常微分课后答案解析第二章
常微分方程教程_丁同仁(第二版)_习题解答_2

常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
习题 4-1 1.求解下列微分方程 1) 2 y = p + 4 px + 2 x
y = xp + f ( p )
(p =
dy ) (1) dx
dp =0 dx
dp =0 dx
即 p = c时 (2)
代入(1)得(1)的通解
y = cx + f (c)
它的 C—判别式为
y = cx + f (c) x + f ' (c ) = 0
由此得
Λ:x = − f '(c)) = ϕ (c ) , y = −cf '(c) + f (c) = ψ (c )
1 = dy 2 cos t 5
5 1 ( 2 sin t ) = d 2 cos t
5 dt 从而得 2
x=
5 2
t+c 5 t + c , y = 2 sin t 2
x 因此方程的通解为 =
消去参数 t,得通解
= y
2 sin
2 (x − C) 5 dy = 0 ,显然 dx
对于方程除了上述通解,还有 y = ± 2 ,
检验知
y = 2x +
Fy' ( x, y, p) = 1 ,
" Fpp ( x, y , p ) = 2 p ,
Fp' ( x, y, p) =−1 + p 2
常微分方程第二章练习与答案

1 / 16习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂xQ, 所以 x Q y P ∂∂≠∂∂ 即 原方程不是恰当方程. 2.0)2()2(=+++dy y x dx y x 解:,2),(y x y x P +=,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂xQ所以x Q y P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax 〔a,b 和c 为常数〕. 解:,),(by ax y x P +=,),(cy bx y x Q +=则,b y P =∂∂,b xQ =∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -=,),(cy bx y x Q -=则,b y P -=∂∂,b xQ=∂∂ 因为 0≠b , 所以x Q y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P +=u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t xQ=∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t2 / 16两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye xxx解: xy e y x Q y e ye y x P xxx2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e xQx +=∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e xxx两边积分得:.)2(2C xy e y x=++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则02)ln (2=-++ydy dx x xdy dx x y两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy xQ =∂∂ 所以 当x Q y P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212tss Q -=∂∂ 所以x Q y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.3 / 1610.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy xQ '=∂∂ 所以x Q y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22<其中F 为f 的原积分>.习题2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::〔1〕yx dx dy 2= 解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .〔2〕)1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=4 / 16两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .〔3〕0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .〔4〕221xy y x dx dy +++=;解:原方程即为:2(1)1dyx dx y =++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. 〔5〕2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. 〔N k ∈〕 〔6〕21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ②1±=y 也是方程的解.〔7〕.yxe y e x dx dy +-=- 解.原方程即为:dx ex dy e y xy)()(--=+5 / 16两边积分得:c e x e y x y++=+-2222, 原方程的解为:c ee x y xy=-+--)(222.2. 解下列微分方程的初值问题. 〔1〕,03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y . 〔2〕.0=+-dy ye xdx x, 1)0(=y ; 解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x.〔3〕.r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln ,因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.〔4〕.,1ln 2yx dx dy+=0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=6 / 16〔5〕.321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. 〔1〕.x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:〔2〕.ay dxdy=, 〔常数0≠a 〕; 解:①当0≠y 时,原方程即为:dx ay dy = 积分得:c x y a +=ln 1, 即 )0(>=c cey ax②0=y 也是方程的解. 积分曲线的简图如下:7 / 16〔3〕.21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:〔4〕.n y dx dy =, )2,1,31(=n ; 解:①当0≠y 时, ⅰ〕2,31=n 时,原方程即为 dx y dy n =,积分得:c y n x n=-+-111.8 / 16ⅱ〕1=n 时,原方程即为dx ydy= 积分得:c x y +=ln ,即 )0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某9 / 16B 从点开始跟踪A,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意与导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln21y b y b b y b b b x ----++=. 5. 设微分方程)(y f dxdy=〔2.27〕,其中f<y> 在a y =的某邻域〔例如,区间ε<-a y 〕内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程〔2.27〕的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)(〔发散〕. 证明:〔⇒〕首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点〔00,y x 〕恰有方程〔2.13〕的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. 〔*〕 这些积分曲线彼此不相交. 其次,域1R 〔2R 〕内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
第二章习题解题过程和参考答案

第二章习题解题过程和参考答案第二章习题解题过程和参考答案2-1 试建立题2-1图所示各系统的微分方程 [其中外力)(t f ,位移)(t x 和电压)(t u r为输入量;位移)(t y 和电压)(t u c为输出量;k (弹性系数),μ(阻尼系数),R (电阻),C (电容)和m (质量)均为常数]。
解:2-1(a) 取质量m 为受力对象,如图,取向下为力和位移的正方向。
作用在质量块m 上的力有外力f(t),重力mg ,这两个力向下,为正。
有弹簧恢复力[]0)(y t y k +和阻尼力()dy t dtμ,这两个力向上,为负。
其中,0y 为0)(=t f 、物体处于静平衡位置时弹簧的预伸长量。
根据牛顿第二定理F ma ∑=,有[]22()()()()dy t d y t f t mg k y t y m dt dtμ+-+-= 其中:0ky mg =代入上式得22)()()()(dt t y d mdt t dy t ky t f =--μ整理成标准式:22()()()()d y t dy t m ky t f t dt dtμ++=μμ()f t[()k y t +()dy t dt或也可写成:22()()1()()d y t dy t k y t f t dt m dt m mμ++=它是一个二阶线性定常微分方程。
2-1(b) 如图,取A 点为辅助质点,设该点位移为()Ax t ,方向如图。
再取B 点也为辅助质点,则该点位移即为输出量()y t ,方向如图A 点力平衡方程:1()()[()()][]AAdx t dy t k x t x t dt dtμ-=- ① B 点力平衡方程:2()()()[]Adx t dy t k y t dt dtμ=- ②由①和②:12[()()]()A k x t x t k y t -= 得:21()()()Akx t x t y t k=-二边微分:21()()()Adx t k dx t dy t dt dt k dt=-③将③代入②:221()()()()[]k dx t dy t dy t k y t dt k dt dtμ=--整理成标准式:1221()()()k k k dy t dx t y t k dt dtμ++=或也可写成:()A t AB1211212()()()()k k k dy t dx t y t dt k k k k dtμ+=++它是一个一阶线性定常微分方程。
常微分方程第二章

m
6:x
dy x− y =e dx 解:变量分离, e dy = e dx 两边积分得: e =e +c 11.
