苏教版九年级下册数学[探索三角形相似的条件--知识点整理及重点题型梳理](提高)

合集下载

苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)

苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)

苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)本文介绍了相似三角形解决问题的知识点,包括平行投影和中心投影。

要点一是平行投影,介绍了物体在平行光线下产生的影子,以及物高与影长的关系。

要点二是中心投影,介绍了点光源下物体产生的影子,以及离点光源远近对影子长度的影响。

通过这些知识点,可以解决一些实际问题。

需要注意的是,在利用影长计算物高时,要注意测量两物体在同一时刻的影长。

在中心投影下,一个重要的结论是,点光源、物体边缘上的点以及它们在影子上的对应点在同一条直线上。

可以根据其中两个点来求出第三个点的位置。

要点诠释:物体的中心投影受到光源和物体位置及方向的影响。

改变光源或物体的方向会导致影子方向的变化。

但不论如何改变,光源、物体和它们的影子始终分离在物体的两侧。

要点三、中心投影与平行投影的区别与联系1.联系:中心投影和平行投影都是研究物体投影的一种方法。

平行投影是在平行光线下形成的投影,例如太阳光线和月光。

中心投影是从一点发出的光线所形成的投影,例如灯泡和手电筒的光线。

在平行投影中,改变物体的方向和位置会导致投影方向和位置的变化。

在中心投影中,同一灯光下,改变物体的位置和方向也会导致投影的变化。

固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也会发生变化。

2.区别:太阳光线是平行的,因此太阳光下的影子长度与物体高度成比例。

灯光是发散的,灯光下的影子与物体高度不一定成比例。

在同一时刻,太阳光下的影子方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向。

要点诠释:在解决有关投影的问题时,必须先判断是平行投影还是中心投影,然后根据它们的特点进一步解决问题。

要点四、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决。

要点诠释:测量旗杆高度的方法包括平面镜测量法、影子测量法、手臂测量法和标杆测量法。

九年级数学下册6.4探索相似三角形的条件教案(新版)苏科版

九年级数学下册6.4探索相似三角形的条件教案(新版)苏科版

探索三角形相似的条件【教学目标】:(一)知识点经历三角形相似的条件“两边对应成比例,且夹角相等的两个三角形相似”(下面简称三角形相似的判定方法(2))的探索过程并能运用三角形相似判定方法(2)判定两个三角形相似。

(二)能力训练在探索三角形相似的条件(2)的过程中,让学生经历“实验、观察、猜想、说明”等数学探究活动,发展合情推理和有条理的表达能力;在应用过程中培养学生灵活运用知识的能力。

(三)情感与价值通过动画演示,激发学生学习的兴趣;在“实验、观察、猜想、说明”等数学探究活动的过程中,使学生感受到数学之美,探究之趣。

【教学重点】掌握三角形相似的判定方法(2)并能灵活运用.【教学难点】三角形相似的判定方法(2)的推导过程及灵活运用【教学方法】学案导学,讲练结合。

采用“实验—猜想—说明—应用”的教学模式【教具准备】多媒体课件【教学过程】:一、回顾反思(1).什么叫做相似三角形?与全等之间有什么关系?(2).判断三角形全等有哪些方法?(3).你已经学过判断两个三角形相似的哪些方法?二、数学实验室1、结合多媒体探究三角形相似的判定方法(2)2、引导学生得出结论,教师板演:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角..相等,那么这两个三角形相似。

可以简单说成“两边对应成比例且夹角相等,两三角形相似”,这称为三角形相似的判定方法(2)3、引导学生说出三角形相似的判定方法(2)的符号语言,教师板演。

三、基础演练(1)按下列条件,两个判定三角形是否相似,并说明为什么?①∠A=45°,AB=4, AC=5;∠A’=45°,A’B’=8,A’C’=10②∠A=47°, AC=2, AB=1,∠E=47°, ED=2, EF=4③∠A=45°, AC=4, BC=3,∠D=45°, DF=8, EF=6【设置目的】初步应用判定方法2,增强学生信心。

优选整合苏教版数学九年级下册6.4探索三角形相似的条件4素材

优选整合苏教版数学九年级下册6.4探索三角形相似的条件4素材

相似三角形的判定 参考资料一. 本周教学内容: 相似三角形的判定 二. 重点、难点重点:掌握相似三角形的判定方法。

难点:灵活运用相似三角形的判定方法解决有关问题。

三. 教学过程 (一)复习1. 相似三角形的定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2. 注意:(1)定义中对应角相等,对应边成比例,是指3组对应角分别相等,三组对应边成比例。

(2)∆∆ABC A B C ~'''读作∆ABC 相似于∆A B C ''',与全等三角形一样,表示对应顶点的字母应写在对应位置上。

(3)所谓相似三角形是指两个三角形形状一样,大小不一定一样。

(4)相似三角形定义本身揭示了相似三角形的性质:相似三角形对应角相等,对应边成比例。

(5)相似比带有顺序性,如∆∆ABC A B C ~'''的相似比为AB A B BC B C CAC A k''''''===反过来∆∆A B C ABC '''~的相似比为A B AB B C BC C A CA k ''''''===1(6)全等三角形是相似比为1的相似三角形,但相似三角形不一定是全等三角形。

