小升初奥数题集锦及答案(全面)
小升初奥数题及答案(三篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩升初奥数题及答案(三篇)》相关资料,希望帮助到您。
⼩升初奥数题及答案篇⼀ 1、⼀个数除以7所得的余数和商相同,并且各个数位上的数字和最⼩,这个数是_______。
2、⼀项⼯程,预计15个⼯⼈每天做4个⼩时,18天可以完成。
为了赶⼯期,增加3⼈并且每天⼯作时间增加1⼩时,可以提前_______天完⼯。
3、甲、⼄两⼈背诵英语单词,甲⽐⼄每天多背8个,⼄因⽣病,中途停⽌10天。
40天后,⼄背的单词正好是甲的⼀半,甲背单词________个。
4、在⼀个两位数的两个数字之间加上⼀个0,所得的新数是原数的9倍,原数是。
5、买电影票,5元、8元、12元⼀张的⼀共150张,⽤去1140元,其中5元和8元的张数相等,5元的电影票有。
答案: 1、40 2、6 3、960 4、45 5、60⼩升初奥数题及答案篇⼆ 1、有2013名学⽣参加竞赛,共有20道竞赛题,每个学⽣有基础分25分,此外,答对⼀题得3分,不答题得1分,答错1题扣1分。
那么,所有参赛学⽣的得分总和是奇数还是偶数? 2、有n个同样⼤⼩的正⽅体,将它们堆成⼀个长⽅体,这个长⽅体的底⾯就是原正⽅体的底⾯。
如果这么长⽅体的表⾯积是3096平⽅厘⽶,当从这个长⽅体的顶部拿去⼀个正⽅体后,新的长⽅体的表⾯积⽐原来的表⾯积减少144平⽅厘⽶,那么n等于多少? 答案: 1、每个学⽣的基础分为奇数,⽆论题⽬的答题情况,每⼀题都将是总分加上或减去⼀个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学⽣的总分肯定是奇数,⽽学⽣有2013名,奇数和奇数的和还是奇数,所以所有学⽣的分数⼀定是奇数。
2、正⽅体⼀个⾯的⾯积是144÷4=36平⽅厘⽶,根据长⽅体的表⾯积可得: 36×(4n+2)=3096 144n+72=3096 n=21 答:n是21。
小升初奥数题必考100道及答案(完整版)

小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初奥数题大全100道附答案(完整版)

小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
小升初数学常考奥数题100道附答案(完整版)

小升初数学常考奥数题100道附答案(完整版)1. 计算:1+2-3-4+5+6-7-8+9+10-11-12+...+2017+2018-2019-2020答案:-2020思路:每4 个数的计算结果为-4,2020÷4 = 505,所以结果为-4×505 = -20202. 某数除以4 余3,除以5 余2,除以6 余1,这个数最小是多少?答案:57思路:满足除以4 余3 的数有3、7、11、15、19...;满足除以5 余2 的数有2、7、12、17、22...;满足除以6 余1 的数有1、7、13、19、25...。
所以这个数最小是573. 鸡兔同笼,鸡比兔多15 只,共有脚180 只,鸡兔各有多少只?答案:鸡45 只,兔30 只思路:设兔有x 只,则鸡有x + 15 只。
4x + 2×(x + 15) = 180,解得x = 30,鸡有45 只4. 一个数减去7 的差再乘以7,所得的结果与它减去13 的差再乘以13 的结果相同,这个数是多少?答案:20思路:设这个数为x,(x - 7)×7 = (x - 13)×13,解得x = 205. 甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次在离 B 地55 千米处相遇,A、B 两地相距多少千米?答案:170 千米思路:第一次相遇时,甲走了75 千米,两人共走了一个全程;第二次相遇时,两人共走了三个全程,所以甲走了75×3 = 225 千米,此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米6. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个相同的长方形的面积,一个面的面积为56÷4 = 14 平方厘米,长方形的长(即正方体的棱长)为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米7. 有三根铁丝,一根长54 米,一根长72 米,一根长36 米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?答案:18 米思路:求54、72、36 的最大公因数,为188. 