小升初奥数练习题【5篇】
小升初奥数题练习及答案

小升初奥数题练习及答案小升初奥数题是许多学生在准备进入初中阶段时需要面对的挑战。
奥数题往往需要学生具备较强的逻辑思维和数学能力。
以下是一些练习题及答案,供学生练习使用。
# 练习题1. 数列题:一个数列的前四项是 2, 4, 6, 8。
请问第10项是多少?2. 几何题:一个圆的半径是 10 厘米,求圆的面积。
3. 逻辑推理题:有五个盒子,分别标记为A、B、C、D和E。
其中只有一个盒子装有金子。
A说:“金子不在我这里。
”B说:“金子不在C 或D这里。
”C说:“金子不在E这里。
”D说:“金子不在B这里。
”E说:“金子不在C这里。
”如果只有一个人说真话,金子在哪个盒子?4. 组合题:一个班级有15名学生,需要选出5名学生代表班级参加竞赛。
有多少种不同的选法?5. 应用题:一个水池有一个进水管,一个出水管。
单独打开进水管,注满水池需要6小时。
单独打开出水管,排空水池需要9小时。
如果同时打开进水管和出水管,需要多少时间才能注满水池?# 答案1. 数列题答案:这是一个等差数列,公差为2。
第10项可以通过公式\( a_n = a_1 + (n - 1)d \) 计算,其中 \( a_1 = 2 \),\( d = 2\),\( n = 10 \)。
所以第10项是 \( 2 + (10 - 1) \times 2 = 2 + 18 = 20 \)。
2. 几何题答案:圆的面积公式是 \( A = \pi r^2 \),其中 \( r = 10 \) 厘米。
所以面积是 \( A = \pi \times 10^2 = 100\pi \) 平方厘米。
3. 逻辑推理题答案:如果只有一个人说了真话,那么其他四个人都在说谎。
根据B、C和E的陈述,金子不在C或D,也不在E,这意味着金子只能在A或B中。
但D说金子不在B,这与B的陈述矛盾,因为如果B说的是真话,那么金子就不在C或D,这意味着金子在A。
所以,金子在A盒子。
4. 组合题答案:从15名学生中选出5名的组合数可以用组合公式\( C(n, k) = \frac{n!}{k!(n-k)!} \) 计算,其中 \( n = 15 \),\( k = 5 \)。
小升初奥数题《逻辑推理》及答案

小升初奥数题《逻辑推理》及答案水滴石穿,绳锯木断。
备考也需要一点点积累才能到达好的效果。
店铺为您提供小升初奥数题《逻辑推理》及答案(精选5篇),通过做题,能够巩固所学知识并灵活运用,考试时会更得心应手。
快来练习吧。
小升初奥数题《逻辑推理》及答案篇1逻辑推理:(高等难度)数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
逻辑推理答案:逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。
解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。
②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。
综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。
小升初奥数题《逻辑推理》及答案篇2奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
奇偶性应用答案:要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
小升初奥赛题试题及答案

小升初奥赛题试题及答案【试题一】题目:小华和小明共有图书40本,小华的图书是小明的3倍。
请问小华和小明各有多少本图书?答案:设小明有x本图书,那么小华有3x本图书。
根据题意,我们可以得到方程:x + 3x = 40。
合并同类项得到4x = 40。
接下来我们求解x,即x = 40 / 4 = 10。
所以小明有10本图书,而小华有3倍于小明的图书,即3 * 10 = 30本图书。
【试题二】题目:一个长方形的长是宽的2倍,如果长和宽都增加5米,那么面积增加了175平方米。
求原来长方形的长和宽。
答案:设原来长方形的宽为w米,那么长为2w米。
根据题意,增加后的长为2w + 5米,宽为w + 5米。
增加后的面积为(2w + 5)(w + 5)平方米。
根据题意,面积增加了175平方米,所以我们可以得到方程:(2w + 5)(w + 5) - 2w * w = 175。
展开方程得到2w^2 + 15w + 25 - 2w^2 = 175。
简化方程得到15w = 150,解得w = 10米。
所以原来长方形的宽为10米,长为2 * 10 = 20米。
【试题三】题目:一个数的1/2与另一个数的1/3相等,这两个数的和是85。
求这两个数。
答案:设第一个数为x,第二个数为y。
根据题意,我们可以得到两个方程:1/2 * x = 1/3 * y 和 x + y = 85。
从第一个方程中我们可以得到3x = 2y。
现在我们有两个方程:1) 3x = 2y2) x + y = 85我们可以将第一个方程变形为x = (2/3)y,然后将其代入第二个方程中,得到(2/3)y + y = 85。
合并同类项得到(5/3)y = 85。
解得y = 85 * (3/5) = 51。
将y的值代入第二个方程中,得到x + 51 = 85,解得x = 34。
所以第一个数是34,第二个数是51。
【试题四】题目:一辆汽车以每小时60公里的速度从甲地开往乙地,另一辆汽车以每小时40公里的速度从乙地开往甲地。
小升初六年级数学奥数培优模拟试题及答案(5份)暑假寒假作业辅导