2 dy = ( x + y) dx y x y x
变量分离得:2
1 +1
12. 解
令x + y = t,则 变量分离
t2 dt = dx,两边积分t − arctgt = x + c,代回变量 t 2 +1 x + y − arctg ( x + y) = x + c dy 2 x − y − 1 = dx x − 2 y + 1
2
ww
w.
e
y x
解:变量分离,得
9 : x (ln x − ln y )dy − ydx = 0 y y 解:方程可变为: − ln • dy − dx = 0 x x y 1 ln u 令u = , 则有: dx = − d ln u x x 1 + ln u y 代回原变量得:cy = 1 + ln 。 x dy x− y 10: = e dx 解:变量分离 e dy = e dx 两边积分 e = e + c
w.
0
19. 已知 f(x) ∫ f ( x)dt = 1, x ≠ 0, 试求函数f ( x)的一般表达式 .
x
1 y = − 2 y' 1 y 解:设 f(x)=y, 则原方程化为 ∫ f (x)dt = 两边求导得 y 0 − y3 = dy 1 1 1 1 ; ; ; ; ; ; ; ; ; ; dx = − 3 ; ; ; ; ; ; ; ; ; ; ; ; 两边积分得x + c = ; ; ; ; ; 所以y = ± 2 dx 2y y dy 2x + c 1 代入
常微分答案方程.doc

第一章初等积分法§1.1 微分方程和解习题简单,略。
§1.2 变量可分离方程(P14)1.求下列可分离变量方程的通解:(1)ydy = xclx : (2) y = y\n y : (3) y = e x~y : (4) tan ydx—colxdy = Q o解:(1)通解为/ =^2 + Co (2)通解为lny = C0L(3)通解为,=e'+C。
(4)通解为sinycosx = C。
2.求下列方程满足给定初始条件的解:(1))/ =),(、—1),),(0) = 1; (2)(疽―i)y +2勺,2 =(),贝())=1 ;(3) / = y(2) = 0; (4) (y2 + xy2)dx-(x2 + yr2)dy = 0,y(l) = -1«解:(1)y=1;(2) y(ln|x2 -1|+1) =1: (3) y, =0,y2 =(x-2)3; (4)-= -厂;。
- y3 .利用变量替换法把下列方程化为变量可分离方程:⑴ y r = f(ax+by^c): (2)孚=二,(封);⑶牛="(易;ax x ax⑷ f(xy)y + g(xy)xy f = 0, /(w)丰 g("), /(w), g(")连续。
解:(1)令〃 = or + ” + c,则u f = a + by =a + hf\u)变量分离。
(2)令a = xy ,则/ = y +板=■ +『鼻f(u) = 〃 + '(")变量分离。
x x~ x(3)令〃 = 则_/= "/+ 2心=对*("), / = ~ 变量分离。
r x(4)令u = xy^ ,则 # = y + w,= y-虫少~ = )变量分离。
g(“) x g(u)4.求解方程xjl -y2dx + y\j\ - x2 dy = 0 o解:通解:Jl —b + Jl —y」=C(C>0)。
常微分方程课后答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分数值方法部分课后习题答案

第二章 偏微分方程的有限差分法
- 1 -
第二章 椭圆型微分方程的有限差分法
两式做差, 整理变形有
u ( xi ) − u ( xi − h) 1 1 1 = u '( xi − h) + 2 h 2 u '''( xi − h) + O ( h3 ) 2 2 h 2 3!
由此容易验证 2 3 ⎛ [u ]i − [u ]i −1 ⎞ h ⎡ d u ⎤ ⎡ du ⎤ = − p p p + O(h3 ) , 1 ⎢ ⎜ ⎟ 24 3 ⎥ ⎢ dx ⎥ 1 i− h ⎣ ⎦i − ⎠ ⎣ dx ⎦ i 2 ⎝
将上面的数值积分和数值微分公式代入(2.3)式, 得
[u ] − [u ]i −1 ⎛ [u ]i − [u ]i −1 ⎞ ⎛ [u ] − [u ]i ⎞ − p 1 ⎜ i +1 + ri i +1 + qi [u ]i h = f i h + O ( h3 ) ⎜ ⎟ ⎟ i + 2 h h ⎝ ⎠ ⎠ 2 ⎝ 省略掉误差项, 用 ui 代替 [u ]i , 则可定义差分格式为: p
2 2
h1 ⎡ ∂u ⎤ ⎡ ∂u ⎤ ⎢ p ∂y ⎥ 1 − ⎢ p ∂y ⎥ 1 ⎣ ⎦i, j + ⎣ ⎦i, j −
2
+ O(h12 ) =Байду номын сангаас
[u ]i +1, j − [u ]i , j [u ]i , j − [u ]i −1, j ⎤ 1⎡ 2 −p 1 ⎢ pi + 1 , j ⎥ + O(h1 ) i − j , h1 ⎣ 2 h1 h 1 ⎦ 2
常微分方程第二章

第二章 基本定理我们在第一章主要学习了初等积分法,掌握了几类常微分方程的解法.但是这些解法只适用于某些特殊的类型,很多其它的常微分方程不能用初等解法进行求解.1841年,法国数学家刘维尔(Liouville )证明了里卡蒂(Riccati )方程)0)(()()()(2≠++=x p x r y x q y x p dydx 除了某些特殊的类型外,一般不能用初等积分法求解.例如,很简单的里卡蒂方程22y x dxdy +=就不能用初等积分法求解.自然地,如果一个常微分方程不能用初等积分法求解,那么应该如何处理呢?是否存在解呢?如果存在解,它的解是否唯一呢?解的存在区间是什么呢?初值的微小误差对解有什么影响呢?这些问题在理论的研究和实际应用中,都有着重要的意义.本章将解决这些基本问题. 本章主要介绍解的存在唯一性定理、解的延展定理与比较定理、解对初值的连续依赖性定理以及解对初值的可微性定理,这些定理就回答了我们刚才的疑问,有效的处理解的存在性、唯一性、存在区间、初值对解的影响等问题,为我们使近似解法奠定理论基础,同时这些定理也是常微分方程理论的基础内容,对进一步的学习奠定基础.2.1 解的存在唯一性定理对于一般的常微分方程),(y x f dxdy = (2.1) 如果给出了初始条件00)(y x y =,我们就得到了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy (2.2) 这时,在什么样的条件下,柯西初值问题的解存在且唯一呢?解的存在区间是什么呢?我们有如下的解的存在唯一性定理.2.1.1 存在唯一性定理的叙述定理2.1(存在唯一性定理)如果方程(2.1)的右端函数),(y x f 在闭矩形区域b y y b y a x x a x R +≤≤-+≤≤-00002,:上满足如下条件:(1)在2R 上连续;(2)在2R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于2R 上的任何一对点),(y x 和),(x 有不等式:y y N y x f y x f -≤-),(),(则初值问题(2.2)在区间],[0000h x h x +-上存在唯一解00)(),(y x x y ==ϕϕ 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==. 