一个最简分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是2/3,原来的分数是多少?答案:21/29思路:设分子为x,则分母为50 - x,(x - 5) / (50 - x - 5) = 2 / 3,解得x = 21,分数为21/299. 小明买了3 支铅笔和2 支钢笔,共用去22 元,钢笔的单价是铅笔的6 倍,钢笔和铅笔的单价各是多少元?答案:钢笔12 元,铅笔2 元思路:设铅笔单价为x 元,则钢笔单价为6x 元,3x + 2×6x = 22,解得x = 2,钢笔单价12 元10. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩16 千克,这桶油有多少千克?答案:60 千克思路:设这桶油有x 千克,x - 1/5x - 1/5x - 20 = 16,解得x = 6011. 某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第三车间少40 人,三个车间共有多少人?答案:560 人思路:设总人数为x 人,第三车间人数为3/7×(3/4x + x),则3/7×(3/4x + x) - 1/4x = 40,解得x = 56012. 学校组织数学竞赛,按参赛人数的1/5 颁奖,分设一、二、三等奖,已知获二等奖的人数比一等奖多20 人,且获二等奖的人数是三等奖的4/5,一共有多少人参赛?答案:1500 人思路:设参赛总人数为x 人,二等奖人数为1/5x×4/9,一等奖人数为1/5x×1/9,1/5x×4/9 - 1/5x×1/9 = 20,解得x = 150013. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:9 块思路:设原来糖果总数为x 块,45%x = 25%(x + 16),解得x = 20,奶糖有45%×20 = 9 块14. 修一条路,已修的和未修的长度比是1∶3,再修300 米后,已修的和未修的长度比是1∶2,这条路全长多少米?答案:3600 米思路:设已修的长度为x 米,未修的长度为3x 米,(x + 300) / (3x - 300) = 1 / 2,解得x = 900,全长4x = 3600 米15. 甲、乙两仓库存货吨数比为4∶3,如果从甲库中取出8 吨放到乙库中,则甲、乙两仓库存货吨数比为4∶5,两仓库原存货总吨数是多少吨?答案:63 吨思路:设甲仓库原存货4x 吨,乙仓库原存货3x 吨,(4x - 8) / (3x + 8) = 4 / 5,解得x = 9,总吨数7x = 63 吨16. 在一个底面半径是10 厘米的圆柱形杯中装水,在水中放一底面半径为5 厘米的圆锥形铝锤,使铝锤全部被水淹没,当铝锤从杯中取出后,杯里水面下降了 5 毫米,求铝锤的高是多少厘米?答案:6 厘米思路:下降的水的体积等于圆锥形铝锤的体积,3.14×10×10×0.5 = 1/3×3.14×5×5×h,解得h = 6 厘米17. 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1 小时到达,如果以原速行驶120 千米后,再将速度提高25%,则可提前40 分钟到达,那么甲、乙两地相距多少千米?答案:270 千米思路:设原速度为v,原时间为t,vt = 1.2v×(t - 1),解得t = 6 小时。
小升初典型奥数题及详细答案

小升初典型奥数题及详细答案1、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?【答案解析】:(200+430)÷42×25-200=375-200=175米2、某次数学测验共20题,做对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?【答案解析】:20-(20×5-76)÷(5+1)=16(道)3、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人【答案解析】:设男生有X人,则女生有(45r)。
2∕5x+l∕4(45-χ)=152∕5x+4/45-4∕x=15x=25女生:45-25=20(人)4、一项工作,甲单独做需15天完成,乙单独做需12天完成。
这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?【答案解析】:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。
