高考物理练习题
高考物理《质点的直线运动》真题练习含答案

高考物理《质点的直线运动》真题练习含答案1.[2024·吉林卷](多选)一足够长木板置于水平地面上,二者间的动摩擦因数为μ.t =0时,木板在水平恒力作用下,由静止开始向右运动.某时刻,一小物块以与木板等大、反向的速度从右端滑上木板.已知t =0到t =4t 0的时间内,木板速度v 随时间t 变化的图像如图所示,其中g 为重力加速度大小.t =4t 0时刻,小物块和木板的速度相同.下列说法正确的是( )A .小物块在t =3t 0时刻滑上木板B .小物块和木板间的动摩擦因数为2μC .小物块与木板的质量比为3∶4D .t =4t 0之后小物块和木板一起做匀速运动答案:ABD解析:v t 图像的斜率的绝对值表示加速度的大小,可知t =3t 0时刻木板的加速度发生改变,故可知小物块在t =3t 0时刻滑上木板,故A 正确;设小物块和木板间动摩擦因数为μ0,根据题意结合图像可知物体开始滑上木板时的速度大小为v 0=32μgt 0,方向水平向左,物块在木板上滑动的加速度为a 0=μ0mg m =μ0g ,经过t 0时间与木板共速此时速度大小为v 共=12μgt 0,方向水平向右,故可得v 0μ0g +v 共μ0g =t 0,解得μ0=2μ,故B 正确;设木板质量为M ,物块质量为m ,根据图像可知物块未滑上木板时,木板的加速度为a =12μgt 0t 0 =12μg ,故可得F -μMg =Ma ,解得F =32μMg ,根据图像可知物块滑上木板后木板的加速度为a ′=12μgt 0-32μgt 0t 0 =-μg ,此时对木板由牛顿第二定律得F -μ()m +M g -μ0mg =Ma ′,解得m M =12 ,故C 错误;假设t =4t 0之后小物块和木板一起共速运动,对整体有F -μ()m +M g=32 μMg -32μMg =0,故可知此时整体处于平衡状态,假设成立,即t =4t 0之后小物块和木板一起做匀速运动,故D 正确.故选ABD.2.[2022·全国甲卷]长为l 的高速列车在平直轨道上正常行驶,速率为v 0,要通过前方一长为L 的隧道,当列车的任一部分处于隧道内时,列车速率都不允许超过v (v <v 0).已知列车加速和减速时加速度的大小分别为a 和2a ,则列车从减速开始至回到正常行驶速率v 0所用时间至少为( )A .v 0-v 2a +L +l vB .v 0-v a+L +2l v C .3(v 0-v )2a +L +l v D .3(v 0-v )a+L +2l v 答案:C解析:当列车恰好以速度v 匀速通过隧道时,从减速开始至回到原来正常行驶速度所用时间最短,列车减速过程所用时间t 1=v 0-v 2a,匀速通过隧道所用时间t 2=L +l v ,列车加速到原来速度v 0所用时间t 3=v 0-v a,所以列车从减速开始至回到正常行驶速率所用时间至少为t =t 1+t 2+t 3=3(v 0-v )2a+L +l v ,C 项正确. 3.[2024·浙江1月]杭州亚运会顺利举行,如图所示为运动会中的四个比赛场景.在下列研究中可将运动员视为质点的是( )A.研究甲图运动员的入水动作B .研究乙图运动员的空中转体姿态C .研究丙图运动员在百米比赛中的平均速度D .研究丁图运动员通过某个攀岩支点的动作答案:C解析:研究甲图运动员的入水动作时,运动员的身体各部位动作对所研究问题的影响不能够忽略,此时运动员不能够视为质点,A错误;研究乙图运动员的空中转体姿态时,运动员的身体各部位动作对所研究问题的影响不能够忽略,此时运动员不能够视为质点,B错误;研究丙图运动员在百米比赛中的平均速度时,运动员的身体各部位动作对所研究问题的影响能够忽略,此时运动员能够视为质点,C正确;研究丁图运动员通过某个攀岩支点的动作时,运动员的身体各部位动作对所研究问题的影响不能够忽略,此时运动员不能够视为质点,D 错误.4.[2021·湖北卷]2019年,我国运动员陈芋汐获得国际泳联世锦赛女子单人10米跳台冠军.某轮比赛中,陈芋汐在跳台上倒立静止,然后下落,前5 m完成技术动作,随后5 m 完成姿态调整.假设整个下落过程近似为自由落体运动,重力加速度大小取10 m/s2,则她用于姿态调整的时间约为()A.0.2 s B.0.4 sC.1.0 s D.1.4 s答案:B解析:运动员下落前5 m用时t1=2h1g=1 s,下落10 m用时t2=2h2g≈1.4 s,则她用于姿态调整的时间约为1.4 s-1 s=0.4 s,B正确.5.