(二)三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的三角形相似。

如图,若∠=∠A A ',∠=∠∠=∠==B BC C AB A B BC B C CAC A '''''''',,,则∆∆ABC A B C ~'''。

与三个角对应相等,三条边对应相等,两个三角形全等类似,定义法在计算和证明中一般用得较少。

(2)三角形相似的判定定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

新苏科版九年级下册初中数学 6-4 探索三角形相似的条件 教案

新苏科版九年级下册初中数学 6-4 探索三角形相似的条件 教案

6.4 探索三角形相似的条件(1)教学目标: 1.掌握平行线分线段成比例定理及其推论,学会灵活应用;2.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力. 教学重点:探索“见平行,得相似”的相关结论. 教学难点:成比例的线段中对应线段的确定. 教学过程:活动一:如图,画三条互相平行的直线l 1、l 2、l 3,再任意画2条直线 a 、b ,使 a 、b 分别与l 1、l 2、l 3相交于点A 、B 、C 和点D 、E 、F .探索新知: 活动一:提出问题(1)度量所画图中AB 、BC 、DE 、EF 的长度,并计算对应线段的比值,你有什么发现? (2)如果任意平移l 3,再度量AB 、BC 、DE 、EF 的长度.这些比值还相等吗?活动二:如图,在△ABC 中, 点D 、E 分别在AB 、AC 上,且DE ∥BC ,△ADE 与△ABC 有什么关系?问题1:的设置仅说明当平行于三角形一边的直线与其他两边相交时,所构成的三角形与原三角形相似.与其他两边的延长线、反向延长线相交的情况由学生思考、解答.a ba bba得出结论:两条直线被一组平行线所截,所得的对应线段成比例.平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似.尝试交流:1.如果再作MN∥DE,共有多少对相似三角形?2.如图,△ABC 中,DE∥BC,GF∥AB,DE、GF交于点O,则图中与△ABC相似的三角形共有多少个?请你写出来.拓展延伸如图,在△ABC中,DG∥EH∥FI∥BC.(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG∶BC=_____.课堂小结通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问?6.4探索三角形相似的条件(2)教学目标:1.探索“两角分别相等的两个三角形相似”的判定方法;2.运用三角形相似解决有关问题;3.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力.教学重点:掌握“两角分别相等的两个三角形相似”.教学难点:1.“两角分别相等的两个三角形相似”的判定方法的探究证明;2.会准确地运用判定方法判定三角形是否相似.教学过程:回顾思考:1.判定两个三角形全等有哪些方法?2.如果要判定两个三角形是不是相似,是否一定需要一一验证所有的对应角和对应边的关系?3.我们学过哪种判定三角形相似的方法?探索新知:如图,小明用一张纸遮住了3个三角形的一部分,你能画出这3个三角形吗?提出问题:(1)如图,如果∠A=∠C,∠B=∠D,AB=CD,那么第一个三角形与第二个三角形全等吗?为什么?如图,如果∠A=∠E,∠B=∠F,2AB=EF,那么第一个三角形与第三个三角形相似吗?如果把2AB=EF改为3AB=EF呢?创设情境,引导学生积极思考,小组合作,带领学生画图探究.关于三角形相似的判定“两角对应相等的两个三角形相似”的证明尽量通过两种方法,培养学生合情推理和说理的能力.通过操作使学生感悟到只要满足∠A=∠E,∠B=∠F的条件,两个三角形就能相似.两种方法的证明培养学生合情推理和说理的能力.得出结论:两角分别相等的两个三角形相似.尝试交流:例1、如图,在△ABC和△A′B′C′中,已知∠A=50°,∠B=∠B′=60°,∠C′=70°,△ABC与△A′B′C′相似吗?为什么?例2、如图,在Rt△ABC中,∠ACB=90°,CD是△ABC的高.找出图中所有的相似三角形.练习1、判断下列说法是否正确?并说明理由.(1)所有的等腰三角形都相似.( )(2)所有的等腰直角三角形都相似.( )(3)所有的等边三角形都相似.( )(4)所有的直角三角形都相似.( )(5)有一个角是100 °的两个等腰三角形都相似.( )(6)有一个角是70 °的两个等腰三角形都相似.( )练习2、如图,在△ABC中BD⊥AC,AE⊥BC,图中一定和△BDC相似的三角形有几个? 它们分别是哪些三角形?EOA D拓展延伸:过△ABC (∠C>∠B)的边AB上一点D作一条直线与另一边AC相交,截得的小三角形与△ABC 相似,这样的直线有几条?请把它们一一作出来.课堂小结:通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问?6.4 探索三角形相似的条件(3)教学目标:1.探索“两边成比例且夹角相等的两个三角形相似”的判定方法,并能运用解题;2.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达能力. 教学重点:掌握“两边成比例且夹角相等的两个三角形相似”.教学难点: 1.“两边成比例且夹角相等的两个三角形相似”的判定方法的证明; 2.能恰当地运用判定方法判定三角形是否相似. 教学过程: 回顾思考:我们学过哪些判定三角形相似的方法? 探索新知:如图,在△ABC 和△A'B'C'中,∠A =∠A', .能判断△ABC 与△A'B'C' 相似吗? 提出问题:如果把21换成其他数值,再试一试. 已知: ,∠A =∠A'. 求证:△ABC ∽△A'B'C'.关于三角形相似的判定方法“ 两边成比例且夹角相等的两个三角形相似”的证明,通过操作、观察、探索等合情推理活动,使学生感悟到判断三角形相似的条件. 得出结论两边成比例且夹角相等的两个三角形相似.尝试交流1.如图,在△ABC 和 △DEF 中,∠B =∠E ,要 使△ABC ∽△DEF ,需要添加什么条件?12A B A C AB AC ''''==ABAC k A B A C ==''''2.如图,△ABC与△A'B'C'相似吗?有哪些判断方法?3.如图,在△ABC中,AB=4cm,AC=2cm.(1)在AB上取一点D,当AD=______时,△ACD ∽△ABC;(2)在AC的延长线上取一点E,当CE=时,△AEB ∽△ABC;此时,BE与DC有怎样的位置关系?为什么?拓展延伸有一池塘,周围都是空地.如果要测量池塘两端A、B间的距离,你能利用本节所学的知识解决这个问题吗?课堂小结通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问BC'B'A'CBA6.4 探索三角形相似的条件(4)教学目标: 1.掌握“三边成比例的两个三角形相似”的判定方法,并能解决简单的问题; 2.经历两个三角形相似判定的探索过程,体验用类比得出数学结论的过程. 教学重点:掌握“三边成比例的两个三角形相似”.教学难点: 1.“三边成比例的两个三角形相似”的判定方法的证明; 2.会准确地运用判定方法判定三角形是否相似. 教学过程:(1)判定两个三角形全等有哪些方法?(2)如果要判定两个三角形是否相似,是否一定需要一一验证所有的对应角和对应边的关系? (3)我们学过哪些判定三角形相似的方法? 探索新知:由三角形全等的SSS 判定方法,我们想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?提出问题:如何证明这个命题是真命题?关于三角形相似的判定方法“三边成比例的两个三角形相似”, 得出结论:三角形相似的判定方法:三边成比例的两个三角形相似.尝试交流:1.,试说明∠BAD =∠CAE . 如图已知 AEACDE BC AD AB = =2.△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,△ABC与△DEF相似吗?为什么?3.根据下列条件,判断△ABC和△A'B'C'是否相似,并说明理由.AB=3,BC=5,AC=6,A'B'=6,B'C'=10,A'C'=12.题2也可以用判定方法“两边成比例且夹角相等的两个三角形相似”.拓展延伸:要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4,6,8.另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几种答案?课堂小结:通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问?6.4探索三角形相似的条件(5)教学目标: 1.理解黄金三角形、三角形重心的概念;2.运用黄金三角形、三角形重心的结论解决实际问题.教学重点:对黄金三角形、三角形重心的理解.教学难点:三角形三条中线相交于一点的证明.教学过程:回顾思考:1.如何判定两个三角形是否相似?2.什么叫黄金分割?探索新知:1.在△ABC中,AB=AC,∠A=36°,BD是△ABC 的角平分线.(1)△ABC与△BDC 相似吗?为什么?(2)判断点D是否是AC的黄金分割点,并说明理由.2.如何证明三角形的三条中线相交于一点?题2也可以用面积法证.假设中线CF与BE相交于点G,延长AG与BC相交于点D,可证△AFG、△BFG、△AGE、△CGE 面积都相等,再证△BDG与△DCG面积相等(同底等高三角形),推出BD=DC,即D是BC的中点.得出结论:1.我们把顶角为36°的三角形称为黄金三角形.黄金△ABC 它具有如下的性质: (1)0.618BCAB; (2)设BD 是△ABC 的底角的平分线,则△BCD 也是黄金三角形,且点D 是线段AC 的黄金分割点; (3)如再作∠C 的平分线,交BD 于点E ,则△CDE 也是黄金三角形,如此继续下去,可得到一串黄金三角形.2.三角形的三条中线的交点叫做三角形的重心;三角形的重心与顶点的距离等于它与对边中点距离的两倍.新知应用1.如图,正五边形ABCDE 的5条边相等,5个内角也相等. (1)找找看,图中是否有黄金三角形? (2)点F 分别是哪些线段的黄金分割点?A B H F GNM ED C精品文档精心整理2.已知:△ABC中,AB=AC,AD⊥BC,AD与中线BE相交于点G,AD=18,GE=5,求BC的长.课堂小结通过这节课的学习,你学习到什么新知识?获得了什么经验?还有什么疑问?。