根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:【答案解析】:(1/15+1/12)(X-6)+1/15X6=1解地X=IO他整个行5、本骑车前往一座城市,去时的速度为X,回来时的速度为yo程的平均速度是多少?(答案是2xy∕x+y,为什么?)【答案解析】:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y那么平均速度为2S∕(S/X+S/Y)=2/(1∕X+1∕Y)=2XY∕(X+Y)6、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜男女生各优胜的共42人,求男女生参加竞赛的各多少人?方程:【答案解析】:设男生参赛有X人x+(x+28)×3/4=42解得x=1212+28=40算术:(42-28)/(1+3/4)=21X4/7=12(八)12+28=40(人)答:女生参赛有40人。
7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几?【答案解析】:解:把1440分解质因数:1440=12×12×10=2×2×3×2×2×3×2×5=(2×2×2)X(3×3)×(2×2×5)如果甲、乙二数分别是8、9,丙数是20,贝U:8×9=72,20×3+12=72正符合题中条件。
(完整)小升初奥数题及答案(全面)

使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
小升初奥数试题及参考答案

小升初奥数试题及参考答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3参考答案:C2. 一个数的1/5加上它的1/3,求和的结果是这个数的几分之几?A. 1/15B. 8/15C. 1/3D. 3/5参考答案:B3. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,其表面积是多少平方厘米?A. 170B. 270C. 340D. 420参考答案:D二、填空题4. 一个数的3/4加上它的1/2,和是这个数的______。
参考答案:7/85. 一本书的价格是35元,如果打8折出售,那么现价是______元。
参考答案:286. 一个正方形的边长增加10%,那么它的面积增加了多少百分比?参考答案:21%三、解答题7. 一块长方形草地的长是40米,宽是30米。
现在要在其四周围上篱笆,问篱笆的总长度是多少米?参考答案:(40+30)×2 = 140米8. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?参考答案:设工作总量为1,小明每小时完成1/4,小红每小时完成1/6的工作量。
合作时,他们每小时完成的工作量是1/4 + 1/6 =5/12。
所以,他们合作完成工作需要的时间为1 ÷ (5/12) = 2.4小时。
9. 一个班级有48名学生,其中2/3是男生,剩下的是女生。
问这个班级有多少名女生?参考答案:48 × (1 - 2/3) = 48 × 1/3 = 16名女生。
四、应用题10. 小华有一些贴纸,她给了小明一半的贴纸后,自己还剩下20张。
请问小华原来有多少张贴纸?参考答案:设小华原来有x张贴纸,根据题意,x/2 = 20,解得x = 40张。
11. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
已知原定速度是60公里/小时,求两地之间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数题集锦及答案(全面)1、某市小学数学竞赛,不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍。
求参赛的总人数。
解:设不低于80分的人数为4x+2,80分以下的人数为x,及格的人数为4x+24,不及格的人数为x/6.因为总人数为不低于80分的人数加上80分以下的人数,即4x+2+x=5x+2,所以总人数为5x+2.又因为及格的人数比不低于80分的人数多22人,即4x+24=5x+2+22,解得x=44.所以总人数为5x+2=222.2、一张电影票原价为x元,根据题意可列出方程:(x-3)*1.5=1.2x,解得x=15,所以一张电影票原价为15元。
3、设乙的存款为y元,则甲的存款为9600-y元。
根据题意可列出方程:9600*0.6-120=(9600-y)*0.6,解得y=3600,所以乙的存款为3600元。
4、设原混合糖中有奶糖x颗,巧克力糖y颗。
根据题意可列出方程组:y+10=0.6(x+10+y)y+30=0.75(x+10+y)解得x=60,y=90,所以原混合糖中有60颗奶糖,90颗巧克力糖。