[2021·福建卷]一游客在武夷山九曲溪乘竹筏漂流,途经双乳峰附近的M点和玉女峰附近的N点,如图所示,已知该游客从M点漂流到N点的路程为5.4 km,用时1 h,M、N 间的直线距离为1.8 km,则从M点漂流到N点的过程中()A.该游客的位移大小为5.4 kmB.该游客的平均速率为5.4 m/sC.该游客的平均速度大小为0.5 m/sD.若以所乘竹筏为参考系,玉女峰的平均速度为0答案:C解析:位移指的是从M点漂流到N点的有向线段,故位移大小为1.8 km,故A错误;从M点漂流到N点的路程为5.4 km,用时1 h,则平均速率为v率=st=5.41km/h=1.5 m/s,故B错误;该游客的平均速度大小为v-=xt=1.81km/h=0.5 m/s,故C正确;以玉女峰为参考系,所乘竹筏的平均速度大小为0.5 m/s,若以所乘竹筏为参考系,玉女峰的平均速度大小也为0.5 m/s,故D错误.6.[2023·全国甲卷]一小车沿直线运动,从t=0开始由静止匀加速至t=t1时刻,此后做匀减速运动,到t=t2时刻速度降为零.在下列小车位移x与时间t的关系曲线中,可能正确的是()A BC D答案:D解析:xt图像的斜率表示速度,小车先做匀加速运动,因此速度变大即0~t1图像斜率变大,t1~t2做匀减速运动则图像的斜率变小,在t2时刻停止图像的斜率变为零.故选D.。
高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。
4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。
4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。
五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。
2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。
3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。
4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。
5. 请简述电阻、电容和电感的区别与联系。
答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。
2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。
高考物理《抛体运动》真题练习含答案

高考物理《抛体运动》真题练习含答案1.[2024·湖南省岳阳市学业水平模拟]下图中左图是葡萄牙足球明星——C 罗倒挂金钩进球的名场面,把这个过程简化为下图中右图的模型,足球被踢飞时速度沿水平方向,距地面的高度h 为1.8 m ,若足球落地前没有受到任何阻挡,且不计空气阻力.g 取10 m/s 2.则从踢飞足球开始计时到足球落地的时间为( )A .0.18 sB .0.8 sC .1.6 sD .0.6 s 答案:D解析:足球在竖直方向的分运动为自由落体运动,根据h =12 gt 2,从踢飞足球开始计时到足球落地的时间为t =0.6 s ,D 正确.2.[2024·贵州省遵义市质检]随着科技的进步,无人机在农业生产中的应用日益增多.如图所示,在进行种子播种试验时,无人机在水平地面上直线AO 正上方5 m 高处水平匀速飞行,需要将种子包(可视为质点)投放到正前方半径为0.8 m 的圆形区域.如果无人机在A 点正上方投放种子包,已知O 为区域圆心,AO =4 m ,重力加速度g 取10 m/s 2,忽略空气阻力,要使种子包落到圆形区域(含边界),则无人机的速度至少为( )A .2 m/sB .3.2 m/sC .4 m/sD .4.8 m/s 答案:B解析:种子做平抛运动h =12 gt 2,x OA -R =v min t ,无人机的速度至少为v min =3.2 m/s ,B正确.3.[2024·陕西省宝鸡市质检]2023年杭州亚运会上,宝鸡金台籍链球运动员王铮勇夺金牌为国争光.