在给出定理2.1的证明之前,我们先对定理2.1的条件和结论做些说明:1、在两个条件中,条件(2),即李普希兹条件比较难于验证,因为李普希兹常数N 难以确定.但是,我们可以将该条件加强,替换为:如果函数),(y x f 在闭矩形区域2R 关于y 的偏导数),(y x f y '存在且有界.这样,可以推出李普希兹条件成立.事实上,因为),(y x f y '有界,故设N y x f y ≤'),(,对2),(),,(R x y x ∈∀,由拉格朗日中值定理得:y y N y y x f y x f y x f y -≤-'=-),(),(),(ξ我们验证),(y x f y '在闭矩形区域2R 上有界也不容易,可以进一步将条件加强为:),(y x f y '在闭矩形区域2R 上连续.由闭区域上连续函数的性质知:),(y x f y '在闭矩形区域2R 上有界,所以李普希兹条件成立.因此,有如下的关系式:),(y x f y '在2R 上连续⇒),(y x f y '在2R 上存在且有界⇒李普希兹条件2、在定理2.1的结论中,解)(x y ϕ=的存在区间为],[0000h x h x +-,其中 ),(max ),,min(),(0y x f M Mb a h R y x ∈==.为什么解的存在区间不是],[00a x a x +-呢?这是因为我们研究问题的范围为闭矩形区域2R ,方程的解)(x y ϕ=不能超出2R 的范围,又因为),(max ),(y x f M Ry x ∈=,所以M y x f M ≤≤-),( 即 M dxdy M ≤≤- 由⎪⎩⎪⎨⎧=-=00)(y x y M dx dy 和⎪⎩⎪⎨⎧==00)(y x y M dx dy 得:001)()(y x x M x y +--=,002)()(y x x M x y +-= 因此)()()(21x y x y x y ≤=≤ϕ,即)(x y ϕ=夹在)(1x y 与)(2x y 之间.又,)(1x y 与)(2x y 在2R 上的存在区间为],[0000h x h x +-,故)(x y ϕ=的存在区间也是],[0000h x h x +-.2.1.2 存在性的证明首先,我们给出柯西初值问题(2.2)的等价转化,即求(2.2)的解)(x y ϕ=,等价于求解积分方程⎰+=xx d y f y y 0))(,(0ξξξ (2.3) 事实上,如果)(x y ϕ=是初值问题(2.2)的解,即有))(,()(x x f x ϕϕ='且00)(y x =ϕ从0x 到x 积分得:⎰+=xx d f y x 0))(,()(0ξξϕξϕ 即)(x y ϕ=是积分问题(2.3)的解.反过来,如果)(x y ϕ=是积分问题(2.3)的解,即有⎰+=xx d f y x 0))(,()(0ξξϕξϕ 则00)(y x =ϕ且))(,()(x x f x ϕϕ='即)(x y ϕ=是初值问题(2.2)的解.经过等价转化,我们将初值问题(2.2)的求解,转化为积分问题(2.3)的求解.下面用皮卡(Picard )逐次逼近来证明积分问题(2.3)的解的存在性,分为三个步骤:1、构造近似函数列{})(x n ϕ任取一个满足初值条件00)(y x y =的函数)(0x y ϕ=作为首项(初始项),并要求在2R 上的存在区间为:],[0000h x h x +-,简单起见,取00)(y x =ϕ,将它代入方程(2.3)的右端,所得到的函数用)(1x ϕ表示,并称为一次近似,即⎰+=xx d f y x 0))(,()(001ξξϕξϕ 再将)(1x ϕ代入方程(2.3)的右端就得到二次近似⎰+=xx d f y x 0))(,()(102ξξϕξϕ 序行此法,可以得到n 次近似⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ 为了保证上述的逐次逼近过程可以一直进行下去,必须有2))(,(R x x n ∈ϕ,即当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ 下面用数学归纳法证明b y x n ≤-0)(ϕ.显然,当],[0000h x h x x +-∈时,有b y y y x ≤=-=-0)(0000ϕ假设,当],[0000h x h x x +-∈时,有b y x n ≤--01)(ϕ,那么,对于)(x n ϕ有⎰-=-xx n n d f y x 0))(,()(10ξξϕξϕ 从而有b Mb M Mh x x M d f y x xx n n =≤≤-≤≤-⎰-00100))(,()(ξξϕξϕ 由数学归纳法知,当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ这样,我们就可以得到一个近似函数列{})(x n ϕ.2、证明近似函数列{})(x n ϕ在区间],[0000h x h x +-上一致收敛.由于无法得到{})(x n ϕ的通项公式,只知道首项和递推关系式,直接证明函数列{})(x n ϕ的收敛性比较困难,为此我们构造函数项级数+-++-+-)]()([)]()([)(1010x x x x x n n ϕϕϕϕϕ (2.4) 它的部分和是)()]()([)]()([)()(10101x x x x x x x S n n n n ϕϕϕϕϕϕ=-++-+=-+因此,证明{})(x n ϕ的收敛性转化为证明级数(2.4)的收敛性,下面我们证明级数(2.4)在区间],[0000h x h x +-上一致收敛.首先研究级数(2.4)的通项)(x n μ⎰=-xx d f x x 0))(,()()(001ξξϕξϕϕ 即⎰=-xx d y f y x 0),()(001ξξϕ 所以00010),()(x x M d y f y x x x -≤≤-⎰ξξϕ 因为⎰+=x x d f y x 0))(,()(001ξξϕξϕ,⎰+=x x d f y x 0))(,()(102ξξϕξϕ,所以 ⎰-≤-x x d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ由李普希兹条件,得 !2)()()()(200011200x x MN d x MN d N x x x x x x -=-≤-≤-⎰⎰ξξξξϕξϕϕϕ 下面用数学归纳法证明!)()(011n x x MN x x nn n n -≤---ϕϕ 显然,2,1=n 的时候,不等式成立(上面已经给出), 假设!)()(011n x x MN x x n n n n -≤---ϕϕ成立,那么对于1+n 的情形有 )!1(!)()())(,())(,()()(100111000+-=-≤-≤-≤-+--+⎰⎰⎰n x x MN d n x MN d N d f f x x n n x x n n xx n n x x n n n n ξξξξϕξϕξξϕξξϕξϕϕ由数学归纳法知,对一切自然数n ,均有!)()(011n x x MNx x nn n n -≤---ϕϕ 又00h x x ≤-,所以级数(2.4)的通项满足: !)