小升初奥数培优模拟试题(一)一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.小升初奥数培优模拟试题答案一、填空题:1.(1)3.(6个)设原两位数为10a+b,则交换个位与十位以后,新两位数为10b+a,两者之差为(10a+b)-(10b+a)=9(a-b)=27,即a-b=3,a、b为一位自然数,即96,85,74,63,52,41满足条件.4.(99)5.(二分之一)把原图中靠左边的半圆换成面积与它相等的右半部的半圆,得右图,图6.(60千米/时)两船相向而行,2小时相遇.两船速度和210÷2=105(千米/时);两船同向行,14小时甲赶上乙,所以甲船速-乙船速=210÷14=15(千米/时),由和差问题可得甲:(105+15)÷2=60(千米/时).乙:60-15=45(千米/时).7.11+12+13+14+15+16+17=98.若中心圈内的数用a表示,因三条线的总和中每个数字出现一次,只有a多用3两次,所以98+2a应是3的倍数,a=11,12,…,17代到98+2a中去试,得到a=11,14,17时,98+2a是3的倍数.(1)当a=11时98+2a=120,120÷3=40(2)当a=14时98+2a=126,126÷3=42(3)当a=17时98+2a=132,132÷3=44相应的解见上图.8.(61)甲、乙的平均体重比丙的体重多3千克,即甲与乙的体重比两个丙的体重多3×2=6(千克),已知甲比丙重3千克,得乙比丙多6-3=3千克.又丙的体重+差的平均=三人的平均体重,所以丙的体重=60-(3×2)÷3=58(千克),乙的体重=58+3=61(千克).9.(5)满足条件的最小整数是5,然后,累加3与4的最小公倍数,就得所有满足这个条件的整数,5,17,29,41,…,这一列数中的任何两个的差都是12的倍数,所以它们除以12的余数都相等即都等于5.10.(不能)若使七枚硬币全部反面朝上,七枚硬币被翻动的次数总和应为七个奇数之和,但是又由每次翻动七枚中的六枚硬币,所以无论经过多少次翻动,次数总和仍为若干个偶数之和,所以题目中的要求无法实现。
小升初奥数精选练习题及答案

小升初奥数精选练习题及答案1、甲乙丙丁戊五位同学进行乒乓球比赛,规定每两人都要赛一场,到现在为止,甲赛了4场,乙赛了3场,丙赛了2场,丁赛了1场,那么戊赛了()场。
2、一个圆,当沿直径截去它的一半之后,剩下部分的周长比原来少了3.42CM,那么原来这个圆的面积是()cm²。
3、一份稿件,甲乙合打4小时完成,乙丙合打5小时完成,甲丙合打6小时完成。
如果甲乙丙三人同时打全部稿件,需要几小时?4、有两个棱长总和相等的长方体和正方体,它们的体积()A.相等B.长方体大C.正方体大5、如果把数字5写在一个数的末尾,这个数就增加了383。
原来的这个数是多少?6、两个数相除商是3,余数是10,若被除数、除数、商和余数的和是143,被除数是(),除数是()7、判断:10名同学进行乒乓球比赛,如果每2名同学之间都进行一场比赛,那么每个人都要赛9场。
()8、被除数、除数和余数的和是1540,已知除数是20,余数是10,那么商是()。
9、某钟表的分针长9cm,如果分针针尖走过12πcm,那么分针扫过的面积为()。
10、甲乙两人骑自行车同时从西镇出发到东镇,甲每小时行15km,乙每小时行10km,甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试问两镇的距离?11、李叔叔到苹果产地去收购苹果,收购价为每千克0.6元,从产地到水果店距离300千米,运费为每吨每千米1.05元,其他费用为每吨30元,在批发及运输、售出的过程中,苹果的损耗是10%,李叔叔要达到20%的利润,每千克苹果应定价为多少元?12、灌满—个水池,只打开A管要8小时,只打开B管要10小时,只打开C管要15小时.开始时只打开A管和B管,中途关掉A管和B管,然后打开C管,前后共用了10小时15分灌满了水池.那么C管打开了几小时?13、一只羊被7m长的绳子拴在正五边形建筑的一个顶点上,建筑物边长3m,旁边是草地,他能吃到多少草?π取314、甲乙两数的比是4:3,最大公因数与最小公倍数的和是390,甲数是()。
小升初常考奥数练习题及答案【三篇】