假设链球抛出后在空中的运动过程中可近似看作质点,不计空气阻力,若运动员先后三次以相同速率沿不同方向将链球抛出后的运动轨迹如图所示,则由图可知() A.链球三次落回地面的速度相同B.沿B轨迹运动的链球在空中运动时间最长C.沿C轨迹运动的链球通过轨迹最高点时的速度最大D.沿A轨迹运动的链球在相同时间内速度变化量最大答案:C解析:三次以相同速率沿不同方向将链球抛出,空气阻力不计,根据斜抛对称性,由于抛出角度不同,故落地后到地面的速度方向不同.落回到地面的速度不同,A错误;三次抛,由图可知三个物体的下落高度出竖直方向从最高点到落地过程做平抛运动,则有h=12gt2关系为h A>h B>h C,三次做平抛运动的时间关系为t A>t B>t C,根据对称性可知链球在空中运动时间为平抛运动时间的二倍,因此A轨迹时间最长,B错误;竖直方向v y=gt,C轨迹竖直方向速度最小,又因为抛出速率相同,因此C轨迹水平方向速度最大,斜抛运动水平方向速度不变,因此在最高点的速度最大,C正确;根据Δv=gt,三个物体在任意相同时间内的速度变化量一定相同,D错误.4.[2024·安徽省六安市质检]如图所示,以3 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为37°的斜面上,取重力加速度g=10 m/s2,sin 37°=0.6.则() A.物体完成这段飞行的时间是0.5 sB.物体落到斜面上时下落的竖直高度是1.8 mC.物体落到斜面上时水平位移的大小是0.9 mD.物体落到斜面上时的速度大小为5 m/s答案:D解析:物体做平抛运动,垂直地撞在倾角θ为37°的斜面上,在撞击点进行速度分解有v y =v 0tan θ =gt ,解得t =0.4 s ,A 错误;物体落到斜面上时下落的竖直高度是h =12 gt 2=0.8 m ,B 错误;物体落到斜面上时水平位移的大小是x =v 0t =1.2 m ,C 错误;物体落到斜面上时的速度大小为v =32+42 =5 m/s ,D 正确.5.[2024·广东省东莞市月考]在同一水平直线上的两位置分别沿同方向抛出两小球A 和B ,其运动轨迹如图所示,不计空气阻力,两球在空中P 点相遇,则( ) A .应先抛出A 球 B .应先抛出B 球C .相遇时A 球速率小于B 球速率D .抛出时A 球的初速度大于B 球的初速度 答案:D解析:由于相遇时A 、B 做平抛运动的竖直位移h 相同,由h =12 gt 2可知两球下落时间相同,两球应同时抛出,A 、B 错误;根据以上分析A 、B 做平抛运动的时间相同,但x A >x B ,由于水平方向做匀速直线运动,则v Ax >v Bx ,相遇时v =v 2x +(gt )2,则相遇时A 球速率大于B 球速率,C 错误,D 正确.6.[2024·四川省泸州市教学质量诊断]将一小球向右水平抛出并开始计时,不计空气阻力.设某时刻小球与抛出点的连线与水平方向的夹角为α,此时速度的方向与水平方向的夹角为β,下列有关图像中可能正确的是( )答案:D解析:依题意,小球做平抛运动,某时刻小球与抛出点的连线与水平方向的夹角为α,则有tan α=yx=gt2v0,此时速度的方向与水平方向的夹角为β,则有tan β=v yv x=gtv0,联立解得tan β=2tan α,可知tan β与tan α为正比关系,D正确.7.[2024·新课标卷]福建舰是我国自主设计建造的首艘弹射型航空母舰.借助配重小车可以进行弹射测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上.调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍.忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的()A.0.25倍B.0.5倍C.2倍D.4倍答案:C解析:C对.8.[2024·湖北省十堰市调研]环保人员在一次检查时发现,某厂的一根水平放置的排污管正在向厂外的河道中满口排出污水,如图所示.环保人员利用手上的卷尺测出这根管道的直径为d,管口中心距离河水水面的高度为h(h≫d),污水入河道处到排污管管口的水平距离为x.重力加速度大小为g.该管道在时间t内排出的污水体积为()A .