(011n h MN v x n n n n -+=≤μ ( ,2,1=n ) 利用比式判别法,可知以n v 为通项的级数收敛,从而以)(x n μ为通项的级数(2.4)绝对收敛且一致收敛.又,每一个)(x n μ是连续的,所以级数(2.4)的和函数也是连续的,记为)(x ϕ,其存在区间也是],[0000h x h x +-.因此函数列{})(x n ϕ就收敛于)(x ϕ.3、证明)(lim )(x x n n ϕϕ∞→=是积分问题(2.3)的解,从而也是初值问题(2.2)的解.在⎰-+=x x n n d f y x 0))(,()(10ξξϕξϕ两端取极限,得到 ⎰-∞→∞→+=xx n n n n d f y x 0))(,(lim )(lim 10ξξϕξϕ 即⎰+=xx d f y x 0))(,()(0ξξϕξϕ 所以)(x ϕ是积分问题(2.3)的解,从而也是初值问题(2.2)的解.2.1.3 唯一性的证明下面我们证明解的唯一性.在证明唯一性之前,先介绍一个重要的不等式,即贝尔曼(Bellman )不等式.贝尔曼引理 设)(x y 为区间],[b a 上的非负连续函数,b x a ≤≤0.若存在,0≥δ 0≥k ,使得)(x y 满足不等式],[,)()(0b a x d y k x y xx ∈+≤⎰ττδ (2.5) 则有],[,)(0b a x e x y x x k ∈≤-δ证明 仅证明0x x ≥的情形,0x x ≤的情形类似.令)(x y 的原函数为⎰=xx d y x R 0)()(ττ,代入(2.5)得 δ≤-')()(x kR x R两边同时乘以积分因子)(0x x k e --,得)()(00)]()([x x k x x k e x kR x R e ----≤-'δ从0x 到x 积分得)()(00)(x x k x x k e e x kR -----≤δδ即)(0)(x x k e x kR -≤+δδ 由(2.5)知,)()(x kR x y +≤δ,所以],[,)(0b a x e x y x x k ∈≤-δ下面证明积分问题(2.3)的解的唯一性.假设积分问题(2.3)有两个解)(1x y 和)(2x y ,我们只需要证明:)(1x y )(2x y ≡,],[0000h x h x x +-∈事实上,因为⎰+=x x d y f y x y 0))(,()(101ξξξ,⎰+=xx d y f y x y 0))(,()(202ξξξ 所以有⎰-≤-xx d y f y f x y x y 0))(,())(,()()(2121ξξξξξ由李普希兹条件知⎰-≤-xx d y y N x y x y 0)()()()(2121ξξξ 令N k x y x y x y ==-=,0,)()()(21δ,由贝尔曼引理可知,0)(=x y ,即)(1x y )(2x y ≡. 这样,我们就完成了解的存在性与唯一性的证明.2.1.4 三点说明为了更好的理解和掌握解的存在唯一性定理,我们对该定理再做三点说明.1、在存在性的证明过程中,我们利用逐次逼近法构造了近似函数列{})(x n ϕ,其中首项为:00)(y x =ϕ,递推关系式为:⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ.该方法实际上给出了我们一种求初值问题(2.2)的近似解的方法,当用n 次近似解逼近精确解时,需要给出它的误差估计.事实上,有∑∑∞+=∞=+-≤-≤-101!)()()()(n k k k nk k k n k x x N N M x x x x ϕϕϕϕ 0)!1()(!)!1()(!10001010Nh n k k k n n k k k e n Nh N M k h N n Nh N M k h N N M +=+<≤+∞=+∞+=∑∑ 2、如果方程(2.1)是线性方程,即)()(x q y x p dxdy +-= 其中)(x p 和)(x q 在区间],[b a 上连续,这时,初值问题(2.2)在带型区域+∞<<-∞≤≤y b x a R ,:2满足定理2.1的条件.事实上,)()(),(x q y x p y x f +-=在2R 上连续,而且)(),(x p y x f y -='在2R 上也连续,所以),(y x f 关于变量y 满足李普希兹条件.这时,初值问题(2.2)的解存在且唯一,存在区间为],[b a .3、定理2.1中的李普希兹条件是保证解唯一的充分条件,那么这个条件是不是必要条件呢?回答是否定的,即李普希兹条件是解唯一的充分非必要条件.下面我们给出一个例子来说明李普希兹条件是解唯一的非必要条件,也就是说,即使李普希兹条件不成立,初值问题(2.2)的解也可能是唯一的.例1 试证方程0,ln ,0≠=⎩⎨⎧=y y y y dx dy 经过xOy 平面上任一点的解都是唯一的.证明 由00,ln ,0≠=⎩⎨⎧=y y y y dx dy 可得:0=y 或x Ce e y ±=. 任给xOy 平面上的一个点),(00y x ,只会对应0=y 或xCe e y ±=中的一个解,也就是说,过xOy 平面上任一点的解都是唯一的.但是,我们有0ln ln )0,(),(-==-y y y y x f y x f 因为+∞=→y y ln lim 0,所以找不到0>N ,使得 0)0,(),(-≤-y N x f y x f从而方程右端函数在0=y 的任何邻域上不满足李普希兹条件,但是初值问题(2.2)的解却是唯一的,这说明李普希兹条件是非必要条件.习 题 2.11.试判断方程y x dx dy tan =在区域 (1)π≤≤≤≤-y x R 0,11:1;(2)44,11:2ππ≤≤-≤≤-y x R上是否满足定理2.1的条件?2.讨论方程3123y dx dy =在怎样的区域中满足定理2.1的条件.并求通过)0,0(的一切解.3.试用逐次逼近法求方程2y x dxdy -=满足初值条件0)0(=y 的近似解: )(),(),(),(3210x x x x ϕϕϕϕ并在闭矩形区域11,11:2≤≤-≤≤-y x R 给出三次近似的误差估计.4.利用逐次逼近法求方程22x y dxdy -=适合初值条件1)0(=y 的近似解: )(),(),(210x x x ϕϕϕ并在闭矩形区域111,11:2≤-≤-≤≤-y x R 给出二次近似的误差估计.5.试证明定理2.1中的n 次近似解)(x n ϕ与精确解)(x ϕ有如下的误差估计式:10)!1()()(+-+≤-n n n x x n MN x x ϕϕ 6.在条形区域+∞<≤≤y b x a ,内,假设方程(2.1)的所有解都唯一,对其中任意两个解)(),(21x y x y ,如果有)()(0201x y x y <,则必有b x x x y x y ≤≤<021),()(.7.讨论方程323y dx dy = 解的唯一性.2.2 延展定理和比较定理由解的存在唯一性定理,我们知道,初值问题(2.2)的解在满足一定条件的情况下存在且唯一,但是解的存在区间不是],[00a x a x +-,而是],[0000h x h x +- 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==.