小升初常考奥数练习题及答案【三篇】1和差问题已知两数的和与差,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4 2差比问题【口诀】我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
例:甲数比乙数大12且甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。
3年龄问题【口诀】岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
4和比问题已知整体,求部分。
【口诀】家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12 5鸡兔同笼问题【口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
小升初奥数试题及答案解析

【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
下⾯是⽆忧考为⼤家带来的“⼩升初奥数试题及答案解析”,欢迎⼤家阅读。
【篇⼀】 【篇⼀】 1.王刚、李强和⼩莉、⼩芳是两对夫妻,四⼈的年龄和是132岁。
丈夫都⽐⾃⼰的妻⼦⼤5岁,李强⽐⼩芳⼤6岁。
⼩莉多少岁? 解答: 若妻⼦都增加5岁,那么四⼈的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。
由条件可以知道,李强的妻⼦是⼩莉,王刚的妻⼦是⼩芳。
李强⽐⼩芳⼤6岁,王刚⽐⼩芳⼤5岁,所以李强⽐王刚⼤1岁,因此李强的年龄为(71+1)÷2=36岁,⼩莉是36-5=31岁。
2.第⼀个图形由4根⽕柴棍组成,第⼆个图形由12根⽕柴棍组成,第三个图形由24根⽕柴棍组成,依此类推,第100个图形由多少根⽕柴棍组成? 解答: 横向与纵向的⽕柴棍根数⼀样。
4=2×1×2,12=2×2×3,24=2×3×4,依此类推,第100个图形共有2×100×101=20200根。
【篇⼆】 【篇⼆】 1.将15拆成若⼲个互不相同的⾃然数之和,要求这些⾃然数的乘积尽量⼤,那么积是多少? 解答: 15=2+3+4+6,2×3×4×6=144 2.将各位数字都不⼤于5的⾮0⾃然数,从⼩到⼤排列,第2010个数是多少? 解答: 实际就是将六进制的数从⼩到⼤排列。
将2010转化为六进制。
(2010)10=(13150)6 第2010个数就是13150。
3.⼀条马路长200⽶,在马路两侧每隔4⽶种⼀棵树,则⼀共要种多少棵树? 解答: 200÷4+1=51(棵)51×2=102(棵) 【篇三】【篇三】 1.中午12时,校准A、B、C三钟。
小升初奥数题5篇