πxtd 22g hB .12 πxtd 22gh C .14 πxtd 22g h D .18πxtd 22g h答案:D解析:根据平抛运动规律有x =v t 0,h =12 gt 20,而V =SL =π(d 2 )2×v t ,解得V =18 πxtd 2 2gh,D 正确. 9.[2024·重庆市期中考试]已知某标准乒乓球台台面长l ,球网高h .如图所示,在某次乒乓球比赛接球过程中,一中学生从己方台面边缘中点正上方距台面高H 处,将乒乓球水平垂直球网拍出,乒乓球能直接落到对方台面上,不计空气阻力,乒乓球可视为质点,重力加速度为g .求:(1)乒乓球从拍出到第一次落到对方台面上所经过的时间; (2)乒乓球拍出后瞬时的速度大小范围. 答案:(1)2H g (2)l 2g2(H -h )≤v ≤lg 2H解析:(1)设乒乓球从拍出到第一次落到对方台面上所经过的时间为t 1, 根据H =12 gt 21解得t 1=2H g(2)设乒乓球刚好落到对方台面边缘中点时,乒乓球拍出后瞬时速度大小为v 1,水平方向有l =v 1t 1解得v 1=lg 2H设乒乓球刚好擦网飞落到对方台面上时,乒乓球拍出后瞬时速度大小为v 2,从拍出到擦网历时t 2,竖直方向有H -h =12 gt 22水平方向有l2 =v 2t 2联立可得v 2=l2g2(H -h )乒乓球能直接落到对方台面上,故拍出后瞬时的速度大小v 满足v 2≤v ≤v 1 解得l 2g2(H -h )≤v ≤lg 2H10.如图所示,在水平地面上有一高h =4.2 m 的竖直墙,现将一小球以v 0=6 m/s 的速度,从离地面高为H =6 m 的A 点水平抛出,小球撞到墙上B 点时的速度与竖直墙成37°角,不计空气阻力和墙的厚度,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小球从A 到B 所用的时间t ; (2)抛出点A 到墙的水平距离s ;(3)若仍将小球从原位置沿原方向抛出,为使小球能越过竖直墙,小球抛出时的初速度大小应满足什么条件?答案:(1)0.8 s (2)4.8 m (3)v ′0≥8 m/s解析:(1)将B 点的速度分解到水平和竖直方向,有tan 37°=v 0v y竖直方向上是自由落体运动v y =gt 代入数据解得t =0.8 s(2)平抛运动在水平方向上是匀速直线运动,s =v 0t 代入数据解得s =4.8 m(3)恰好从墙上越过时,由平抛运动规律得H -h =12 gt ′2s =v ′0t ′ 解得v ′0=8 m/s.为使小球能越过竖直墙,抛出时的初速度应满足v ′0≥8 m/s.。
高考物理《机械能守恒定律》真题练习含答案

高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
高考物理《带电粒子在叠加场中的运动》真题练习含答案

高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。
高考物理总复习专题练习:振动和波

高考物理复习振动和波专题训练及其答案一、单项选择题1.如图所示为一列简谐横波t时刻的图象,已知波速为0.2m/s,以下说法正确的是()A.经过0.5s,质点a、b、c通过的路程均为75cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4Hz2.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P、Q 到平衡位置的距离相等。
关于P、Q两个质点,以下说法正确的是()A.P较Q先回到平衡位置B.再经14周期,两个质点到平衡位置的距离相等C.两个质点在任意时刻的动量相同D.两个质点在任意时刻的加速度相同3.图为一列简谐波在0=t时刻的波形图,此时质点Q正处于加速运动过程中,且质点N在1st=时第一次到达波峰。
则下列判断正确的是()A.此时质点P也处于加速运动过程B.该波沿x轴负方向传播C.从0=t时刻起,质点P比质点Q晚回到平衡位置D.在0=t时刻,质点N的振动速度大小为1m/s4.如图所示为一列机械波在t=0时刻传播的波形图,此刻图中P点速度沿y轴正方向,t=2s 时刻,图中Q点刚好在x轴上。