6.5 相似三角形的性质-苏科版数学九年级下册精品讲义

6.5 相似三角形的性质-苏科版数学九年级下册精品讲义

第6章 图形的相似6.5相似三角形的性质知识点01 相似三角形的性质1. 相似三角形周长的比等于相似比(1) ∽,则由比例性质可得:。

(2)相似多边形周长的比等于相似比.【即学即练1】在一张缩印出来的纸上,一个三角形的一条边由原图中的6cm 变成了2cm ,则缩印出的三角形的周长是原图中三角形周长的( )A .B .C .D .【答案】A【分析】根据相似三角形的周长比等于相似比计算,得到答案.【详解】解:∵三角形的一条边由原图中的6cm 变成了2cm ,∴原三角形与缩印出的三角形是相似比为3:1,∴原三角形与缩印出的三角形的周长比为3:1,∴缩印出的三角形的周长是原图中三角形周长的,故选:A.2. 相似三角形面积的比等于相似比的平方∽,则,分别作出与的高和,则【微点拨】相似多边形面积的比等于相似比的平方.【即学即练2】在中,AD平分交边BC于点D,点E在线段AD上,若,则与的面积比为( )A.16:45B.1:9C.2:9D.1:3【答案】C【分析】根据等高三角形的面积比等于底边的长度比,得到,再根据相似三角形的面积比等于相似比的平方,得到的面积比,即可得到答案;【详解】解:∵AD平分∠BAC,∴∠BAE=∠CAD,∵∠ABE=∠C,∴,∵,∴,,,∴.故选C ;知识点02 相似三角形中对应线段的比1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的对应线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.【微点拨】要特别注意“对应”两个字,在应用时,要注意找准对应线段.【即学即练3】如下图所示,在△ABC 中,点D 在线段AC 上,且△ABC ∽△ADB ,则下列结论一定正确的是( )A .B .C .D .【答案】A 【分析】根据相似三角形对应边成比例列式整理即可得解.【详解】解:∵△ABC ∽△ADB ,∴,∴AB 2=AC •AD .故选:A .考法01利用三角形性质求解能力拓展【典例1】如图所示,D为AB边上一点,AD:DB=3:4,交BC于点E,则S△BDE:S△AEC等于()A.16:21B.3:7C.4:7D.4:3【答案】A【分析】根据相似三角形的面积比等于相似比的平方及平行线分线段成比例,不难求得.【详解】解:∵,∴,且,∴,,∴,∵,与的高相等,∴,∴.故选:A.考法02 证明三角形的对应线段成比例【典例2】如图,在中,点D、E分别在AB、AC边上,,BE与CD相交于点F,下列结论正确的是()A.B.C.D.【答案】C【分析】利用平行线的性质可得内错角相等,即可得出和,在根据相似三角形的性质及等量代换即可得出答案.【详解】解:,,,,,,由,,,,,故选:C .题组A 基础过关练1.如图,在中,是斜边上的高,若,,则的长为( )A .8B .10C .9D .12【答案】C【分析】在与中,利用两角对应相等的两个三角形相似,对应边对应成比例,即可求解.【详解】解:如图所示,∵,,分层提分∴,,∴,,∴,∴,即,且,,∴,故选:.2.在△ABC中,点D、E分别在边AB、AC上,下列比例式中不能得到DE BC的是( )A.B.C.D.【答案】B【分析】根据两边成比例且夹角相等的两个三角形相似逐项进行判断即可得到结论.【详解】解:如图,解:A.∵,∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;B.当时,△ADE与△ABC不一定相似,∴∠ADE不一定等于∠B,∴不能得到DE BC,故选项符合题意;C.∵,∴,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;D.∵,∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;故选:B.3.如图,已知△ABE∽△CDE,AD、BC相交于点E,△ABE与△CDE的周长之比是,若AE=2、BE=1,则BC的长为( )A.3B.4C.5D.6【答案】D【分析】根据相似三角形的性质可得AE:CE=2:5,从而得到CE=5,即可求解.【详解】解:∵△ABE∽△CDE,△ABE与△CDE的周长之比是,∴AE:CE=2:5,∵AE=2,∴CE=5,∵BE=1,∴BC=BE+EC=1+5=6,故选:D.4.如图,在△ABC中,点D,E分别在AB,AC上,且,AD=1,BD=2,DE=2那么BC的值为()A.2B.4C.6D.8【答案】C【分析】证明利用对应边对应成比例即可求出.【详解】解:∵∴∴∴∴故选C.5.如果两个相似三角形对应边的比是3∶4,那么它们的对应周长的比是()A.3∶4B.C.9∶16D.3∶7【答案】A【分析】直接利用相似三角形的性质得出答案.【详解】解:∵两个相似三角形对应边的比为3:4,∴它们的周长比是:3:4.故选:A.6.已知,,,则的周长之比为____.【答案】4∶3【分析】根据相似三角形的周长之比等于相似比即可得解.【详解】解:∵,,,∴;故答案为:4∶3.7.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB//CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于______m.【答案】3【分析】作PF⊥CD于点F ,利用AB∥CD,推导△PAB∽△PCD,再利用相似三角形对应高之比是相似比求解即可.【详解】解:如图,过点P作PF⊥CD于点F,交AB于点E,∵AB∥CD,∴△PAB∽△PCD,PE⊥AB,∵△PAB∽△PCD,∴,(相似三角形对应高之比是相似比)即:,解得PF=3.故答案为:3.8.如图,△ABC∽△CAD,∠ACB=∠D=90°,_____.【答案】AB•DC【分析】根据相似三角形的性质解答即可.【详解】解:∵∠ACB=∠D=90°,且△ABC∽△CAD,∴,即=AB•DC,故答案为:AB•DC.9.如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,求FC的长.【答案】2.4【分析】根据已知可证明△ABE~∆FCB,然后利用相似三角形的性质进行计算即可解答.【详解】解:∵AD∥BC,∴∠AEB=∠CBF,∵∠A=90°,∠CFB=90°,∴△ABE∽△FCB∴,∵BC=3,E是AD的中点,∴AE=1.5 ,∴BE=2.5,∴,∴FC=2.4.10.如图,在△ABC中,D,E分别是AB,AC边上的点,且AD:AB=AE:AC=2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.【答案】(1)见解析;(2)BC=6.【分析】(1)直接根据相似三角形的判定方法判定即可;(2)利用相似三角形的性质即可求解.【详解】(1)证明:∵∠A=∠A,AD:AB=AE:EC=2:3,即,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴,,∴BC=6.题组B 能力提升练1.下列命题中,是真命题的是( )A.有一组邻边相等的平行四边形是菱形B.小明爬山时发现上山比下山的盲区小C.