最新九年级下册人教版数学知识点归纳

合集下载

人教版九年级下数学知识点

人教版九年级下数学知识点

人教版九年级下数学知识点一、代数(Algebra)1. 数的性质与运算:包括整数、分数、小数的加减乘除运算规则以及数轴上的表示与比较。

2. 一元一次方程与不等式:介绍一元一次方程的解法,包括基本的移项、去括号和合并同类项等步骤。

还有一元一次不等式的解法。

3. 二元一次方程组:学习通过消元法、代入法来解决二元一次方程组。

4. 百分数与利率:介绍百分数与小数的关系,以及利率的计算方法。

5. 平方根与立方根:学习求平方根和立方根的方法,掌握简化根式的技巧。

6. 幂与指数:介绍幂的运算法则,包括同底数幂的乘法和除法,以及指数归零法则。

7. 图形的坐标与表示:学习平面直角坐标系,了解坐标的含义以及如何用数学语言表示图形。

8. 几何的初步认识:介绍几何的基本概念,包括点、线、面等,探索平行线与垂线的性质。

9. 图形的变换:学习平移、旋转、翻转等图形变换的定义和性质,以及如何描述它们。

10. 直角三角形:介绍直角三角形的基本概念和性质,学习三角函数的定义与运用。

二、数据与统计(Data and Statistics)1. 数据的收集与整理:学习调查数据的收集方法,包括问卷调查、实地观察以及信息收集与整理。

2. 统计指标:介绍数据的集中趋势度量,包括平均数、中位数和众数等。

3. 样本调查与总体估计:学习对样本数据进行推断统计,了解如何通过样本推断总体信息。

4. 折线图与统计图:学习如何用折线图和统计图来展示数据,了解图表的特点以及如何阅读和解读。

三、几何(Geometry)1. 平面图形的认识:介绍多边形、圆、三角形等平面图形的定义和性质,了解它们的特点。

2. 类比与相似:学习相似图形的定义和判定条件,探索相似图形的性质和应用。

3. 平行四边形与梯形:介绍平行四边形和梯形的性质,学习求解相关问题的方法。

4. 圆的性质与应用:了解圆的相关定义和性质,学习应用圆的知识解决问题。

5. 空间图形的认识:介绍立体图形的基本概念,包括长方体、正方体、圆柱体和圆锥体等。

新整理人教版九年级数学下册重要知识点提纲

新整理人教版九年级数学下册重要知识点提纲

新整理人教版九年级数学下册重要知识点提纲第一章函数的概念与性质- 函数的概念及表示方法- 函数的自变量和函数值- 函数的定义域和值域- 过点作图法和描点法- 直线函数- 函数的单调性和奇偶性- 函数y=f(x)+b及y=f(x-a)的图像第二章常见函数- 一次函数和二次函数- 幂函数和指数函数- 对数函数- 三角函数- 周期性函数- 分段函数第三章几何变换与图形- 平移- 旋转- 对称- 相似- 位似- 平面镜映- 空间镜映第四章数据和命题逻辑- 统计调查设计和问卷编制- 统计分布和统计图形- 等差数列和等比数列- 命题与命题联结词- 命题公式及命题的真值- 命题的充分条件和必要条件- 等价命题和常用命题的否定第五章几何图形的计算- 四边形- 三角形- 圆- 圆环和扇形- 球及其它圆锥体和圆柱体的计算第六章立体几何初步- 空间坐标系和三视图- 立体图形的种类和特征- 立体图形的表面积和体积- 平面和直线与立体的位置关系- 空间中的投影第七章相似和全等- 相似的基本概念- 判定两个三角形全等的条件- 根据全等判定几何关系- 测量和应用三角形的面积和周长- 测量和应用圆的周长和面积第八章数形关系初步- 万能公式及其应用- 勾股定理及其逆定理- 正弦、余弦、正切的定义和计算- 海伦公式及其应用- 同济柿子及其应用第九章海量数据的处理和分析- 经验规律的发现- 数据分析与表示- 用样本估计总体- 正态分布及其应用- 离散变量和连续变量的概念- 描述数据的集中趋势和离散程度- 概率的概念及其性质以上是新整理人教版九年级数学下册的重要知识点提纲。