如果M 比较大的话,则解的存在区间就非常小,这对我们研究解的性质产生了很大的局限性,只能在很小的范围内有解,当x 超出这个范围时,解的情况就不清楚了.为了解决这个问题,我们有下面的延展定理.2.2.1 延展定理定理2.2(延展定理)如果方程(2.1)的右端函数在区域R R D ⨯⊂上连续,且关于变量y 满足局部的李普希兹条件,即对于D 内的任一闭矩形区域都满足李普希兹条件,则对任何一点D y x ∈),(00,初值问题(2.2)的解)(x y ϕ=可以向左右无限延展,直到))(,(x x ϕ任意接近区域D 的边界.在给出定理的证明之前,先对“))(,(x x ϕ任意接近区域D 的边界”进行说明.当区域D 有界时,积分曲线向左右延展可以任意接近;当区域D 无界时,积分曲线向左、右延展,或者任意接近区域D 的边界(边界存在的话),或者无限远离坐标原点.证明 首先证明区域D 有界的情形.设区域D 的边界为D D L -=(D 为D 的闭包).对于任意给定的正数ε,记L 的ε邻域为εU ,记L 的2ε邻域为2εU ,记L 的4ε邻域为4εU .则集合22εεU D D -=为闭集,且D D ⊂2ε,所以2εD 有界. 只要证明积分曲线可以到达2εD 的边界2εL ,由ε的任意性知,积分曲线就可以任意接近区域D 的边界L .事实上,以2εD 中的任意一点为中心,以4ε为半径的闭圆区域均包含在区域D 的内部.且在闭区域44εεU D D -=之内.从而,以2εD 中的任意一点为中心,以4221ε=a 为边长的正方形也在闭区域4εD 之内.记 ),(max 4),(1y x f M D y x ε∈= 则过2εD 的任意一点),(**y x 的积分曲线,必至少可在区间],[**h x h x +-上存在,其中)82,82min(),min(1111M M a a h εε==. 于是,过点),(00y x 的积分曲线)(x y ϕ=每向左或向右延展一次,其存在区间就伸长一个确定的正数h ,由于2εD 有界,)(x y ϕ=经过有限次延展后一定可以达到2εD的边界2εL .于是也就可以任意接近区域D 的边界L .其次考虑区域D 为无界的情形.这时,我们可以用闭圆区域,2,1},),{(222=≤+=n n y x y x S n与区域D 取交集,令n n S D D =,则 ∞==1n n D D .由于n D 为有界的区域,根据前面的证明,我们可知,过n D 内任一点的积分曲线能够任意接近n D 的边界.因此,过点),(00y x 的积分曲线)(x y ϕ=可以无限接近区域D 的边界.延展定理的证明,关键是第一步证明,也就是区域D 有界的时候,过点),(00y x 的积分曲线)(x y ϕ=向左向右延展的时候,一定要做等速延展,即延展步幅h 是不变的. 例1 试讨论方程2y dxdy=通过点)1,1(的解和通过点)1,3(-的解的存在区间. 解 该题目中研究问题的区域D 为整个坐标平面xOy .方程右端函数满足延展定理的条件.由2y dxdy=可以解得方程的通解为 xC y -=1代入1)1(=y 得:2=C .故通过点)1,1(的解为xy -=21 它可以向左无限延展,而当-→2x 时,+∞→y ,所以通过点)1,1(的解xy -=21的存在区间为)2,(-∞.代入1)3(-=y 得:2=C .故通过点)1,3(-的解为xy -=21它可以向右无限延展,而当+→2x 时,-∞→y ,所以通过点)1,3(-的解xy -=21的存在区间为),2(+∞.这个例子说明,尽管),(y x f 在整个坐标平面上满足延展定理的条件,解上的点))(,(x x ϕ也能无限接近区域D 的边界,但是延展的方向却不一定是无限向右和向左,可能是向上或向下,从而导致解的存在区间不是),(+∞-∞. 例2 试证明:对任意的0x 及满足条件100<<y 的0y ,方程221)1(y x y y dx dy ++-=的满足条件00)(y x y =的解)(x y y =在),(+∞-∞上存在.证明:令221)1(),(y x y y y x f ++-=,则222222)1(122),(y x x y y x y y x f y ++--++=' 显然),(),,(y x f y x f y '在xOy 平面上连续,满足解的存在唯一性条件及延展定理的条件,而1,0==y y 是),(y x f dxdy=的解, 因此,满足00)(y x y =,100<<y 的解存在,而且可以无限延展到xOy 平面的边界,且不能穿过1,0==y y ,故只能向左右无限延展,所以,)(x y y =在),(+∞-∞上存在.该例题说明,),(y x f 在整个坐标平面上满足延展定理的条件,当方程的解不能穿过1,0==y y 时,它就不能向上向下无限延展了,只能向左、向右延展,所以解的存在区间就是),(+∞-∞.在这里,1,0==y y 控制了解的延展方向,使它按照我们的要求进行延展,因此就有了下面的比较定理. 2.2.2 比较定理我们在使用延展定理的时候,通常会和比较定理配合使用,从而起到控制延展方向的作用.下面介绍一下比较定理.我们在考察方程(2.1)),(y x f dxdy=时,通常将右端函数),(y x f 进行放缩的处理,比如),(),(),(21y x F y x f y x F <<这时,我们可以同时考察),(1y x F dx dy =和),(2y x F dxdy = 我们有如下的比较定理:定理2.3 (第一比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F <<设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ<<Φϕ 021),()()(x x x x x <Φ>>Φϕ证明 仅证当0x x >时,)()(2x x Φ<ϕ,其它的情形相类似. 由比较定理的条件(1),初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解在0x 的某一邻域内存在且唯一,分别记为)(x y ϕ=和)(2x y Φ=,它们满足0020)()(y x x =Φ=ϕ令)()()(2x x x h ϕ-Φ=,则0)()()(0020=-Φ=x x x h ϕ且0))(,())(,()()()(0002020020>-Φ='-Φ'='x x f x x F x x x h ϕϕ所以函数)(x h 在0x 的某一右邻域内是严格单调增加的.如果在0x x >时,0)(>x h 不是总成立,则至少存在一点01x x >,使得0)(1=x h ,且当10x x x <<时,0)(>x h ,因此在点1x 的左导数0)0(1≤-'x h ,这与0))(,())(,()()()(1112121121>-Φ='-Φ'='x x f x x F x x x h ϕϕ矛盾.因此当0x x >时,0)(>x h 总成立,即)()(2x x Φ<ϕ.比较定理的应用,关键是),(1y x F 和),(2y x F 的选取,因为初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解)(x y ϕ=的存在区间的延展,受到)(1x y Φ=和)(2x y Φ=的控制,即)(x y ϕ=夹在)(1x y Φ=和)(2x y Φ=之间.