若点P是线段AB的黄金分割点,则D.相似三角形的周长比等于相似比的平方【答案】A【分析】根据菱形的判定方法、黄金分割的定义、相似三角形的性质进行判断即可.【详解】解:A、有一组邻边相等的平行四边形是菱形,是真命题,故A正确;B、爬山时上山比下山的盲区大,原命题是假命题,故B错误;C、若点P是线段AB的黄金分割点,AP>BP时,则,原命题错误,故C错误;D、相似三角形的周长比等于相似比,原命题错误,故D错误.故选:A.2.如图,O是△ABC的重心,AN,CM相交于点O,那么△MON与△BMN的面积的比是()A.1:2B.2:3C.1:3D.1:4【答案】C【分析】利用三角形重心的性质得到MO:MC=1:3和点N是BC的中点,从而得到△MON和△MNC的面积比、△BMN和△CMN的面积比,然后综合两个面积比求得结果.【详解】解:∵点O是△ABC的重心,∴MO:MC=1:3,点N是BC的中点,∴,∴,故选:C.3.若,且与的面积比是,则与对应角平分线之比为()A.B.C.D.【答案】B【分析】根据相似三角形的面积之比等于相似比的平方求出相似比,再根据相似三角形的性质即可得到答案.【详解】解:∵,且与的面积比是,∴与的相似比是,∴与对应角平分线之比为,故选:B.4.如图,在ABC中,D,E分别是边AB,AC的中点.若ADE的面积为,则四边形DBCE的面积为( )A.B.1C.D.2【答案】C【分析】先根据三角形的中位线定理证明,则△ADE∽△ABC,再根据相似三角形面积的比等于相似比的平方求出△ABC的面积,即可由求出四边形DBCE的面积.【详解】解:∵D、E分别为AB、AC的中点,∴,AE=CE=AB,∴,∴△ADE∽△ABC,∴,∴,∴,故选:C.5.如图,在Rt ABC中,∠C=90°,AC=3,BC=4.以BC上点O为圆心作⊙O分别与AB、AC相切E、C 两点,与BC的另一交点为D,则线段BD的长为________【答案】1【分析】连接OE,OE⊥AB,OE=OC,AC⊥OC,△BEO∽△BCA,故,故可得OC的长,即可得出BD的长.【详解】解:如图,连接OE,∵AB是⊙O的切线,∴OE⊥AB,OE=OC,∵AC⊥OC,∴BEO∽BCA,∴,∵∠C=90°,AC=3,BC=4,∴AB=5,∴,∴,∴OE=,∴OC=,∴BD=BC-2×OC=4-2×.故答案为:1.6.如图,点G是的中线上一点,且,作,垂足为点E,若,则点A到的距离为______________.【答案】【分析】过点作,则的长即为到的距离,证明,根据相似三角形的性质即可求解.【详解】解:如图,过点作,则的长即为到的距离,∵,,∴,∴,∴,∵,∴,∵,∴,,故答案为:.7.如图,已知AB CD,AD与BC相交于点P,,若AP=6,则PD的长是_____.【答案】10【分析】证明,再根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∵AB CD,∴,∴,即,解得:PD=10,故答案为:10.8.如图,在中,,,点从点出发,沿着边向点以的速度运动,点从点出发,沿着边向点以的速度运动.如果与同时出发,那么经过______秒和相似.【答案】4或【分析】分两种情况讨论,由相似三角形对应边成比例列方程求解即可.【详解】解:设经过x秒,△PQC和△ABC相似,∴CP=8-x(cm),CQ=2x(cm),当△PCQ∽△ACB,则,∴,∴x=4,当△PCQ∽△BCA,则,∴,∴x=,综上所述:经过4或秒,△PQC和△ABC相似.故答案为:4或.9.如图,四边形中,,且,E、F分别是、的中点,与交于点M.(1)求证:;(2)若,求BM.【答案】(1)见解析;(2)【分析】(1)根据已知条件可得四边形是平行四边形,从而得到,即可求证;(2)根据相似三角形的对应边成比例求出相似比,即可求得线段的长.【详解】(1)证明:,E是的中点,,,四边形是平行四边形,,,,;(2)解:,F是的中点,,,,,又,.10.如图,在△ABC中,∠C=90°,AC=3,CB=5,D是BC边上一点,且DB=1,点E是AC边上的一个点,且AE,过点E作交AD于点F.(1)求EF的长.(2)求证:△DEF∽△ABD.【答案】(1);(2)证明见解析【分析】(1)利用,证明△AEF∽△ACD,根据对应边对应成比例进行计算即可;(2)利用勾股定理求出AD,利用,求出AF,利用求出DF,从而得出,在利用外角的性质,得到,即可得证.【详解】(1)解:∵CB=5,DB=1,∴,∵,∴,∵,∴△AEF∽△ACD,∴,即:,∴;(2)证明:∵∠C=90°,AC=3,CD=4,∴,∵∴△AEF∽△ACD,∴,即:,∴,∴,∵,∴,∵,又∵,∴,∴△DEF∽△ABD题组C 培优拔尖练1.如图,在梯形中,,,对角线与相交于点O,把、、、的面积分别记作,那么下列结论中,不正确()A.B.C.D.【答案】C【分析】由,推出,推出,利用等高模型以及相似三角形的性质解决问题即可.【详解】解:∵,∴,∴,∴,,∴选项A,B,D正确,选项C错误,故选:C.2.如图,中,,,为边上一动点,将绕点逆时针旋转得到,使得点的对应点与,在同一直线上,若,则的长为()A.3B.4C.6D.9【答案】B【分析】由旋转和平行线的性质易证,从而易证,即得出,代入数据即可求出BD的长.【详解】∵,∴.由旋转的性质可知,∴.又∵,∴,∴,即,∴.故选B.3.如图,在△ABC中,AH⊥BC于H,BC=12,AH=8,D、E分别为AB、AC上的点,G、F是BC上的两点,四边形DEFG是正方形,正方形的边长DE为( )A.4.8B.4C.6.4D.6【答案】A【分析】利用相似三角形对应高的比也等于相似比,可以求出x,注意所画图形是正方形,用同一未知数表示未知边,即可求出.【详解】解:设△ABC的高AH交DE于点M,正方形的边长为x.由正方形DEFG得,DE∥FG,即DE∥BC,∵AH⊥BC,∴AM⊥DE.由DE∥BC得△ADE∽△ABC,∴,把BC=12,AH=8,DE=x,AM=8-x代入上式得:,解得:x=4.8.答:正方形的边长是4.8.故选:A.4.如图,在中,D,C,E三点在一条直线上,,,,则的长为()A.1.5B.1.6C.1.7D.1.8【答案】B【分析】设对角线AC与BD交于点O,过点O作于M,利用平行四边形性质得BO=DO,得MC=MD,然后利用相似三角形的判定与性质得出CF的长.【详解】解:设对角线AC与BD交于点O,在中,,,过点O作于M(如图),,,,,.故选B.5.如图Rt AOB∽DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,直线AD,CB交于P 点,连接MP,AOB保持不动,将COD绕O点旋转,则MP的最大值是_____.【答案】9【分析】根据相似三角形的判定定理证明COB∽DOA,得到∠OBC=∠OAD,得到O、B、P、A共圆,求出MS和PS,根据三角形三边关系解答即可.【详解】解:取AB的中点S,连接MS、PS,则PM≤MS+PS,∵∠AOB=90°,OA=6,OB=8,∴AB=10,∵∠AOB=∠COD=90°,∴∠COB=∠DOA,∵AOB∽DOC,∴,∴COB∽DOA,∴∠OBC=∠OAD,∴O、B、P、A共圆,∴∠APB=∠AOB=90°,又S是AB的中点,∴PS=AB=5,∵M为OA的中点,S是AB的中点,∴MS=OB=4,∴MP的最大值是4+5=9,故答案为:9.6.