小升初奥数题5篇1.小升初奥数题篇一1、765×213÷27+765×327÷272、(101+103+......+199)-(90+92+ (188)3、9×17+91÷17-5×17+45÷174、(9999+9997+......+9001)-(1+3+ (999)5、9039030÷430436、(873×477-198)÷(476×874+199)7、12+16+111112+20+30+428、99999×22222+33333×333349、1000+999-998+997+996-995+……+106+105-104+103+102-10110、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.小升初奥数题篇二老师从写有1~13的13张卡片中抽出9张,分别贴在9位同学的额头上。
大家能看到其他8人的数但看不到自己的数。
(9位同学都诚实而且聪明,且卡片6、9不能颠倒)老师问:现在知道自己的数的约数个数的同学请举手。
有两人举手。
手放下之后,有三个人有如下的对话:甲:我知道我是多少了。
乙:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。
丙:我的数比乙的小2,比甲的大1。
那么,没有被抽出的四张牌上数的和是?【答案】首先,列举1~13所有数约数个数。
每个人只能看到另外8个人头上的数,而要看到8个数就确定自己的数的约数个数,只能是吧约数个数为1、3、4、6的都看到了。
所以没抽出的四张牌必定约数个数为2个,都是质数。
也就是举手的两名同学头上的数。
甲说:我知道我是多少了。
所以甲头上的数不是质数。
乙说:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数练习题【5篇】
1.小升初奥数练习题
1、用一个小杯子向空瓶倒水,如果倒5杯水,连瓶共重50克;如果倒进7杯水(水没溢出来),连瓶共重66克,求一杯水和空瓶各重多少克?
解答:杯子从加入5杯水,到加7杯水,多加入了2杯水,总重量就增加了66-50=16克,所以可以求出1杯水的重量是16÷2=8(克),由此可以算出5杯水重:5×8=40(克),那么空瓶重:50-40=10(克)
2、四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?
解答:因为第一根和第四根只有一头打结,第二根和第三根有两头打结,所以一共要用去6个1厘米。
4×8-6=26(厘米)
3、昨天是11月3日,今天是星期三,那么11月29日是星期几?
解答:昨天是星期二,29-3=26(天)。
26÷7=3……5,星期二再过5天是星期日,所以11月29日是星期日。
2.小升初奥数练习题
1、从9开始,把9的倍数依次写下去,一直写到999,成了一个很大的数:91827364554637281……990999,这个
数一共有多少位?
解答:999是9的111倍。
9的倍数中,一位数的只有一个,两位数从9×2=18到9×11=99,共10个,其它都是三位数,共111-1-10=100个。
1×1+2×10+3×100=321(位)
2、两个四位数的差是2009,那么这两个四位数的和是多少?最小是多少?
解答:就是9999-2009=7990,9999+7990=17989。
最小就是2009+1000=3009,3009+1000=4009。
3、甲、乙两地相距346千米,某车从早上7点出发,以每小时60千米的速度从甲地出发去乙地。
在中途丙地修车用了18分钟,修车以后用每小时80千米的速度行驶,结果在中午12点到达乙地。
那么丙、乙之间的距离是多少千米?
解答:去掉修车时间,共用12-7-18÷60=4.7小时。
如果车子始终以每小时60千米的速度走,那么可以行驶4。
7×60=282千米,所以以每小时80千米速度走的时间为(346-282)÷(80-60)=3.2小时,所以丙乙两地之间距离为3.2×80=256千米。
3.小升初奥数练习题
1、一艘轮船往返A、B两地,去时顺流每小时行36千米,返回时逆流每小时行24千米,往返一次共用15小时,
A、B两地相距多少千米?
2、甲、乙两人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙,若甲让乙先跑2秒钟,则甲跑4秒钟就可
追上乙。
问:甲乙两人的速度各是多少?
3、甲、乙、丙三人同时从A地跑向B地,当甲跑到B 时,乙离B还有35米,丙离B还有68米,当乙跑到B时,丙离B还有40米。
A、B两地相距多少米?
4、甲乙两人分别从A、B两地同时出发相向而行。
出发时他们的速1度之比是3:2,相遇后,甲的速度提高20%,乙的’速度提高3,这样当甲到达B地时,乙离A地还有41千米,那么A、B两地相距多少千米?
5、甲、乙分别由A、B两地同时出发,甲、乙两人的步行速度之比是3:2,若他们相向而行,则1小时后相遇,若同向而行,则甲需要多少时间才能追上乙?
4.小升初奥数练习题
1、一辆汽车以一定的速度从A地驶向B地,如果汽车每小时比原来5多行19千米,那么所用时间只是原来的,如果每小时比原来少6行19千米,那么所用时间要比原来多1。
2小时,求AB两地间的距离。
2、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高1/6,于是提前1小时40分到达北京。
问:北京、上海两市间的路程是多少千米?
3、从A城到B城的公路全长250千米,其中平路占了5,上坡路和下坡路里程之比是2:3。
一辆汽车从A城驶向B城共用了5小时,已知这辆汽车行上坡路的速度比平路慢20%,
行下坡路的速度比平路快20%。
照这样计算汽车从B城返回A城要行多少时间?
4、甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?
5、一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
5.小升初奥数练习题
1、【中难度】题目:甲、乙二人分别从相距300千米的两地同时出发相向而行,甲每小时行35千米,经过5小时相遇,问:乙的速度是多少?
解答:甲乙5个小时路程和是300千米,相遇时间是5小时,所以二人的速度和是300÷5=60千米/时,乙的速度是60-35=25千米/时。
2、【中难度】甲、乙两列火车同时从两地相向开出,甲车每小时行50千米,乙车每小时行60千米。
两车相遇时,甲车正好走了300千米,两地相距多少千米?
答【分析】相遇时甲走了300千米,所以甲走了300÷50=6时,这6时正好是甲、乙两车的相遇时间,两地的距离(50+60)×6=660千米。
3、【中难度】甲、乙两列火车同时从相距380千米的两地相向开出,甲车每小时行50千米,乙车每小时行60千米。
乙车比甲车晚出发1小时,乙车出发后,甲、乙两车几小时
相遇?
解答:乙车晚出发1小时,则乙车出发时甲已经行驶了50×1=50千米,此时甲、乙两车的距离是380-50=330千米,所以乙车出发后,相遇时间为330÷(50+60)=3小时。
小升初奥数练习题【5篇】。