则下列说法正确的是()A.该机械波沿x轴正方向传播B.该机械波周期不可能是8s3C.无论周期是多少,当Q点在x轴时,P点一定离x轴最远D.P点振幅是10cm5.如图所示是沿x轴传播的一列简谐横波在t=0时刻的波形图,已知波的传播速度为16.0m/s,从此时起,图中的P质点比Q质点先经过平衡位置.那么下列说法中正确的是()A.这列波一定沿x轴正向传播B.这列波的频率是3.2HzC.t=0.25s时Q质点的速度和加速度都沿y轴负向D.t=0.25s时P质点的速度和加速度都沿y轴负向6.如图(a)所示为波源的振动图象(在t=0时刻之前波源就已经开始振动了),图(b)为xy 平面内沿x轴传播的简谐横波在t=0时刻的波形图象,t=0时刻P点向y轴负方向运动,关于图(b)上x=0.4m处的Q点的说法正确的是().A.t=0时,速度最大,其大小为0.1m/s,方向沿y轴正方向B.t=0到t=5s内,通过的路程为20cmC.t=2s时,运动到x=0.2m处D.t=3s时,加速度最大,且方向向下7.一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和c之间的距离是5m,以下说法正确的是()A.此列波的波长为2.5mB.此列波的频率为2HzC.此列波的波速为2.5m/sD.此列波的传播方向为沿x轴正方向传播8.P、Q、M是某弹性绳上的三个质点,沿绳建立x坐标轴。
高考物理《共点力的平衡》真题练习含答案

高考物理《共点力的平衡》真题练习含答案1.[2024·河北省百师联盟联考]如图所示,小球A和B套在光滑水平杆上,两球间连接轻弹簧,A、B分别通过长度相等的轻绳一起吊起质量为300 g的小球C,当两绳与水平杆的夹角为37°时恰好处于平衡状态,此时弹簧压缩了2 cm.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小取10 m/s2.弹簧始终在弹性限度内,弹簧的劲度系数为()A.200 N/m B.100 N/mC.50 N/m D.1 N/m答案:B解析:对小球C受力分析可知mg=2T sin 37°,对弹簧kx=T cos 37°,解得k=100 N/m,B正确.2.[2024·山东省威海市期末考试]如图所示,质量为0.1 kg的圆环套在固定的水平杆上,受到竖直面内与杆成53°角的拉力作用向右匀速运动,拉力大小为20 N.重力加速度取10 m/s2,sin 53°=0.8,cos 53°=0.6,则圆环与杆之间的动摩擦因数为()A.0.2 B.0.4C.0.6 D.0.8答案:D解析:对小球受力分析,受力如图所示.F N=F sin 53°-mg=15 N,F f=F cos 53°=μF N,解得μ=0.8,D正确.3.[2024·湖南省湖湘教育协作体联考](多选)某同学研究小虫子在一圆柱体上的运动,将一只小虫子置于水平放置的圆柱体顶部A,虫子在一圆柱体上缓缓爬行,圆柱体的半径比虫子大得多,θ=30°;多次观察发现:小虫子在B点上方时可以正常爬行,一旦由上往下过了B 点便会滑落,设最大静摩擦力等于滑动摩擦力,动摩擦因数为μ,虫子质量为m ,虫子在B 点时对圆柱体的压力为F N ,则( )A .μ=32 B .μ=3C .F N =33 mg D .F N =12mg 答案:BD解析:如图所示当小虫子位于B 点时刚好达到最大静摩擦力,F N =mg sin θ=12 mg ,f=μF N ,f =mg cos θ=32mg ,解得μ=3 ,B 、D 正确.4.[2024·浙江1月]如图所示,在同一竖直平面内,小球A 、B 上系有不可伸长的细线a 、b 、c 和d ,其中a 的上端悬挂于竖直固定的支架上,d 跨过左侧定滑轮、c 跨过右侧定滑轮分别与相同配重P 、Q 相连,调节左、右两侧定滑轮高度达到平衡.已知小球A 、B 和配重P 、Q 质量均为50 g ,细线c 、d 平行且与水平成θ=30°(不计摩擦),则细线a 、b 的拉力分别为( )A .2 N 1 N B. 2 N 0.5 N C .1 N 1 N D. 1 N 0.5 N 答案:D解析:由题意可知细线c 对A 的拉力和细线d 对B 的拉力大小相等、方向相反.对A 、B 整体分析可知细线a 的拉力大小为T a =(m A +m B )g =1 N ,设细线b 与水平方向夹角为α,分别对A 、B 分析有T b sin α+T c sin θ=m A g ,T b cos α=T c cos θ,解得T b =0.5 N .5.