如图,为等边边上的高,,为高上任意一点,则的最小值为_____.【答案】【分析】连接,交于点,此时最小,过点作于点,证明,然后求得,在中,勾股定理即可求解.【详解】解:如图所示:连接,交于点,此时最小,过点作于点,∵为等边边上的高,∴点与点关于对称,又∵,∴,∴,∵,∴,∴,∴,∴,解得:,∴,∴,∴在中,∴的最小值为:.故答案为:.7.如图,在矩形纸片中,,,点在上,将沿折叠,点恰落在边上的点处;点在上,将沿折叠,点恰落在线段上的点处,有下列结论:①;②;③;④;其中正确的是______.(填写正确结论的序号)【答案】①③④【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到,解得x=3,所以AG=3,GF=5,于是可对④进行判断;接着证明ABF∽DFE,利用相似比得到,而=2,所以,所以DEF与ABG不相似,于是可对②进行判断;分别计算和可对③进行判断.【详解】解:∵BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt ABF中,AF==8,∴DF=AD-AF=10-8=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=10-6=4,在Rt GFH中,∵,∴,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴ABF∽DFE,∴,∴,而,∴,∴DEF与ABG不相似;所以②错误.∵=×6×3=9,=×3×4=6,∴.所以③正确.故答案为:①③④.8.如图,在平行四边形ABCD中,点E在DC上,DE:EC=3:2,连接AE交BD于点F,则=________.【答案】9:25【分析】先由DE:EC=3:2,得DE:DC=3:5,再根据平行四边形ABCD,得AB CD,AB=CD,所以,△DEF∽△BAF,然后根据相似三角形的性质,面积比等于相似比的平方求解.【详解】解:∵DE:EC=3:2,∴DE:DC=3:5,∵平行四边形ABCD,∴AB CD,AB=CD,∴,△DEF∽△BAF,∴,故答案为:9∶25.9.如图,在△ABC中,过点A作,交∠ACB的平分线于点D,点E是BC上,连接DE,交AB于点F,.(1)求证:四边形ACED是菱形;(2)当,时,直接写出的值.【答案】(1)见解析;(2)【分析】(1)根据可得,即可证明四边形是平行四边形,然后根据平行线的性质以及角平分线得出,则可根据邻边相等的平行四边形为菱形;(2)根据菱形的性质可得,从而求出的长,然后根据可得,根据相似三角形对应边成比例可得结论.【详解】(1)证明:,,即,,四边形是平行四边形,,,平分,,,,四边形是菱形;(2)四边形是菱形;,,,,,.10.如图,在中,点D、E分别在边AB、AC上,BE、CD交于点O,.(1)如果,求AC的长;(2)如果△ADE的面积为1,求的面积.【答案】(1)18;(2)2【分析】(1)首先证明,利用相似三角形的性质解决问题即可.(2)证明,利用等高模型即可解决问题.【详解】(1)解:∵,∴=,∵,∴,∴,∴,∴=,,∴=,∵,∴.(2)∵=,∴,∴.11.如图,在正方形中,点M是边上的一点(不与B、C重合),点N在边的延长线上.且满足连接、,与边交于点E.(1)求证:;(2)求证:.【答案】(1)证明见解析;(2)证明见解析【分析】(1)根据正方形的性质、全等三角形的判定定理证明,根据全等三角形的性质即可证明;(2)证明,根据相似三角形的性质即可证明.【详解】(1)证明:∵四边形ABCD是正方形,∴,,又∵,∴,∴,在和中,,∴,∴;(2)证明:∵四边形ABCD是正方形,∴,∵,,∴,∴,又∵,∴,∴,∴.12.如图,在Rt ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.(1)求证:BC是⊙O的切线;(2)若CD=6,AC=8,求AE.【答案】(1)见解析;(2)12.5【分析】(1)连接OD,根据平行线判定推出OD AC,推出OD⊥BC,根据切线的判定推出即可;(2)求出AD,连接DE,证DCA∽EDA,得出比例式,代入数值求解即可.【详解】(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)解:在Rt ADC中,AC=8,CD=6,由勾股定理得:AD=10.连接DE,∵AE为直径,∴∠EDA=∠C=90°,∵∠CAD=∠EAD,∴DCA∽EDA,∴,∴,AE=12.5.13.矩形中,,将绕点A逆时针旋转得到,使点落在延长线上(图1)(1)若,求的度数与的长度;(2)如图2将向右平移得,两直角边与拒形相交于点E、F;当平移的距离是多少时,能使与相似,(先填空,再完成解答)解:设平移的距离为x,则______________________(用含x的代数式表示)【答案】(1)37°,4(2),,或x=3.4【分析】(1)根据矩形的性质得出AD=BC=6,BC AD,∠B=90°,求出∠CAD=∠BCA=53°,则37°即可解答;由勾股定理求出=AC=10,进而求得;(2)设平移的距离为x,则,然后再解直角三角形表示出,进而表示出,同理表示出,然后根据相似三角形的性质列方程求解即可;【详解】(1)解:∵四边形ABCD是矩形,∴BC=AD=6,BC AD,∠B=90°,∴∠CAD=∠BCA=53°,∴∠BAC=90°-∠BCA=90°-53°=37°,∵将绕点A逆时针旋转得到∴37°在Rt△CBA中,AB=8,BC=6,由勾股定理得:=AC=10∴.(2)解:设平移的距离为x,则,∵∴,解得:∴同理:∵与相似∴或∴或,解得或x=3.4∴当或x=3.4时,与相似.14.【问题呈现】(1)如图1,和都是等边三角形,连接BD、CE.求证:BD=CE.【类比探究】(2)如图2,和都是等腰直角三角形,∠ABC=∠ADE=90°,连接BD、CE,则___________.【拓展提升】(3)如图3,和都是直角三角形,∠ABC=∠ADE=90°,∠DAE=∠BAC=30°,连接BD、CE.①求的值;②延长交于点G.交于点F.求.【答案】(1)见解析;(2);(3)①;②30°【分析】(1)证明BAD CAE,从而得出结论;(2)证明BAD∽CAE,进而得出结果;(3)①利用含30度的直角三角形的性质以及勾股定理得到,再证明BAD∽CAE,进而得出结果;②由BAD∽CAE,得出∠ACE=∠ABD,进而得出∠BGC=∠BAC.【详解】(1)证明:∵ABC和ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE∠BAE=∠BAC∠BAE,∴∠BAD=∠CAE,∴BAD CAE(SAS),∴BD=CE;(2)解:∵ABC和ADE都是等腰直角三角形,∴,∠DAE=∠BAC=45°,∴∠DAE∠BAE=∠BAC∠BAE,∴∠BAD=∠CAE,∴BAD∽CAE,∴;故答案为:;(3)解:①∵∠ABC=∠ADE=90°,∠DAE=∠BAC=30°,∴AE=2DE,AC=2BC,由勾股定理得AD=DE,AB=BC,∴,同理BAD∽CAE,∴;②∵BAD∽CAE,∴∠ACE=∠ABD,∵∠AFC=∠BFG,∴∠BGC=∠BAC=30°.。