因此,我们必须能确定出)(1x y Φ=和)(2x y Φ=的存在区间,这就是我们选取),(1y x F 和),(2y x F 的标准,即⎪⎩⎪⎨⎧==001)(),(y x y y x F dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解)(1x y Φ=和)(2x y Φ=必须能够求得. 下面我们给出第二比较定理.定理2.4 (第二比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F ≤≤设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ≤≤Φϕ 021),()()(x x x x x <Φ≥≥Φϕ习 题 2.21.设方程为),()(22y x f a y dxdy-= 假设),(y x f 及),(y x f y '在xOy 平面上连续,试证明:对于任意的0x 及a y <0,方程满足00)(y x y =的解都在),(+∞-∞上存在.2.指出方程2)1(2xy e y dxdy -=的每一个解的最大存在区间,以及当x 趋于这个区间的右端点时解的极限.3.讨论方程xx dx dy 1cos 12-= 解的存在区间.4.设),(y x f 在整个平面上连续有界,对y 有连续偏导数,试证明方程),(y x f dxdy=的任一解)(x y ϕ=在区间+∞<<∞-x 上有定义. 5.讨论方程212-=y dx dy 的通过点)0,0(的解,以及通过点)3,2(ln -的解的存在区间.6.在方程)(y f dxdy=中,如果)(y f 在),(+∞-∞上连续可微,且 )0(0)(≠<y y yf ,求证方程满足00)(y x y =的解)(x y 在区间),[0+∞x 上存在,且有0)(lim =+∞→x y x .2.3 解对初值的连续依赖性定理和解对初值的可微性定理通过前两节的存在唯一性定理和延展定理,加上比较定理,我们知道了初值问题(2.2)在什么样的条件下,解是存在的,是唯一的,而且存在区间比较小的时候,通过延展定理和比较定理可以将解的存在区间变大,从而在实际问题中可以达到我们的要求.但是,在实际问题中,还有一个问题需要解决,那就是误差问题.我们的初始条件00)(y x y =如果产生了微小的偏差,这个偏差对我们的初值问题(2.2)的解)(x y ϕ=会有什么影响呢?下面我们来解决这个问题. 我们在研究初值问题(2.2)的时候,习惯上把0x 和0y 当作常数来看待,这样初值问题(2.2)的解)(x y ϕ=被看作x 的函数.实际上,如果0x ,0y 变化,初值问题(2.2)的解)(x y ϕ=也会发生变化.例如方程xydx dy = 经过点),(00y x 的解为x x y y 0=,可以看作00,,y x x 的函数.对于一般的情形,初值问题(2.2)的解也可以看作00,,y x x 的函数,记为),,(00y x x y ϕ=,代入00)(y x y = 得:0000),,(y y x x =ϕ.如果我们的初始条件00)(y x y =发生了微小的误差,变为了**0)(y x y =,初值问题(2.2)的解也变化不大的话,称解连续依赖于初值.下面我们给出连续依赖性的严格定义.定义2.1 设初值问题⎪⎩⎪⎨⎧==**0)(),(y x y y x f dxdy的解),,(*0*0y x x y ϕ=在区间],[b a 上存在,如果对于任意给定的正数ε,存在正数δ (δ的选取与,ε**0,y x 有关),使得对于满足δδ<-<-*00*00,y y x x (2.2)的解),,(00y x x y ϕ=都在],[b a 上存在,且有],,[,),,(),,(*0*000b a x y x x y x x ∈<-εϕϕ则称初值问题(2.2)的解),,(00y x x y ϕ=在点),(*0*0y x 连续依赖于初值,0x 0y .定理2.4 (解对初值的连续依赖性定理)设),(y x f 在区域D 内连续,且关于变量y 满足李普希兹条件.如果D y x ∈),(*0*0,初值问题(2.2)有解),,(*0*0y x x y ϕ=,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,则对任意的正数ε,存在0>δ,使对于满δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*000y x x y x x证明 对于任意给定的正数ε,取εδ<<10,使得闭区域}),,(,),{(1*0*0δϕ≤-≤≤=y x x y b x a y x U整个含在区域D 内,这是可以做到的,因为区域D 是开区域,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,所以,只要1δ的选取足够小,以曲线),,(*0*0y x x y ϕ=为中线,宽度为12δ的带形开区域U 就整个包含在区域D 内, 选取δ满足)(110a b N e M--+<<δδ其中N 为李普希兹常数,),(max ),(y x f M Uy x ∈=,同时还要求δ的选取,必须保证闭正方形δδ≤-≤-*0*02,:y y x x R含于带形开区域U 内.由存在唯一性定理知,对于任一200),(R y x ∈,初值问题(2.2)在0x 的某邻域上存在唯一解),,(00y x x y ϕ=,而且),,(00y x x y ϕ=在0x 的该邻域上可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(000000⎰+=而),,(*0*0y x x y ϕ=可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(*0*0*0*0*0*⎰+=对上述两式做差得:ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx x x )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-=-ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx xx )),,(,()),,(,(),,(),,(*0*000*00*0*000*0⎰⎰-+-≤-ττϕτττϕττϕτd y x f d y x f y x f y y x x xx |)),,(,(||)),,(,()),,(,(|0000*0*0*00**0⎰⎰+-+-≤δττϕττϕτδM d y x f y x f xx +-+≤⎰|)),,(,()),,(,(|00*0*0*0ττϕτϕδd y x y x N M xx |),,(),,(|)1(00*0*0*0-++≤⎰由贝尔曼引理,得εδδδϕϕ<<+≤+≤---1)(*0*000)1()1(),,(),,(*a b N x x N e M e M y x x y x x因此,只要在),,(00y x x y ϕ=有定义的区间上,就有εϕϕ<-),,(),,(*0*000y x x y x x .下面我们证明:),,(00y x x y ϕ=在区间],[b a 上有定义.