新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结

新人教版九年级数学下册知识点总结一、代数运算1.1 代数式的加减法•同类项的加减法•类似于消元法的方法1.2 代数式的乘法•求和乘积公式的应用•二项式定理及其应用1.3 代数式的除法•解代数式的除法•解代数式的分式1.4 方程与方程组•一次方程与一元一次方程组•二次方程的实数解与复数解•对数与指数方程1.5 不等式•一元一次不等式•一元二次不等式•绝对值不等式二、函数初步2.1 函数的概念•种类和性质•同一函数的多种表达式2.2 函数的图像•根据函数式绘制图像•通过给定图像识别函数2.3 函数的初步性质•奇偶性•单调性•函数的最值、零点和交点2.4 一次函数•一次函数的定义和性质•一次函数的图像2.5 二次函数•二次函数的定义和性质•二次函数的图像、顶点、轴、对称性和解析式三、几何初步3.1 相似与全等•相似的判定和性质•全等的判定和性质3.2 三角形•三角形的基本性质•三角形的分类和判定3.3 平面图形的面积与体积•基本图形面积的计算•三棱锥、三棱柱、正棱锥、正棱柱、正方体、正六棱体的侧面积和体积3.4 内角和与逆定理•顶角平分线定理•中线定理•垂线定理3.5 圆•圆的周长•圆的面积•切线与割线四、统计初步4.1 数据汇总与整理•频率表的制作•条形图和折线图的绘制4.2 统计量•平均数、中位数、众数的概念•均值与平均数•离差与标准差4.3 概率•随机事件、样本空间与事件的概念•概率的概念和公式•寻找概率的方法五、解析几何初步5.1 直线的方程•一般式、截距式、斜截式等•方向角和斜率的概念5.2 圆的方程•标准式和一般式•圆的半径、直径等5.3 平面直角坐标系•坐标系的引入•坐标系的应用5.4 向量初步•向量的概念和运算•向量与坐标和距离的关系以上为新人教版九年级数学下册的知识点总结,本文档仅供参考和复习使用,请谨慎参考。

人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。

另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。

反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。

二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。

在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。

2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。

3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。

图像关于直线y=x和y=-x对称。

4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。

九年级下册数学全部知识点

九年级下册数学全部知识点

九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。

在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。

数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。

通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。

希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。

九年级下册数学知识点汇总(人教版)

九年级下册数学知识点汇总(人教版)

九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。

2024年人教版九年级数学知识点总结(2篇)

2024年人教版九年级数学知识点总结一、代数与函数1. 代数式和多项式- 代数式的概念和性质- 同类项的概念和合并方法- 多项式的加减法、乘法和除法2. 一元一次方程与一元一次不等式- 一元一次方程的解法(整数解、小数解、分数解)- 一元一次方程的应用题解法- 一元一次不等式的解法和绘制解集的方法3. 二元一次方程组- 二元一次方程组的解法(代入法、消元法)- 二元一次方程组的应用题解法4. 平方根和简化与扩展- 平方根的概念和性质- 简化与扩展式的概念和计算方法5. 二次根式与二次方程- 二次根式的概念和性质- 二次方程的解法(配方法、求判别式)- 二次方程的应用题解法6. 等差数列与等比数列- 等差数列的概念和性质- 等差数列的通项和求和公式- 等差数列的应用题解法- 等比数列的概念和性质- 等比数列的通项和求和公式- 等比数列的应用题解法7. 幂与指数函数- 幂的基本性质和运算法则- 指数函数的定义和性质- 幂函数与指数函数的应用题解法二、几何与图形1. 平行线与三角形- 平行线的判定方法和性质- 平行线的性质在三角形中的应用- 三角形的分类和性质- 三角形的周长和面积计算方法2. 四边形与多边形- 平行四边形的性质和判定方法- 矩形、正方形、菱形的性质和计算方法- 多边形的性质和计算方法(正多边形、不规则多边形)3. 圆与圆的性质- 圆的定义和基本性质- 圆的面积和周长计算方法- 圆心角、弧长和扇形面积的计算方法- 圆与圆的位置关系(相交、相切等)4. 空间几何体- 空间几何体的基本概念(球、柱、锥、棱镜等)- 空间几何体的面积和体积计算方法5. 相似与全等三角形- 三角形的相似判定和性质- 三角形的相似比例和相似比例的性质- 三角形的全等判定和全等条件- 三角形的全等性质和全等定理的证明三、数与统计1. 整数与有理数- 整数的性质和运算法则- 有理数的概念和性质- 有理数的加减乘除法运算法则2. 分数与实数- 分数的概念和性质- 分数的加减乘除法运算法则- 实数的分类和计算方法3. 数据与统计- 数据的收集和整理方法- 统计量的计算和表示方法- 点图、折线图、柱状图、饼图的制作方法4. 概率与统计- 随机事件的概念和性质- 概率的计算方法(几何概率、频率概率)- 概率的应用(事件的独立性、互斥性)以上是____年人教版九年级数学的主要知识点总结,总字数约为____字。