如图所示,某同学想进行一项挑战,他两手水平用力夹起一摞书保持静止,设手对书施加的水平压力F=220 N,若每本书的质量均为0.90 kg,手与书之间的动摩擦因数为μ1=0.4,书与书之间的动摩擦因数相同,均为μ2=0.3,设最大静摩擦力等于滑动摩擦力,g取10 m/s2.则该同学()A.最多能夹住9本书B.最多能夹住19本书C.最多能夹住14本书D.最多能夹住16本书答案:D解析:设最多能夹住n本书,由平衡条件得2μ1F=nmg,解得n=19本;以中间(n-2)本书为研究对象,由平衡条件得2μ2F=(n-2)mg,解得n=16,D正确.6.[2024·湖南永州市月考]如图所示,固定在水平地面上的物体A的左侧是圆弧面,右侧是倾角为θ的斜面.一根轻绳跨过物体A顶点处的小滑轮,绳两端分别系有质量为m1、m2的两个物体.若m1、m2都处于静止状态且m2所处位置与圆心的连线跟水平方向的夹角为θ,不计一切摩擦,则m1、m2之间的大小关系是()A.m1=m2tan θB.m1=m2cos θC.m1=m2tan θD.m1=m2cos θ答案:A解析:由题意,通过光滑的滑轮相连,左右两侧绳的拉力F大小相等,两物体处于平衡状态,分别对这两个物体进行受力分析可得F=m1g sin θ,F=m2g cos θ,联立两式解得m1=m2tan θ,A正确.7.如图所示,轻杆AB的左端用铰链与竖直墙壁连接,轻杆CD的左端固定在竖直墙上.图甲中两轻绳分别挂着质量为m1、m2的物体,另一端系于B点,图乙中两轻绳分别挂着质量为m3、m4的物体,另一端系于D点.四个物体均处于静止状态,图中轻绳OB、O′D 与竖直方向的夹角均为θ=30°,下列说法一定正确的是()A .m 1∶m 2=1∶1B .m 1∶m 2=2∶3C .m 3∶m 4=1∶1D .m 3∶m 4=2∶3 答案:B解析:图甲中,OB 绳的拉力T =m 1g ,由平衡条件可得m 2g =m 1g cos θ,则m 1∶m 2=2∶3 ,A 项错误,B 项正确;CD 杆固定在墙上,杆对结点D 的弹力大小和方向都不确定,则m 3、m 4的比值不确定,C 、D 两项均错误.8.[2024·山东省部分学校联考]如图所示,倾角为θ的粗糙斜面固定在水平地面上,跨过轻质滑轮的轻质细绳左端与物块A 连接,右端与物块B 连接时,物块A 恰好能沿斜面匀速下滑,仅将细绳右端的物块B 换为物块C 时,物块A 恰好能沿斜面匀速上滑.已知物块A 与斜面间的动摩擦因数为0.5,滑轮摩擦不计,取重力加速度大小g =10 m/s 2,sin θ=0.6,则物块B 、C 的质量之比等于( )A .1∶2B .1∶3C .1∶4D .1∶5 答案:D解析:当悬挂物块B 时有m A g sin θ=μm A g cos θ+m B g ,当悬挂物块C 时有m A g sin θ+μm A g cos θ=m C g ,解得m B m C =15,D 正确.9.[2024·河南省普高联考]某小组设计实验,利用手中的氢气球测量风力和气球所受浮力的大小.将质量为m 的重物悬挂在O 点,在水平风力、竖直浮力和绳的拉力作用下,气球处于静止状态,如图所示.经测量发现上段细绳与竖直方向夹角、下段细绳与水平方向的夹角均为30°.已知氢气球的质量是M ,重力加速度大小为g ,则此时风力和浮力的大小分别是( )A .32 mg 32mg +Mg B .32 mg 32 mg +MgC .32 mg +Mg 32 mgD .32 mg +Mg 32mg 答案:A解析:对气球受力分析,根据共点力平衡条件可知,竖直方向有Mg +T cos 30°=F 浮,水平方向有T sin 30°=F 风,对O 点受力分析,根据共点力平衡条件得T ′sin 30°=T 1cos 30°,T ′cos 30°=T 1sin 30°+mg ,联立解得F 风=32 mg ,F 浮=32mg +Mg ,A 正确.10.[2024·湖南省娄底市期末考试]如图所示,建筑工地上某人在一水平台上用轻质绳OB 拉住质量为m =20 kg 的重物,另一轻质绳OA 与竖直方向夹角θ=37°,OA 与OB 绳打结于O点且恰好垂直.