事实上,因为εϕϕ<-),,(),,(*0*000y x x y x x即解),,(00y x x y ϕ=夹在εϕ+=),,(*0*0y x x y 和εϕ-=),,(*0*0y x x y 之间,而且,初值问题(2.2)满足延展定理的条件,所以,解),,(00y x x y ϕ=可以向左向右无限延展,直到无限接近区域D 的边界,于是,它在延展的时候,必须由直线a x =和直线b x =穿出区域U ,从而),,(00y x x y ϕ=在区间],[b a 上有定义.解对初值的连续依赖性说明,初值),(00y x 无法准确得到,但是我们能得到测量数据),(*0*0y x ,只要误差比较小,即δδ<-<-*00*00,y y x x .我们就可以用),(*0*0y x 代替),(00y x 去计算,得到初值问题的解),,(*0*0y x x y ϕ=,这个解可以非常接近真实解),,(00y x x y ϕ=,即εϕϕ<-),,(),,(*0*000y x x y x x .同理,如果方程的右端函数),(y x f 不能准确得到,只能得到),(y x f 的近似函数),(~y x f ,即)),((,),(),(~D y x y x f y x f ∈<-δ我们就可以用),(~y x f 代替),(y x f 去计算,得到初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=,那么),,(00~y x x y ϕ=能否代替),,(00y x x y ϕ=呢?我们有下面的解的连续依赖性定理.定理2.5 (解对被积函数的连续依赖性定理)在区域D 上,),(y x f 和),(~y x f 都连续,而且关于变量y 满足李普希兹条件, 若初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 在b x a ≤≤上有解),,(00~y x x y ϕ=,则对任意给定的正数ε,存在0>δ,只要),(y x f 满足)),((,),(),(~D y x y x f y x f ∈<-δ则初值问题(2.2)的解),,(00y x x y ϕ=在b x a ≤≤上存在,且有εϕϕ<-),,(),,(00~00y x x y x x .证明 由解的存在唯一性定理知,初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=存在,设其存在区间为],[b a ,且有⎰+=xx d y x f y y x x 0))],,(,([),,(00~~000~ξξϕξϕ而初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也存在,且可以表示为⎰+=xx d y x f y y x x 0))],,(,([),,(00000ξξϕξϕ则⎰⎰-=-xx xx d y x f d y x f y x x y x x 0))],,(,([))],,(,([),,(),,(0000~~0000~ξξϕξξξϕξϕϕ从而有⎰-≤-xx d y x f y x f y x x y x x 0|)),,(,()),,(,(|),,(),,(0000~~0000~ξξϕξξϕξϕϕ⎰-+-=xx d y x f y x f y x f y x f 0|)),,(,()),,(,()),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ ⎰-+-≤xx d y x f y x f y x f y x f 0|)),,(,()),,(,(||)),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰+-≤xx d y x y x N 0)|),,(),,((|0000~ξδξϕξϕ ⎰-+-≤xx d y x y x N a b 0|),,(),,(|)(0000~ξξϕξϕδ由贝尔曼引理,得)(0000~)(),,(),,(a b N e a b y x x y x x --≤-δϕϕ取)(a b N e ab ---<εδ,则εϕϕ<-),,(),,(0000~y x x y x x .且解),,(00y x x y ϕ=在b x a ≤≤上存在. 例1 考虑方程,ln ,0≠=⎩⎨⎧-=y y y y dx dy 解的情况.解 显然1,1,0-===y y y 是方程的解,当1,1,0-≠≠≠y y y 时,有y y dxdyln -= 这时解得上半平面的通解为x Ce e y -=,下半平面的通解为xCe e y --=.可以看到,对于Ox 轴上的初值)0,(0x ,在任意有限闭区间上解对初值连续依赖,但是,在),0[+∞上,无论),(00y x ,00≠y 如何接近)0,(0x ,只要x 充分大,过),(00y x 的积分曲线就不能与过)0,(0x 的积分曲线(即0=y )任意接近了.这个例子说明,解在有限闭区间上对初值连续依赖,不能推广到无限区间,即,在无限区间上解对初值的连续依赖定理就不成立了.我们有时不仅要求解对初值连续依赖,而且还要知道解),,(00y x x y ϕ=对初值00,y x 的偏导数00,y x ∂∂∂∂ϕϕ是否存在.下面给出解对初值的可微性定理. 定理2.6 (解对初值的可微性定理)如果函数),(y x f 以及),(y x f y '在区域D 内连续,则初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=在它有定义的区间上有连续偏导数00,y x ∂∂∂∂ϕϕ.并且有 ⎰-=∂∂'x x y d y x f e y x f x y x x 000)),,(,(00000),(),,(ττϕτϕ 及⎰=∂∂'xx y d y x f e y y x x 000)),,(,(000),,(ττϕτϕ 习 题 2.31.若函数),(y x f ,),(y x R 在区域D 内连续且满足李普希兹条件,设初值问题⎪⎩⎪⎨⎧=+=*0*0)(),(),(y x y y x R y x f dx dy 的解为),,(*0*0~y x x y ϕ=,存在区间为],[b a .对任意的正数ε,存在0>δ,使对于满足)),((,),(D y x y x R ∈<δ的),(y x R ,以及满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*0~00y x x y x x 2.已知方程)sin(xy dxdy = 试求0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x x y x x y 和0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x y y x x y 3.设),,(00y x x ϕ是初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解,试证明0),(),,(),,(00000000=∂∂+∂∂y x f y y x x x y x x ϕϕ 2.4 欧拉折线法在第一章,我们介绍了方程的初等解法,即用微积分的知识求得常微分方程的函数解.