的四则运算,了解复数形式的加减运算的几何意义。

重点:复数的概念、复数的几何意义及复数的代数形式的四则运算。

难点:复数及复数运算的几何意义及四则运算。

教学情境设计
教后记
本学期由于教研员的信任,我进行了一次市级公开课的教学,在这次教学中我得到了教研员以及本组老师的无私的帮助。

本课我设置的目标是参照了复数在高考以及平时的学分认定考试中的难
易程度,题目设置的难度结合了二中学生的实际情况。

授课方式也努力与省规及素质教育接轨,经过数边试讲之后才正式上课。

在教学中得到了不小的收获,也发现了自身的一些不足,通过这节课我体会到,为了将课堂上得更加具有时效性,更加切合时代脉搏的发展,教师必须时时更新自我,不断学习,这也是我今后努力的方向和目标。

复数教案高中数学

复数教案高中数学

复数教案高中数学一、教学目标1. 知识与技能:掌握复数的概念,能够进行复数的加减乘除运算。

2. 过程与方法:通过举例分析和练习巩固复数的相关知识点。

3. 情感态度价值观:培养学生对数学知识的兴趣,提高数学学习的积极性。

二、教学重点与难点1. 教学重点:复数的概念和基本运算法则。

2. 教学难点:复数的乘法和除法运算。

三、教学内容1. 复数的定义和表示方法2. 复数的加减运算3. 复数的乘除运算四、教学过程1. 复数的定义和表示方法- 引导学生了解复数的定义:将形如a+bi的数称为复数,其中a和b分别是实数,i是虚数单位。

- 通过示例讲解复数的表示方法,如2+3i、-4-5i等。

2. 复数的加减运算- 讲解复数的加减运算规则:实部相加,虚部相加,结果为新的复数。

- 通过例题演练,让学生掌握复数的加减法则。

3. 复数的乘除运算- 解释复数的乘法规则:通过公式(a+bi)(c+di)=ac+(ad+bc)i-bd,进行乘法运算。

- 教授复数的除法方法:将分子和分母同时乘以分母的共轭,然后进行运算。

- 进行例题练习,让学生熟练掌握复数的乘除运算。

五、课堂练习1. 计算以下复数的和差:- (3+4i) + (5+2i)- (7-2i) - (4+3i)2. 计算以下复数的乘积和商:- (2+3i) × (1+2i)- (4-3i) ÷ (2+1i)六、作业布置1. 完成课堂练习题。