人教版九年级下册数学课本知识点总结

人教版九年级下册数学课本知识点总结第二十六章反比例函数一、反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图像与x轴、y轴无交点.二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x≠,函数值0y≠,所以它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:()2.自变量的取值范围:3.图像:(1)图像的形状:双曲线,越大,图像的弯曲度越小,曲线越平直。

越小,图像的弯曲度越大。

(2)图像的位置和性质:当时,图像的两支分别位于一、三象限;在每个象限内,y随x 的增大而减小;当时,图像的两支分别位于二、四象限;在每个象限内,y随x 的增大而增大。

(3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支。

图像关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上。

.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|。

九年级下册人教版数学知识点归纳

第二十二单元(Yuan) 二次函数一、二次(Ci)函数概念:1.二次函数(Shu)的概念:一(Yi)般地,形如(是常(Chang)数,)的函数,叫做二次函数。

这里需(Xu)要强调:和一元二次方程类似,二次项系数0a≠,而(Er)可以为零.二次函数(Shu)的定义域是全体实数.2. 二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是关于自变量的二次式,x的最高次数是2.⑵a b c,,是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式二次函数的基本形式的性质:a 的绝对值越大,抛物线的开口越小。

三、二次函数图象的平移1. 平移步骤:方法一:⑴将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k,;⑵保持抛物线的形状不变,将其顶点平移到()h k,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,cbxaxy++=2变成(或)⑵cbxaxy++=2沿轴平移:向左(右)平移m个单位,cbxaxy++=2变成(或)四、二次函数()2y a x h k=-+与2y ax bx c=++的比较从解析式上看,()2y a x h k=-+与2y ax bx c=++是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数2y ax bx c=++化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点、以及()0c,关于对称轴对称的点、与x轴的交点,(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点. 六、二次函数2y ax bx c=++的性质1. 当0a>时,抛物线开口向上,对称轴为,顶点坐标为.a的符号开口方向顶点坐标对称轴性质向上X=h时,随x的增大而增大;时,y随x的增大而减小;时,y有最小值.向下()h k,X=hx h>时,y随x的增大而减小;x h<时,y随x的增大而增大;x h=时,y有最大值k.当(Dang)时(Shi),y 随(Sui)x 的增大而减小(Xiao);当时(Shi),y 随(Sui)x 的增(Zeng)大而增大;当2bx a=-时(Shi),y 有最小值.2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:(0a ≠,,是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.的符号的判定:对称轴在y 轴左边则,在y 轴的右侧则,概括的说就是“左同右异”3. 常数项c c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程是二次函数2y ax bx c =++当函数值时的特殊情况.图象与x 轴的交点个数: ① 当时,图象与x 轴交于两点,其中的是一元二次方程的两根.这两点间的距离. ② 当时,图象与x 轴只有一个交点; ③ 当时,图象与x 轴没有交点. 当时,图象落在x 轴的上方,无论x 为任何实数,都有;当时,图象落在x 轴的下方,无论x 为任何实数,都有.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为,;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.第一单元 二次根式1、二次根(Gen)式式(Shi)子叫做二次根式,二次根式必须满足(Zu):含有二次根号“”;被开方数(Shu)a必须是非负数。

人教版九年级下册数学知识点汇总

一、二次函数1.二次函数定义o二次函数(quadratic function)是指未知数的次数为二次的多项式函数,可以表示为f(x)=ax²+bx+c(a不为0)。

2.基本形式o一般式:y=ax²+bx+c (a≠0)o顶点式:y=a(x-h)²+k 或y=a(x+m)²+k(h, k为常数,a≠0)o交点式(与x轴):y=a(x-x1)(x-x2)3.重要概念o顶点坐标:(-b/2a, (4ac-b²)/4a)o开口方向:由a决定,a>0时开口向上,a<0时开口向下。

