北师大版初三下册数学知识点归纳
九年级下数学北师大知识点

九年级下数学北师大知识点数学作为一门学科,无疑对学生的思维能力和逻辑分析能力有着极大的提升作用。
而在九年级下学期,北师大数学知识点扮演着重要的角色。
本文将重点介绍九年级下数学北师大知识点的重要性及其内容。
首先,九年级下数学北师大知识点的学习对理解高中数学知识打下了坚实的基础。
北师大数学在全国享有盛誉,其数学体系严谨、深入,能够提高学生的数学思维能力和问题解决能力。
通过学习北师大数学,学生能够形成正确的数学思维方式,培养出良好的数学品味。
一、代数与函数代数与函数是九年级下数学的重点内容之一。
在代数与函数中,我们学习了多项式的四则运算、整式的因式分解、分式方程以及根式的运算等等。
这些内容的学习与应用能够提高学生的抽象思维能力和数学建模能力。
代数与函数还与我们的日常生活息息相关,例如,分式方程可以应用于解决实际生活中的比例问题,而多项式的因式分解则可以帮助我们简化复杂的数学运算。
二、几何几何是另一个重要的数学知识点,九年级下数学北师大知识点中的几何部分主要包括三角形的性质、向量与坐标等内容。
通过学习几何,我们能够加深对图形性质的理解和把握,培养我们的几何直观、空间想象能力。
三、概率与统计在九年级下学期,概率与统计是数学知识体系中不可或缺的一部分。
概率与统计是对事物随机性和不确定性进行量化和描述的一门学科。
学习概率与统计,我们需要了解概率的基本概念、事件的计算、统计分布以及抽样调查等等。
通过这些知识的学习,我们能够更好地理解和解决生活中的一些概率与统计问题,例如评估事件发生的可能性、分析数据并得出结论等。
总之,九年级下数学北师大知识点的学习不仅能够提高学生的数学思维能力和解决问题的能力,还对学生的高中数学学习打下了坚实的基础。
代数与函数、几何以及概率与统计等内容涵盖了数学学科的不同领域,通过学习这些知识,我们能够全面地了解和应用数学在生活中的各个方面。
因此,我们应该重视九年级下数学北师大知识点的学习,不断提高自己的数学水平。
北师大版初中数学知识点归纳(初中完整版)

第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形.立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体.3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.7、三视图物体的三视图指主视图、俯视图、左视图.主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。
弧:圆上A 、B 两点之间的部分叫做弧.扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.第二章 有理数及其运算1、有理数的分类 正有理数有理数 零 有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可).任何一个有理数都可以用数轴上的一个点来表示。
北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
数学北师大版九年级下册知识点

数学北师大版九年级下册知识点数学是一门关乎逻辑和分析的学科,让人们学会运用数学思维解决问题。
北师大版九年级下册数学知识点涵盖了较为广泛的内容,下面我们将对其中的一些关键知识点进行探讨。
首先,我们来聊聊代数方程。
代数方程是数学中非常重要的一环,它涉及到字母与数字的关系,让我们可以通过已知条件推算出未知量。
九年级下册数学教材中,代数方程的难度逐渐加深,从一元一次方程开始,到一元二次方程和二元一次方程等等。
学生需要学会从生活中的问题转化为数学方程,再通过方程求解得到答案。
在九年级下册数学中,还介绍了平方根与立方根的概念和运算规律。
平方根是指一个数的平方等于该数本身的正数解,而立方根则是指一个数的立方等于该数本身的正数解。
理解这两个概念对于后续学习数学非常重要,因为它们在实际问题中有广泛的应用,比如计算面积、体积等等。
另一个重要的数学知识点是二次根式。
二次根式是指形如√a的数,其中a是一个非负实数。
九年级下册数学课本中对二次根式的运算有详细的介绍,包括加减乘除的规则和简化方法。
通过学习二次根式,同学们可以更好地理解根式的概念,并能够自如地进行根式的运算。
除此之外,九年级下册数学还涉及到如数列、函数、几何、概率等知识点。
数列是一组按照一定规律排列的数,九年级下册数学课本介绍了等差数列和等比数列的概念及其求和公式。
函数是数学中的一种映射关系,它可以将一个数集中的每个数映射到另一个数集中的唯一一个数。
几何则是研究点、线、面和体等几何对象及其性质的学科,九年级下册数学课本主要涉及到三角形、四边形和圆等几何图形的性质和计算。
概率是数学中研究随机事件发生的可能性的学科,九年级下册数学课本中介绍了概率的基本概念、计算方法和应用。
总而言之,九年级下册数学知识点的学习是学生数学基础能力的提升和扩展的重要环节。
通过对代数方程、平方根与立方根、二次根式、数列、函数、几何和概率等知识点的学习,同学们可以更深入地理解数学的本质,培养解决实际问题的能力,为进一步学习高中数学打下坚实的基础。
北师大版初中数学九年级(下册)知识点汇总

北师大版初中数学九年级(下册)知识点汇总第一章 直角三角形边的关系※一. 正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。
※二. 正弦..: 定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;※三. 余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;※余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则 ①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒= ②)90cot(tan A A ∠-︒=; )90tan(cot A A ∠-︒=※当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. ※当从高处观测低处的目标时,视线与水平线所成图1图 3图4的锐角称为俯角..※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
初三数学知识点归纳北师大版