5、设XXX原有玻璃球为x个,则XXX原有玻璃球为3x/4,根据题意可列出方程:x/6=(3x/4+2)-x,解得x=24,所以XXX原有玻璃球24个。
6、设丙帮助甲的时间为x小时,帮助乙的时间为y小时,则可列出方程组:10/x+12/y=110/(x+y)+12/(x+y)+15/(x+y)=1解得x=20,y=30,所以丙帮助甲10小时,帮助乙12小时。
7、设全部工作需要的时间为x天,则可列出方程组:1/72)+(1/72+1/48)*2+(1/72+1/48+1/28)*4/3=1/31/72)+(1/72+1/48)*3+(1/72+1/48+1/28)*4/3+8=(5/6)*x1/72+1/48+1/28)*2/3=(1/72+1/48+1/28+1/x)*1/6解得x=72,所以余下的工作由丙单独完成需要36天。
8、XXX买进股票的总价为10.65*3000=元,卖出股票的总价为13.86*3000=元。
XXX需要交的印花税和佣金总额为*1%+*2%+*1%+*2%=2556.6元。
XXX赚的总钱数为--2556.6=7093.4元。
9、第一次购书卖出的总价为2.8*100=280元,第二次购书卖出的总价为2.8+0.5=3.3元,共售出100+10=110本书。
其中4/5的书以定价的5折售完,所得的总价为3.3*110*4/5*0.5=363元。
老板第二次售书赚了363-150=213元。
11、一项工程原计划由40人在15天内完成。
如果要提前3天完成,需要增加多少人?假设每个人的工作效率不变,则原来需要的总工作量为40人 × 15天 = 600人天。
现在要在12天内完成,则需要的总工作量为40人×12天= 480人天。
因此,需要增加的人数为:480人天 ÷ 15天 × 40人 - 40人 = 32人12、仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。
仓库原有货物多少吨?设原来仓库有x吨货物,则运走的货物为2/9x吨,剩下的货物为7/9x吨。
根据题意,有:7/9x - 64 = 5/3 × 7/9x化XXX:x = 216因此,仓库原有货物216吨。
13、XXX原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,XXX共有学生多少人?设XXX原来体育达标人数为3x,未达标人数为5x,则有:3x + 60 = 9/11(5x + 60)化XXX:x = 110因此,XXX共有学生8x = 880人。
14、XXX、XXX、XXX三人做数学练题,XXX做的题数的一半等于XXX的1/3,等于XXX的1/8,而且XXX比XXX做了72道。
求小王、XXX、XXX各做多少道?设小王做的题数为x,则有:x/2 = (1/3)(2x + 72) = (1/8)(8x + 288)化XXX:x = 48因此,XXX做了48道题,XXX做了48 + 72 = 120道题,XXX做了2x + 72 = 168道题。
15、甲乙二人共同完成242个机器零件。
甲做一个零件要6分钟,乙做一个零件要5分钟。
完成这批零件时,两人各做了多少个零件?设甲、乙分别做了x、y个零件,则有:6x + 5y = 242x + y = (242/6 + 242/5) = 101解得:x = 56,y = 45因此,甲做了56个零件,乙做了45个零件。
16、某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3.求丙组男女人数之比。
设甲组共有10x人,乙组共有8x人,丙组共有7x人,则有:甲组男女人数分别为3y、y,则10x = 4y,即y = (5/2)x。
乙组男女人数分别为5z、3z,则8x = 8z,即z = x。
因为男女会员的人数之比是3:2,所以男女人数分别为3m、2m,则有:3m = 3y + 5z,即m = (15/4)x。
丙组男女人数分别为7n、7m - 7n,则有:7n/(7m - 7n) = 3/2解得:n/m = 3/5因此,丙组男女人数之比为3:5.19、XXX的爸爸经营一个水果店,按开始的定价,每卖出1千克水果,可获利0.2元。
后来XXX建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?设原来每千克水果的售价为x元,则每千克水果的成本为(x - 0.2)元。
降价后每千克水果的售价为(x - a)元,每千克水果的成本为(x - 0.2/a)元。
因为降价后每天的销量增加了1倍,所以有:x - a) × 2x = x × x解得:x = 2a因此,每千克水果降价a元。