苏科版九年级图形相似6.4 知识点总结

苏科版九年级图形相似6.4 知识点总结

6.4探索三角形相似的条件知识点一 平行线分线段成比例定理(难点)两条直线被一组平行线所截,所得的对应线段成比例.例1 如图,若AB//CD//EF,则下列结论中,与AFAD 相等的是( ) A. EF AB B. EF CD C. OE BO D. BE BC 知识点二 平行线与相似三角形(重点)平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.例2 如图,AB//CD,AE//FD,AE,FD 分别交BC 于点G,H,则图中与△ABG 相似的三角形有( )A.2个B.3个C.4个D.5个知识点三 三角形相似的条件1(重点)两角分别相等的两个三角形相似例3 如图,在△ABC 与△DEF 中, ∠C=54°, ∠A=47°, ∠F=54°, ∠E=79°,求证: △ABC ∽△DEF.知识点四 三角形相似的条件2(重点)例4 如图①,②中各有两个三角形,其边长和角的度数已在图上标注,图②中AB,CD 交于点O,对于各图中的两个三角形而言,下列说法正确的是( )A.都不相似B.都相似C.只有①相似D.只有②相似知识点五 三角形相似的条件3(重点)三边成比例的两个三角形相似例5 如图,在正方形网格上有△ABC 和△A`B`C`,这两个三角形相似吗?请说明理由知识点六 三角形的重心三角形的三条中线相交于一点,这点叫做三角形的重心。

如图,AD,CE 分别为△ABC 的中线,AD,CE 的交点G 即为△ABC 的重心,且GA DG =GC GE =21. 例6 如图①,点G 为△ABC 的重心,若△ABC 的面积为18,求△AGC 的面积。

典例展示厅题型一 运用三角形相似的条件解题例1 如图,AB 是半圆O 的直径,D,E 是半圆上任意两点,连接AD,DE,AE 与BD 交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件,下列添加的条件中,错误的是( )A. ∠ACD=∠DABB.AD=DEC.AD 2=BD ·CDD.AD ·AB=AC ·BD例2 如图,直线EF 分别交△ABC 的边AC,AB 于点E,F ,交边BC 的延长线于点D ,且AB ·BF=BC ·BD ,那么AE ·CE 与EF ·ED 相等吗?为什么?题型二推理说明题例3 如图,D是AC上的一点,BE//AC,BE=AD,AE分别交BD,BC于点F,G,∠1=∠2,那么DF是FG与EF的比例中项吗?为什么?例4 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC,垂足分别为D,E,F,那么∠AFE与∠B相等吗?请说明理由。

苏科版数学九年级下册6.4《探索三角形相似的条件》说课稿

苏科版数学九年级下册6.4《探索三角形相似的条件》说课稿

苏科版数学九年级下册6.4《探索三角形相似的条件》说课稿一. 教材分析苏科版数学九年级下册6.4《探索三角形相似的条件》这一节主要让学生理解并掌握三角形相似的判定方法。

在学习了相似图形的性质和判定方法之后,学生能够通过观察、操作、推理等过程,探索并证明两个三角形相似的条件。

教材通过丰富的素材,引导学生积极参与,培养学生的几何思维能力和推理能力。

二. 学情分析九年级的学生已经学习了相似图形的概念,对图形的相似性有一定的认识。

但是,对于三角形相似的判定方法,他们可能还比较陌生。

因此,在教学过程中,我需要从学生的实际出发,通过引导他们观察、操作、推理,帮助他们理解和掌握三角形相似的条件。

三. 说教学目标1.知识与技能目标:使学生理解三角形相似的概念,掌握三角形相似的判定方法。

2.过程与方法目标:培养学生观察、操作、推理的能力,提高他们的几何思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极参与、合作交流的良好学习习惯。

四. 说教学重难点1.教学重点:三角形相似的概念,三角形相似的判定方法。

2.教学难点:三角形相似的判定方法的灵活运用,能够通过观察、操作、推理等过程,探索并证明两个三角形相似的条件。

五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作交流法等,引导学生积极参与,培养他们的几何思维能力。