2. 熟练掌握复数的加减乘除运算方法。

3. 预习下节课内容:复数的绝对值和幂。

七、教学反思通过本节课的教学,学生应该能够理解复数的概念,掌握复数的加减乘除运算方法。

教师应多设计实际例题,引导学生合理运用复数知识解决问题,促进学生对数学知识的深入理解和掌握。

高中数学复数教案

高中数学复数教案

高中数学复数教案教学目标:1. 掌握复数的概念及表示方法。

2. 掌握复数的四则运算规则。

3. 掌握复数的共轭、模、辐角等性质。

4. 能够解决实际问题中的复数运算与应用。

教学重点:1. 复数的概念及表示方法。

2. 复数的四则运算规则。

3. 复数的性质与运用。

教学难点:1. 复数的辐角与幂运算。

2. 复数与实际问题的应用。

教学过程:一、复数的定义与表示方法(10分钟)1. 复数的定义:复数是由实部和虚部构成的数,一般表示为a+bi,其中a为实部,b为虚部,i为虚数单位。

2. 复数的表示方法:直角坐标形式、极坐标形式、指数形式等。

二、复数的四则运算(20分钟)1. 复数的加减法:将实部和虚部分别相加减。

2. 复数的乘法:利用分配律和虚数单位i的性质展开计算。

3. 复数的除法:将除数乘以其共轭,然后利用乘法的性质得到结果。

三、复数的性质与辅助运算(15分钟)1. 复数的共轭:实部不变,虚部取负。

2. 复数的模:利用勾股定理求得。

3. 复数的辐角:tanθ=b/a,其中θ为辐角。

四、复数的应用(15分钟)1. 复数在几何中的应用:表示向量、旋转、平移等。

2. 复数在电路中的应用:表示电压、电流、阻抗等。

3. 复数在信号处理中的应用:表示信号频率、相位等。

五、练习与拓展(15分钟)1. 各种复数运算的练习题。

2. 解决实际问题中的复数运算与应用。

六、课堂总结(5分钟)1. 复习本节课学习内容。

2. 引导学生总结复数的概念及运算规则。

3. 激发学生对复数的兴趣与进一步探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数系的扩充与复数的引入1、了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用.2、理解复数的基本概念以及复数相等的充要条件3、了解复数的代数表示法及其几何意义,能进行复数代数形式的四则运算,了解复数代数重视复数的概念和运算,注意复数问题实数化.第1课时 复数的有关概念1.复数:形如 ),(R b a ∈的数叫做复数,其中a , b 分别叫它的 和 .2.分类:设复数 (,)z a bi a b R =+∈:(1) 当 =0时,z 为实数;(2) 当 ≠0时,z 为虚数;(3) 当 =0, 且≠0时,z 为纯虚数.3.复数相等:如果两个复数 相等且 相等就说这两个复数相等.4.共轭复数:当两个复数实部 ,虚部 时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).5.若z =a +bi, (a, b ∈R), 则 | z |= ; z z ⋅= .6.复平面:建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做 , 叫虚轴.7.复数z =a +bi(a, b ∈R)与复平面上的点 建立了一一对应的关系.8.两个实数可以比较大小、但两个复数如果不全是实数,就 比较它们的大小.例1. m 取何实数值时,复数z =362+--m m m +im m )152(2--是实数?是纯虚数?解:① z 是实数503015122=⇒⎩⎨⎧≠+=--⇒m m m m ② z 为纯虚数2303060151222-==⇒⎪⎩⎪⎨⎧≠+=--≠--⇒m m m m m m m 或变式训练1:当m 分别为何实数时,复数z=m 2-1+(m 2+3m +2)i 是(1)实数?(2)虚数?(3)纯虚数?(4)零?解:(1)m=-1,m=-2;(2)m≠-1,m≠-2;(3)m=1;(4)m=-1.例2. 已知x 、y 为共轭复数,且ixyi y x 643)(2-=-+,求x .解:设),(,R b a bi a y bi a x ∈-=+=则代入由复数相等的概念可得1,1±=±=b a 变式训练2:已知复数z=1+i ,如果221z az b z z ++-+=1-i,求实数a,b 的值.由z=1+i 得221z az b z z ++-+=()(2)a b a ii+++=(a +2)-(a +b)i从而21()1a ab +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.例3. 若方程0)2()2(2=++++mi x i m x 至少有一个实根,试求实数m 的值.解:设实根为o x ,代入利用复数相等的概念可得o x =222±=⇒±m 变式训练3:若关于x 的方程x 2+(t 2+3t +tx )i=0有纯虚数根,求实数t 的值和该方程的根.解:t=-3,x 1=0,x 2=3i .提示:提示:设出方程的纯虚数根,分别令实部、虚部为0,将问题转化成解方程组.例4. 复数 (,)z x yi x y R =+∈满足|22|||i z z --=,试求y x 33+的最小值.设),(R y x yi x z ∈+=,则2=+y x ,于是692332=≥+-xx 变式训练4:已知复平面内的点A 、B 对应的复数分别是iz +=θ21sin 、θθ2cos cos 22i z +-=,其中)2,0(πθ∈,设AB 对应的复数为z .(1) 求复数z ;(2) 若复数z 对应的点P 在直线xy 21=上,求θ的值.解:(1) θ212sin 21i z z z --=-= (2) 将)sin 2,1(2θ--P 代入xy 21=可得21sin ±=θ611,67,65,6ππππθ=⇒.1.要理解和掌握复数为实数、虚数、纯虚数、零时,对实部和虚部的约束条件.2.设z =a +bi (a ,b ∈R),利用复数相等和有关性质将复数问题实数化是解决复数问题的常用方法.第2课时 复数的代数形式及其运算1.复数的加、减、乘、除运算按以下法则进行:设12, (,,,)z a bi z c di a b c d R =+=+∈,则(1) 21z z ±= ;(2) 21z z ⋅= ;(3)21z z = (≠2z ).2.几个重要的结论:⑴ )|||(|2||||2221221221z z z z z z +=-++⑵zz ⋅= = .⑶ 若z 为虚数,则2||z = ()2 z =≠填或3.运算律⑴ nmzz⋅= .⑵ nm z )(= .