o开口大小:由|a|决定,|a|越大开口越小,|a|越小开口越大。

4.函数变化o当a>0时,x>0时y随x增大而增大;x<0时y随x增大而减小。

o当a<0时,x>0时y随x增大而减小;x<0时y随x增大而增大。

二、相似三角形1.相似三角形的定义o三条边对应成比例,三个角对应相等的两个三角形叫相似三角形。

2.相似比o相似三角形的对应边的比叫作这两个三角形的相似比。

3.判定定理o如果两个三角形的两个角对应相等,则这两个三角形相似。

o如果两个三角形的两组对应边的比相等,并且相应的夹角相等,则这两个三角形相似。

o如果两个三角形的三组对应边的比相等,则这两个三角形相似。

o平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

4.特殊情况o两个等边三角形一定相似。

o两个等腰直角三角形一定相似。

5.相似三角形的性质o相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

o相似三角形周长的比等于相似比。

o相似三角形面积的比等于相似比的平方。

三、锐角三角函数1.基本概念o在直角三角形中,锐角的正弦(sin)、余弦(cos)和正切(tan)等称为锐角三角函数。

2.定义o正弦(sin):对边/斜边o余弦(cos):邻边/斜边o正切(tan):对边/邻边o余切(cot):邻边/对边3.特殊角的三角函数值o需要记忆如30°、45°、60°等特殊角的三角函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二单元 二次函数1 一、二次函数概念:2 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的3 函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系4 数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.52. 二次函数2y ax bx c =++的结构特征:6 ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.7 ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.8二、二次函数的基本形式9 二次函数的基本形式()2y a x h k =-+的性质: 10 a 的绝对值越大,抛物线的开口越小。

1112 三、二次函数图象的平移13 1. 平移步骤:14 方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; 15 ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:16【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位172. 平移规律 18 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.19概括成八个字“左加右减,上加下减”.20 方法二:21⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 22 m c bx ax y +++=2(或m c bx ax y -++=2)23 ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成24 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)25 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较26 从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过27配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 28 五、二次函数2y ax bx c =++图象的画法29 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,30 确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画31 图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴32 对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组33 关于对称轴对称的点).34 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的35交点.36 六、二次函数2y ax bx c =++的性质37 1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 38 当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当392bx a=-时,y 有最小值244ac b a -. 402. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为412424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而42 减小;当2bx a=-时,y 有最大值244ac b a -.4344 七、二次函数解析式的表示方法45 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 462. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);47 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).48 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的49 二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛50物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.51八、二次函数的图象与各项系数之间的关系52 1. 二次项系数a53二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的54 大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 55 2. 一次项系数b56 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.57 ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,58概括的说就是“左同右异”59 3. 常数项c c 决定了抛物线与y 轴交点的位置.60 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 61 二次函数解析式的确定: 62 根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次63函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,64 有如下几种情况:65 1. 已知抛物线上三点的坐标,一般选用一般式;66 2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 67 3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式; 68 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.69九、二次函数与一元二次方程: 70 1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):71 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情72况.73 图象与x 轴的交点个数:74 ① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的7512x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离76 21AB x x =-=. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,77 图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有78 0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 79 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 80 3. 二次函数常用解题方法总结: 81 ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;82⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点83式; 84 ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次85 函数中a ,b ,c 的符号判断图象的位置,要数形结合;86 ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的87 点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.8889第一单元二次根式90911、二次根式92式子)0(≥aa叫做二次根式,二次根式必须满足:含有二次根号“”;被开方93数a必须是非负数。

942、最简二次根式95若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得96尽方的因数或因式,这样的二次根式叫做最简二次根式。

97化二次根式为最简二次根式的方法和步骤:98(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质99把它写成分式的形式,然后利用分母有理化进行化简。

100(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽101方的因数或因式开出来。

1023、同类二次根式103几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做104同类二次根式。

1054、二次根式的性质106(1))0()(2≥=aaa107)0(≥aa108(2)==aa2109)0(<-aa110(3))0,0(≥≥•=babaab111(4))0,0(≥≥=bababa1125、二次根式混合运算113二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有114括号的先算括号里的(或先去括号)。

115116117第二单元一元二次方程118119一、一元二次方程1201、一元二次方程121含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

1222、一元二次方程的一般形式123 )0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,124等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一125 次项系数;c 叫做常数项。

126127 二、一元二次方程的解法128 1、直接开平方法129 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直130接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,131 a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有132 实数根。

133 2、配方法134 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数135学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式136 222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有137 222)(2b x b bx x ±=+±。

138 3、公式法139 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方140法。

141 一元二次方程)0(02≠=++a c bx ax 的求根公式:142)04(2422≥--±-=ac b aac b b x1434、因式分解法144 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,145是解一元二次方程最常用的方法。

146 三、一元二次方程根的判别式 147 根的判别式148 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程149)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆ 150 ①当△>0时,一元二次方程有2个不相等的实数根;151 ②当△=0时,一元二次方程有2个相同的实数根; 152 ③当△<0时,一元二次方程没有实数根153 四、一元二次方程根与系数的关系154 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么abx x -=+21,155acx x21。

相关文档
最新文档