根据题意,有:0.2/x = (0.2 - a)/(x - a) × 1.5化XXX:a = 0.1因此,每千克水果降价0.1元。
一、假设XXX总共做了2X道题,其中正确的题目数为X,错误的题目数为X/2.则根据题意可得:20×2X-6X=68化简得:34X=68解得:X=2因此,XXX总共做了6道题,其中正确的题目数为4道。
二、爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的总重量为150千克,超过了可免费携带行李的质量,需要另付行李费。
三人共付了4元。
如果这些行李让一个人带,那么除了免费部分,应另付行李费8元。
求每人可免费携带行李的质量。
设每人可免费携带的重量为x kg,则根据题意可得方程:150-3x)/4=(150-x)/8解得:x=30因此,每人可免费携带行李的质量为30千克。
三、一队少先队员乘船过河。
如果每艘船坐15人,还剩9人;如果每艘船坐18人,刚好剩余1只船。
求有多少只船?解法一:设船数为X,则根据题意可得方程:15X+9)/18=X-1化简得:3X=8解得:X=9因此,一共有9只船。
解法二:当每艘船坐18人时,共坐了8只船,剩余1只船。
因此,一共有9只船。
四、将自然数1-100排列,用长方形框出二行六个数,六个数和为432.问这六个数中最小的是几?六个数分别为46、47、48、96、97、98.因此,这六个数中最小的是46.五、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路。
一辆汽车从甲地驶到乙地用了8小时。
已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米。
泥土路长多少千米?设泥土路长为x千米。
则根据题意可得方程:(420-x)/60 + x/40 = 8解得:x=120因此,泥土路长120千米。
六、学校购买840本图书,分给高、中、低三个年级段。
高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。
三个年级段各分得多少本图书?设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本。
则根据题意可得方程:x+2x+3x-120=840解得:x=240因此,低年级段分得240本图书,高年级段分得480本图书,中年级段分得600本图书。
0.4x/(x+1000)=0.30.4x=0.3(x+1000)0.1x=300x=3000再加入y千克盐,则有盐0.4x+y千克,总重量x+y+1000千克,浓度为0.5,所以又可以列出方程:0.4x+y)/(x+y+1000)=0.50.4x+y=0.5(x+y+1000)0.1x-0.5y=5000.1(3000)-0.5y=500y=400答:原有盐水3000千克,再加入400千克盐。
40x)/(x+1)=30,解得x=3.设加入y千克盐,则有(1.2+y)/(4+y)=0.5,解得y=1.6.设所求为x,则有x(1+20%)=54,解得x=45.设原有溶液为x千克,加入y千克盐后,浓度变为50%。
由题意得溶质为40%x,则有40%x/(x+5)=30%,解得x=15千克,溶质有6千克。
加入y千克盐后,有(6+y)/(15+5+y)=50%,解得y=8千克,故再加入8千克盐,浓度变为50%。
某人买了x支红钢笔,30支蓝钢笔,付款比原来节省了18%。
设红钢笔原价为5元,蓝钢笔原价为9元,则有(5x+30*9)*(1-18%)=5x*0.85+30*9*0.8,解得x=36.设甲、乙、丙原来各有a、b、c元。
乙的话表明甲钱是乙钱的6倍,丙的钱不变,甲乙仍有钱100元。
丙的话表明c=75.又因为甲乙钱和多于70,所以甲<=10.设乙=75,甲=10,丙=100-10-75=15,符合条件,所以三人原来各有10、75、15元。
设甲种贷款金额为x万元,则乙种贷款金额为(30-x)万元。
列式得0.12x+0.14(30-x)=4,解得x=10,所以甲种贷款金额为10万元,乙种贷款金额为20万元。
设甲种书每本定价为x元,则乙种书每本定价为1.5元。
设甲种书有100a本,乙种书有60a/5=12a本,则有10ax+0.9*12a*1.5=2*(12a*1.5),解得x=1.8,所以甲种书每本定价为1.8元。
甲种书购买了100a本,乙种书购买了12a本,且10ax+0.9*12a*1.5=2*(12a*1.5)。
甲乙两人的总钱数比例为20:9,册数比例为5:3,单价比例为4:3.优惠前,甲种每本的价格为1.5×4/3=2元。
现在设甲买了x本书,那么乙买了3/5x本书,且x>100.乙共付了3/5x*1.5=0.9x元,甲共付了0.9x*2=1.8x元。