⑶nz z )(21⋅=),(R n m ∈.例1.计算:ii ii i 2121)1()1(20054040++-++--+解:提示:利用iii i =±=±20052,2)1(原式=0变式训练1:2=(A )1-+ (B )122+(C )122-+(D )1-解:21222===-+故选C ;例2. 若012=++z z ,求2006200520032002zz zz +++解:提示:利用zzz ==43,1原式=2)1(432002-=+++z z z z变式训练2:已知复数z 满足z 2+1=0,则(z 6+i )(z 6-i )= ▲ . 解:2例3. 已知4,a a R >∈,问是否存在复数z ,使其满足ai z i z z +=+⋅32(a ∈R ),如果存在,求出z 的值,如果不存在,说明理由 解:提示:设),(R y x yi x z ∈+=利用复数相等的概念有⎩⎨⎧==++ax y y x 232220034222>∆⇒=-++⇒ay y ia a z a 216224||2-±-+=⇒≤⇒变式训练3:若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 解:3例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i-+--+=+(i 为虚数单位)无解.证明:原方程化简为2||(1)(1)13.z i z i z i +--+=-设yix z +=(x、y ∈R ,代入上述方程得222213.x y xi yi i +--=-221(1)223(2)x y x y ⎧+=⎪∴⎨+=⎪⎩ 将(2)代入(1),整理得281250.x x -+=160,()f x ∆=-<∴ 方程无实数解,∴原方程在复数范围内无解.变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R, 若12z z -<1z ,求a 的取值范围.解:由题意得 z 1=151i i-++=2+3i,于是12z z -=42a i-+1z =13.<13,得a 2-8a +7<0,1<a<7.1.在复数代数形式的四则运算中,加减乘运算按多项式运算法则进行,除法则需分母实数化,必须准确熟练地掌握.2.记住一些常用的结果,如ω,i 的有关性质等可简化运算步骤提高运算速度.3.复数的代数运算与实数有密切联系但又有区别,在运算中要特别注意实数范围内的运算法则在复数范围内是否适用.复数章节测试题一、选择题 1.若复数ii a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( )A 、-6B 、13 C.32D.132.定义运算bc ad dc b a -=,,,则符合条件01121=+-+ii i z ,,的复数_z 对应的点在( )A .第一象限;B .第二象限;C .第三象限;D .第四象限;3.若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a =( ) A.-4; B.4; C.-1; D.1; 4.复数ii ⋅--2123=( )A .-IB .IC . 22-iD .-22+i6.若复数z ai z i z 且复数满足,1)1(+=-在复平面上对应的点位于第二象限,则实数a 的取值范围是( )A .1>aB .11<<-aC .1-<aD .11>-<a a 或 7.已知复数z 满足2)1()1(i z i +=-,则z =( )(A) -1+ i (B) 1+i (C) 1-i (D) -1-i 8.若复数12,1z a i z i =+=-,且12z z 为纯虚数,则实数a 为 ( ) A .1 B .-1 C .1或-1 D .09.如果复数)2)(1(i ai ++的实部和虚部相等,则实数a 等于( ) (A )1- (B )31 (C )21 (D )110.若z 是复数,且i z 432+-=,则z 的一个值为 ( ) A .1-2i B .1+2i C .2-i D .2+i 11.若复数15z a i =-+为纯虚数,其中,a R i ∈为虚数单位,则51a iai+-=( )A . iB . i -C . 1D . 1- 12.复数1i i+在复平面中所对应的点到原点的距离为( )A .12B .22C .1D . 2二、填空题13.设z a bi =+,a ,b ∈R ,将一个骰子连续抛掷两次,第一次得到的点数为a ,第二次得到的点数为b ,则使复数z 2为纯虚数的概率为 .14.设i 为虚数单位,则41i i +⎛⎫= ⎪⎝⎭.15.若复数z 满足方程1-=⋅i i z ,则z= .16..已知实数x ,y 满足条件5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,i z x y =+(i 为虚数单位),则|12i |z -+的最小值是 . 17.复数z=12i+,则|z|= .18.虚数(x -2)+ y i 其中x 、y 均为实数,当此虚数的模为1时,xy 的取值范围是( )A .[-33,33] B .033[-∪(]330C .[-3,3]D .[-3,0∪(0,3]19.已知ii a z --=1 (a>0),且复数)(i z z +=ω的虚部减去它的实部所得的差等于23,求复数ω的模.20..复平面内,点1Z 、2Z 分别对应复数1z 、2z ,且ia a z )10(5321-++=,22(25)1z a ia=+--,)(R a ∈其中,若21z z +可以与任意实数比较大小,求21OZ OZ ⋅的值(O 为坐标原点).复数章节测试题答案一、选择题1. A 2.答案:A 3.答案:B 4.答案:B 6.答案:A 7.A 8.B 9.B 10.B 11.D 12.B 二、填空题 13.6114.2i 15.1i + 16.答案:2217518. 答案:B ∵⎩⎨⎧≠=+-0y 1y )2x (22, 设k =x y,则k 为过圆(x -2)2 + y 2 = 1上点及原点 的直线斜率,作图如下, k≤3331=,又∵y≠0 ,∴k≠0.由对称性 选B .【帮你归纳】本题考查复数的概念,以及转化与化归的数学思维能力,利用复数与解析几何、平面几何之间的关系求解.虚数一词又强调y≠0,这一易错点.【误区警示】本题属于基础题,每步细心计算是求解本题的关键,否则将会遭遇“千里之堤,溃于蚁穴”之尴尬. 19.解:i a a a i z z 221)(2+++=+=ωi a 3232+=⇒=⇒ω523||=⇒ω20.解:依题意21z z +为实数,可得。

相关文档
最新文档