已知人的质量M =60 kg ,重物与人均处于静止状态,(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)则:(1)OA 绳与OB 绳的拉力分别为多大;(2)人受到的平台对他的支持力与摩擦力的大小. 答案:(1)160 N 120 N (2)672 N 96 N解析:(1)对O点受力分析如图所示,由平衡条件,T A、T B的合力与重物的重力大小相等,方向相反,可得T A=mg cos 37°,T B=mg sin 37°解得T A=160 N,T B=120 N(2)对人受力分析如图所示,由牛顿第三定律可知T B=T′B由平衡条件可知N B=T′B sin 37°+MgT′B cos 37°=f解得N B=672 N,f=96 N.11.[2024·重庆巴南检测]如图所示,一条轻质细绳跨过光滑的定滑轮连接两个小球A、B,它们都穿在一根光滑的竖直杆上,不计滑轮的质量,当两球平衡时OA绳与水平方向的夹角为2θ,OB绳与水平方向的夹角为θ,B球的质量为m,重力加速度大小为g,则(1)细绳上的张力是多少?(2)A球的质量是多少?(3)滑轮受到细绳的作用力是多少?答案:(1)mgsin θ(2)2m cos θ(3)mgsinθ2解析:(1)对B球受力分析可知,T sin θ=mg则细绳上的张力T=mgsin θ(2)对A球受力分析可知T sin 2θ=m A g解得A球的质量是m A=2m cos θ(3)由几何关系可知,绕过滑轮的两边绳子之间的夹角为θ,则滑轮受到细绳的作用力F=2T cos θ2=mg sinθ2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理练习题
尊敬的读者,高考物理练习题是学生备战高考中重要的一环。
为了帮助同学们更好地准备物理考试,本文将为您提供一些常见的高考物理练习题及解答。
希望这些题目能够帮助您提高物理知识的掌握和解题能力。
【题目一】
小明通过斜面把一物体推上一高度为h的平台,已知物体的质量为m,斜面与水平面的夹角为θ,忽略摩擦力。
求:
1. 物体在斜面上所受的分力大小和方向。
2. 物体在推上平台的过程中所做的功。
【解答】
1. 物体在斜面上所受的分力大小和方向可以分解为垂直于斜面方向和平行于斜面方向的两个分力。
垂直于斜面的分力为物体的重力分量mgcosθ,平行于斜面的分力为物体的重力分量mgsinθ,分别向下和沿斜面向上。
【题目二】
一质点从静止开始自由下落,下落过程中受到空气阻力,且阻力大小与速度成正比。
已知质点下落时的加速度为g',质点下落过程中的速度与时间的关系为v = at,其中v为质点的速度,t为时间。
求:
1. 质点下落过程中速度与时间的关系式。
2. 质点下落过程中阻力与速度的关系式。
【解答】
1. 质点下落过程中速度与时间的关系式可以通过将加速度g'代入速度与时间的关系式v = at中,得到v = g't。
2. 质点下落过程中阻力与速度的关系式可以表示为F = kv,其中F 为阻力,k为与速度相关的比例常数。
【题目三】
在真空中,一质点在水平面上做匀速圆周运动,质点的质量为m,半径为r,速度为v。
求:
1. 质点所受的向心力大小和方向。
2. 质点做匀速圆周运动的周期。
【解答】
1. 质点所受的向心力可以通过将质点的质量m、速度v和半径r代入向心力的公式F = mv²/r中计算得到。
2. 质点做匀速圆周运动的周期可以通过将质点的速度v和半径r代入周期的公式T = 2πr/v中计算得到。
【题目四】
一电流为I的导线在磁感应强度为B的磁场中垂直于导线方向受力,力的大小为F。
已知导线长度为L,求:
1. 导线所受的力的大小与导线形状、电流方向和磁场方向之间的关
系式。
2. 导线所受力的方向。
【解答】
1. 导线所受的力的大小与导线形状、电流方向和磁场方向之间的关
系式可以通过将导线长度L、电流大小I和磁感应强度B代入洛伦兹力的公式F = BIL中计算得到。
2. 导线所受力的方向可以通过右手定则确定,即将右手的食指指向
电流方向,中指指向磁场方向,那么拇指的方向就是力的方向。
通过以上的物理练习题及解答,相信您对高考物理知识的掌握会更
深入。
在备战高考的过程中,请多多进行物理练习,提高解题能力和
应试技巧,相信您一定能在高考中取得优异的成绩!祝您成功!。