2.教学手段:利用多媒体课件、几何画板等教学辅助工具,直观展示三角形相似的判定过程,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过复习相似图形的性质,引导学生自然过渡到三角形相似的概念。

2.新课讲解:讲解三角形相似的概念,引导学生通过观察、操作、推理,探索并证明三角形相似的条件。

3.案例分析:分析一些具体的例子,让学生运用三角形相似的判定方法,巩固所学知识。

4.练习与拓展:布置一些练习题,让学生独立完成,检测他们对三角形相似的判定方法的掌握程度。

5.总结:对本节课的内容进行总结,强调三角形相似的判定方法的重要性和应用。

苏教版九年级下册数学[《图形的相似》全章复习与巩固--知识点整理及重点题型梳理](提高)

苏教版九年级下册数学[《图形的相似》全章复习与巩固--知识点整理及重点题型梳理](提高)

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习《图形的相似》全章复习与巩固--知识讲解(提高)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、掌握黄金分割的定义、性质及应用;3、理解相似三角形、相似多边形、相似比的概念;熟练掌握三角形相似的判定方法以及相似三角形的性质,并能够运用性质与判定解决有关问题;4、了解位似的概念,做的位似是特殊的相似变换,会利用位似的方法,讲一个图形放大或缩小;5、了解平行投影和中心投影的基本概念与性质,能综合运用图形相似的知识解决一些简单的实际问题.【知识网络】【要点梳理】要点一、比例线段及黄金分割1.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项)(2)若a :b=b :c ,则b 2=ac (b 称为a 、c 的比例中项).2.黄金分割的定义:如图,将一条线段AB 分割成大小两条线段AP 、PB ,若小段与大段的长度之比等于大段的长度与全长之比,即AB AP AP PB (此时线段AP 叫作线段PB 、AB 的比例中项),则P 点就是线段AB 的黄金分割点(黄金点),这种分割就叫黄金分割.3. 黄金矩形与黄金三角形:黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点二、相似图形1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等.2.相似多边形各角分别相等,各边成比例的两个多边形,它们的形状相同,称为相似多边形. 要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、相似三角形1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高,对应中线,对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.3.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点四、图形的位似及投影1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.4.平行投影在平行光的照射下,物体所产生的影称为平行投影.(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.(3)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等. 注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.5.中心投影在点光源的照射下,物体所产生的影称为中心投影.(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.【典型例题】类型一、黄金分割1.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落到线段EA 上,折出点B 的新位置B ′,因而EB ′=EB .类似地,在AB 上折出点B ″使AB ″=AB ′.这是B ″就是AB 的黄金分割点.请你证明这个结论.【答案与解析】 设正方形ABCD 的边长为2, E 为BC 的中点,∴BE=1∴AE=225AB BE +=,又B ′E=BE=1, ∴AB ′=AE-B ′E=5-1,∵AB ″=AB ′=5-1∴AB ″:AB=(5-1):2∴点B ″是线段AB 的黄金分割点.【总结升华】本题考查了黄金分割的应用,知道黄金比并能求出黄金比是解题的关键. 举一反三【变式】如图,已知△ABC 中,D 是AC 边上一点,∠A=36°,∠C=72°,∠ADB=108°. 求证:(1)AD=BD=BC ; (2)点D 是线段AC 的黄金分割点.【答案】(1)∵∠A=36°,∠C=72°,∴∠ABC=72°,∠ADB=108°,∴∠ABD=36°,∴△ADB 、△BDC 是等腰三角形,∴AD=BD=BC .(2)∵∠DBC=∠A=36°,∠C=∠C ,∴△ABC ∽△BDC ,∴BC :AC=CD :BC ,∴BC 2=AC •DC , ∵BC=AD ,∴AD 2=AC •DC ,∴点D 是线段AC 的黄金分割点.类型二、相似三角形2. 已知:如图,∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD 与a 、b 之间满足怎样的关系时,这两个三角形相似?【答案与解析】解:∵AC =a ,BC =b ,∴AB=22a b -,①当△ABC ∽△BDC 时,BD BC AB AC=, 即22b a b BD a-=. ②当△ABC ∽△CDB 时,BD BC CB AC=, 即2b BD a=. 【总结升华】相似三角形中未明确对应点和对应边时,要注意分类讨论.举一反三【变式】如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O.(1)求证:△COM∽△CBA; (2)求线段OM 的长度.【答案】(1)证明:A与C关于直线MN对称,∴AC MN,∴∠COM=90°,在矩形ABCD中,∠B=90°,∴∠COM=∠B ,又∠ACB=∠ACB,∴△COM∽△CBA ,(2)在Rt△CBA中,AB=6,BC=8,∴AC=10 ,∴OC=5,△COM∽△CBA,∴OC OM=BC AB,∴OM=15 4.类型三、相似三角形的综合应用3.(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC 于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.【答案与解析】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴,∵,AE=2,∴EC=6;(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,又∵∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG,∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP,∴线段CP是△CFG的FG边上的中线;②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°,∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【总结升华】本题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面的思考问题是解决问题的关键.4. 如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=α ,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB =42,AF =3,求FG 的长. 【答案与解析】 (1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM以下证明△AMF∽△BGM.∵∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B∴△AMF∽△BGM.(2)当α=45°时,可得AC⊥BC 且AC =BC∵M 为AB 的中点,∴AM=BM =22,又∵AMF∽△BGM,∴AF BM AM BG=, ∴3832222=⨯=⋅=AF BM AM BG , 又∵α=45°,AB =42,∴AC=BC=4,∴84433CG =-=,431CF =-=, ∴2222451()33FG CF CG =+=+= . 【总结升华】本题考查了相似三角形知识的综合运用,并且渗透了转化思想.5. 如图,已知在梯形ABCD 中,AD//BC ,AD=2,BC=4,点M 是AD 的中点,△MBC 是等边三角形.(1)求证:梯形ABCD 是等腰梯形.(2)动点P 、Q 分别在线段BC 和MC 上运动,且∠MPQ=60°保持不变.设PC=x ,MQ=y ,求y 与x 的函数关系式.【答案与解析】(1)∵MBC △是等边三角形∴60MB MC MBC MCB ===︒,∠∠∵M 是AD 中点,∴AM MD =,∵AD BC ∥,∴60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠,∴AMB DMC △≌△,∴AB DC =,∴梯形ABCD 是等腰梯形.(2)在等边MBC △中,4MB MC BC ===,60MBC MCB ==︒∠∠, 又∵60MPQ =︒∠,∴120BMP BPM BPM QPC +=+=︒∠∠∠∠,∴BMP QPC =∠∠,∴BMP CQP △∽△, ∴PC CQ BM BP=, ∵PC x MQ y ==, ∴44BP x QC y =-=-, , ∴444x y x-=- , ∴2144y x x =-+. 【总结升华】利用相似三角形得到的比例式,构建线段关系求得函数关系,关键是能够灵活运用所学知识来解题.举一反三【变式】如图所示,在Rt △ABC 中,∠A=90°,AB=8,AC=6.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE ∥BC 交AC 于点E ,设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?【答案】(1)∵DE∥BC,所以△ADE∽△ABC,∴.又∵AB=8,AC=6,,,∵,即,自变量x的取值范围为.(2).所以当时,S有最大值,且最大值为6.类型四、图形的位似6.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.【思路点拨】过B和B′向x轴引垂线,构造相似比为1:2的相似三角形,那么利用相似比和所给B′的横坐标即可求得点B的横坐标.【答案与解析】解:过点B、B'分别作BD⊥x轴于D,B'E⊥x轴于E,∴∠BDC=∠B'EC=90°.∵△ABC的位似图形是△A'B'C,∴点B、C、B'在一条直线上,∴∠BCD=∠B'CE,∴△BCD∽△B'CE.∴,又∵,∴,又∵点B'的横坐标是2,点C的坐标是(﹣1,0),∴CE=3,∴.∴,∴点B的横坐标为.【总结升华】难点是利用对应点向x轴引垂线构造相似三角形,关键是利用相似比解决问题.类型五、用相似三角形解决问题7.(2014•陕西)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?【思路点拨】根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE相似,再根据相似三角形对应边成比例列式求解即可.【答案与解析】解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,∴=,解得BD=13.6.答:河宽BD是13.6米.【总结升华】本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版九年级下册数学
重难点突破
知识点梳理及重点题型巩固练习
探索三角形相似的条件(提高)知识讲解
【学习目标】
1.掌握平行线分线段成比例定理以及和三角形一边平行的判定定理,并会灵活应用;
2.探索三角形相似的条件,掌握三角形相似的判定方法;
3.了解三角形的重心,并能从相似的角度去进行相关的证明. 【要点梳理】
要点一、平行线分线段成比例定理 1.平行线分线段成比例定理
两条直线被一组平行线所截,所得的对应线段成比例.
如图: l 1∥l 2∥l 3,直线a 、b 分别与l 1、l 2、l 3交于点A 、B 、C 和点D 、E 、F 、,则有 (1)
AB DE BC EF =(2)AB DE AC DF =(3)BC EF
AC DE
=
成立.
l 3
l 2
l 1
b
l 3
l 2
l 1
l 3
l 2
l 1
要点诠释:当两线段的比是1时,即为平行线等分线段定理,可见平行线等分线段定理是平行线分线段成比例定理特殊情况,平行线分线段成比例定理是平行线等分线段定理的推广.
2.平行于三角形一边的直线的性质
平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似. 要点诠释:
这条定理也可以作为判定两个三角形相似的判定定理,有时也把他叫做判定两个三角形相似的预备定理.
要点二、相似三角形的判定定理
【课程名称: 相似三角形的判定(1) 394497相似三角形的判定】 1.判定方法(一):两角分别相等的两个三角形相似. 要点诠释:
要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似. 2.判定方法(二):两边成比例夹角相等的两个三角形相似.
要点诠释:
此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的. 3.判定方法(三):三边成比例的两个三角形相似. 要点三、相似三角形的常见图形及其变换:
要点四、三角形的重心
三角形的三条中线相交于一点,这点叫做三角形的重心.
【典型例题】
类型一、平行线分线段成比例定理
1. 如图,在⊿ABC, DG ∥EC, EG ∥BC,求证:2
AE AB AD =⋅
A B
C
D G E
【答案与解析】 证明:∵DG ∥EC,