初三数学知识点归纳北师大版初三数学知识点归纳北师大版涵盖了初中数学的核心内容,为学生提供了一个系统性的复习框架。
以下是北师大版初三数学的主要知识点归纳:1. 数与式- 实数的概念和分类,包括有理数和无理数。
- 绝对值的性质和运算法则。
- 代数式的运算,包括加减乘除和乘方运算。
- 因式分解的方法,如提公因式法、公式法和分组分解法。
2. 方程与不等式- 一元一次方程的解法,包括移项和合并同类项。
- 一元二次方程的解法,如直接开平方法、配方法、公式法和因式分解法。
- 不等式的基本性质和解法,包括一元一次不等式和一元二次不等式。
- 含绝对值的不等式的解法。
3. 函数- 函数的概念,包括定义域、值域和对应法则。
- 一次函数的图象和性质,以及一次函数与一元一次方程的关系。
- 二次函数的图象和性质,包括开口方向、顶点坐标和对称轴。
- 反比例函数的图象和性质,以及反比例函数与一次函数的关系。
4. 几何图形- 线段、射线和直线的性质和关系。
- 角的概念和分类,包括锐角、直角、钝角和平角。
- 多边形的性质,如三角形的内角和定理和多边形的内角和定理。
- 圆的性质,包括圆心角、弧长和扇形面积的计算。
5. 统计与概率- 数据的收集和整理,包括统计表和统计图的绘制。
- 描述性统计,如众数、中位数和平均数的计算。
- 概率的基本概念,包括随机事件和概率的计算方法。
- 简单事件的概率计算,如古典概型和几何概型。
通过以上知识点的归纳,学生可以对初三数学有一个清晰的认识和掌握,为中考做好充分的准备。
在复习过程中,建议学生结合实际例题进行练习,以加深对知识点的理解和应用能力。
同时,定期进行模拟测试,以检验学习效果和查漏补缺。
初三数学知识点北师大版

初三数学知识点北师大版学习从来无捷径,循序渐进登高峰。
如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。
学习需要勤奋,做任何事情都需要勤奋。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级下册数学知识点归纳知识点1.概念把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理九年级下册数学知识点总结【篇一:直线与圆的位置关系】①直线和圆无公共点,称相离。
(完整版)北师大版九年级数学下册知识点归纳复习提纲

图1 新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值30 º45 º 60 º sin α21 22 23 h i=h:lBC三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版初三下册数学知识点归纳
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0. 3.直角坐标系中,点A(1,1)在第一象限. 4.直角坐标系中,点A(-2,3)在第四象限. 5.直角坐标系中,点A(-2,1)在第二象限.
知识点3:已知自变量的值求函数值
3的值为1. 2.当x=3时,函数y=1的值为1.-1.当x=2时,函数y=2x
2-x
3.当x=-1时,函数y=1的值为1.
3-x
知识点4:基本函数的概念及性质
12-=1.函数y=-8x是一次函数. 2.函数y=4x+1是正比例函数. 3.函数y
12=x是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线y
2的顶点坐标是(1,2).+1)2-(x
=7.反比例函数y
的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1.直线与圆有公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线.
7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径.
知识点9:圆与圆的位置关系
1.两个圆有且只有一个公共点时,叫做这两个圆外切.
2.相交两圆的连心线垂直平分公共弦.
3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线切点.
知识点10:正多边形基本性质
1.正六边形的中心角为60°. 2.矩形是正多边形.
3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.
知识点11:一元二次方程的解
0的根为.7.不解方程,判别方程x2+4x+2=0的根的情况是.=4-1.方程x2
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根A.x1=-3,x2=4 B.x1=-3,x2=-4 C.x1=3,x2=4
A.x=2 B.x=-2 C.x1=2,x2=-2 D.x=4 2.方程x2-1=0的两根为A.x=1 B.x=-1 C.x1=1,x2=-1 D.x=2 3.方程(x-3)(x+4)=0的两根为.
D.x1=3,x2=-4
4.方程x(x-2)=0的两根为A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2 5.方程x2-9=0的两根为A.x=3 B.x=-3 C.x1=3,x2=-3 D.x1=+3,x2=- 知识点12:方程解的情况及换元法
0的根的情况是.=2-3x+1.一元二次方程4x2
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
2.不解方程,判别方程3x2-5x+3=0的根的情况是.
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
3.不解方程,判别方程3x2+4x+2=0的根的情况是.
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
4.不解方程,判别方程4x2+4x-1=0的根的情况是.
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
5.不解方程,判别方程5x2-7x+5=0的根的情况是.
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
6.不解方程,判别方程5x2+7x=-5的根的情况是.
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
8. 不解方程,判断方程5y2+1=25y的根的情况是
3)-(x-3-A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用换元法解方程x25x
x2
4时, 令x2=
3-x
= y,于是原方程变A.y2
-5y+4=0 B.y2
-5y-4=0 C.y2
-4y-5=0
D.y2
+4y-5=0
3)-(x-3-3x-10. 用换元法解方x25x
x2
4时,x2= y ,于是原方程变为. A.5y2=
-4y+1=0 B.5y
-4y-1=0 C.-5y
-4y-1=0
D. -5y2
-4y-1=0 11. 用换元法解方程(
1+1)2-5(xx+xx
)+6=0时,设x
1+x
=y,则原方程化为关于y的方程是A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0 知识点13:自变量的取值范围
2中,自变量x的取值范围是A.x≠2 B.x≤-2 C.x≥-2 D.x≠-2 2.函数y=-x=1.函数y
3-x
的自变量的取值范围是. A.x>3 B. x≥3 C. x≠3 D. x为任意实数3.函数y=
1+x
的自变量的取值范围是. A.x≥-1 B. x>--1 C. x≠1 D. x≠-1 4.函数y=
1-x
的自变量的取值范围是. A.x≥1 B.x≤1 C.x≠1 D.x为任。