AD AG
AE AC
=,
∵EG ∥BC,
∴AE
AG
AB AC =, ∴AD
AE
AE
AB
=, 即2AE AB AD =⋅.
【总结升华】本题主要考查了平行线分线段成比例定理,掌握平行线分线段中的线段对应成比例是解题的关键. 举一反三:
【变式】如图,直线l 1∥l 2∥l 3,若AB=2,BC=3,DE=1,则EF 的值为( )
A.
23 B. 3
2
C. 6
D. 16
【答案】B.
【解析】∵直线l 1∥l 2∥l 3, ∴
AB DE
BC EF
=
, ∵AB=2,BC=3,DE=1,
∴21
3EF
=
, ∴EF=32

故选B .
2.如图,AD 是△ABC 的中线,P 是AD 上任意一点,CP 、BP 的延长线分别交AB 、AC 于E 、D 两点,连接EF.求证:EF ∥BC.
【思路点拨】构造平行线,利用平行线所截得的对应线段成比例来证明. 【答案与解析】延长PD 到M ,使DM=PD ,连接BM 、CM,
∵AD是△ABC的中线,
∴BD=CD,
∵DM=PD
∴四边形BPCM是平行四边形. ∴BP∥CM,即PF∥MC,
∴AF AP AC AM
=,
同理AE AP AB AM
=,
∴AE AF AB AC
=
∴DE∥BC.
【总结升华】平行线所截得的对应线段成比例,反过来如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
类型二、相似三角形的判定
【课程名称:相似三角形的判定(1) 394497
:练习4】
3.(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为多少?
【思路点拨】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.
【答案与解析】
解:∵四边形EFGH是矩形,
∴EH∥BC,
∴△AEH∽△ABC,
∵AM⊥EH,AD⊥BC,
∴=,
设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,
∴=,
解得:x=,
则EH=.
故答案为:.
4. (2015春•成武县期末)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.
【思路点拨】作MN∥BC交AC于点N,利用三角形的中位线定理可得MN的长;作∠ANM=∠B,利用相似可得MN的长.
【答案与解析】解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,
有,
∵M为AB中点,AB=,
∴AM=,
∵BC=6,
∴MN=3;
②图2,作∠ANM=∠B,则△ANM∽△ABC,
有,
∵M为AB中点,AB=,
∴AM=,
∵BC=6,AC=,
∴MN=,
∴MN的长为3或.
【总结升华】本题主要考查相似三角形的作图和相似三角形的判定以及存在性,解题的关键是注意相似作图及解答有多种情况.
举一反三:
【变式】(2015•大庆模拟)如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE=.
【答案】解:∵D为AB的中点,
∴BD=AB=,
∵∠DBE=∠ABC,
∴当∠DBE=∠ACB时,△BDE∽△BAC时,如图1,则=,即=,解得DE=2;当∠BDE=∠ACB时,如图2,DE交AC于F,
∵∠DAF=∠CAB,
∴△ADF∽△ACB,
∴△BDE∽△BCA,
∴=,即=,解得DE=,
综上所述,若直线DE截△ABC所得的三角形与△ABC相似,则DE=2或.。

相关文档
最新文档