但是绝大多数的方程不能用初等方法求解,在第二章的前三节中,我们给出了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在什么样的条件下,解存在且唯一;在什么条件下,解的存在区间可以延展;在什么条件下连续依赖于初值;在什么条件下,解对初值是可微的.有了这些准备,我们就可以研究柯西初值问题的近似解.下面我们介绍求近似解的方法,欧拉折线法.假定函数),(y x f 在区域:+∞<<-∞≤≤y b x a ,上连续,且关于变量y 满足李普希兹条件,求柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在区间],[0b x 上的近似解,我们采用的方法是:(1)等分区间],[0b x ,分点为n k kh x x k ,,1,0,0 =+=;小区间长度nx b h 0-=, (2)第一个小区间上用切线段逼近曲线:))(,(0000x x y x f y y -+=,(3)求出1x 所对应的纵坐标))(,(010001x x y x f y y -+=,(4)依次重复(2),(3)得到每个小区间上的线段,从而得到欧拉折线. 这样,我们就用欧拉折线作为柯西初值问题在区间],[0b x 近似解.欧拉折线法的前提是:柯西初值问题的解存在且唯一,而且解的存在区间是],[0b x .例1试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=1)1(22y y x dx dy 的解在4.1=x 时的近似值.解 令22),(y x y x f +=,2)1,1(=f ,这时12-=x y ,代入1.11=x 得:2.11=y ,65.2)2.1,1.1(=f ,这时2.1)1.1(65.2+-=x y , 代入2.12=x 得:465.12=y ,586225.3)465.1,2.1(=f ,这时465.1)2.1(586225.3+-=x y , 代入3.13=x 得:8236225.13=y ,0155990225.5)8236225.1,3.1(=f ,这时8236225.1)3.1(0155990225.5+-=x y ,代入4.14=x 得:53251824022.24=y 习 题 2.41. 试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=-=0)0(22y y x dx dy 的解在5.1=x 时的近似值.2.试用欧拉折线法,取步长1.0=h ,求初值问题 ⎪⎩⎪⎨⎧=+=2)1(22y y x dx dy 在区间]4.1,1[上的近似解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范文 范例 指导 参考§ 1.1 微分方程:某些物理过程的数学模型§ 1.2 基本概念习题 1.21 .指出下面微分方程的阶数,并回答方程是否线性的:1) dy4x 2y ;dx22 2)d 22y dy12xy 0; dx 2dx 23) dyx dy3y 2 0; dx dx4) x d2y5 dy3xy sin x; dx2dx5) dycosy 2x 0 ; dx解 ( 1)一阶线性微分方程; ( 2)二阶非线性微分方程; (3)一阶非线性微分方程; ( 4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程.1) ycos x ; 2) y C 1cos x (C 1是任意常数 );3) ysin x ;4) yC 2 sin x (C 2是任意常数 ) ; 5) yC 1cos x C 2 sin x (C 1, C 2是任意常数6)yAsin( x B) (A,B 是任意常数 ).第一章 绪论6) sin d 2y dx 2e yx .2.试验证下面函数均为方程 d 2ydx222y 0的解,这里0是常数.cos x 为方程的解.C 1 cos x 为方程的解.sin x 为方程的解.3.验证下列各函数是相应微分方程的解:sin x1)yx, xyycosx ;2) y 2 C 1 x 2 , (1 x 2)y xy 2x (C 是任意常数) 3) yCe x,y 2y y 0( C 是任意常数) ;4)yxx e , y e 2 yx 2 x2 ye 1 e ;5)ysin x , y2 y22 y sin x sin x cos x 0 ;6) y12 , x y x2 x 2y xy 1 ; 7)yx 2 1, y 2 y(x 2 1)y 2x ;解 ( 1)dydxsin x , d 2ydx 22 co 22y,所以ddx22y0,2 )y C 1 sin x,C12 cos 22y所以 ddx 22y3) d d yxcos x , d 2y dx 2sin所以d 22ydxC2cos xC22 si 22y所以d 22y dx 2C 2 sin x 为方程的解. 5)C1sin xC2cosC12cosC 2 2 sin2y ,d 2y所以 d2ydx20 ,故 y C 1 cos x C 2 sin x 为方程的解.6)cos( x B) , yA 2 sin( x B)2y ,故ddx22y0,因此 y A sin( x B) 为方程的解.8) yg(x) ,y f (x) y 2 g (x) .f (x)g (x) f (x)2 2Cx 2(1 x )y xy (1 x ) x(2 C 1 x ) 2 x . 1 x 25)因为 y cosx ,所以4.给定一阶微分方程 dy 2x , dx1)求出它的通解;2)求通过点 (1, 4) 的特解; ( 3)求出与直线 y 2x 3相切的解;1( 4)求出满足条件 ydx 2 的解;( 5)绘出( 2),(3),(4) 中的解的图形. 解 ( 1)通解 y 2 xdx x 2C .(2)由 y x 1 4,得到 C 3,所以过点 (1, 4)的特解为 y x 23. (3)这时 2x 2 x 1,切点坐标为 (1, 5),由 y x 1 5,得到 C 4 ,所以与直Ce x ,于 是y 2yyx2 x x xy2 ye e e3)由于 y Ce x, y 4)由 y e x,因此 yCe x 2Ce x Ce x0 .x 2 x x 2 x(e ) 2e e 1e .证明 1)因为 y x cosx sin x ,所以 xyx cos x sin x sin xy cosx .xx2)由于 yCx 1 x 2,故 y y 2 2ysin x sin 2 x cos x cosx12 2 (6)从y 2 ,得 x 2 y 1 x 2x( 7)由 y 2x ,得到2 sin x 2 sin x sin x sin 2 x cos x 0 21 122x1 xy xy 1.xx2 2 2 22x (x 2 1)2 (x 2 1)( x 2 1) 2x22y 2 (x 2 1) y 2x . 8) yf (x)g(x) f (x)g (x) f 2( x) f(x) g(x) 2 g (x) g (x) f (x) f (x) f (x) y 2 g(x) g ( x) f (x)线y 2x 3 相切的解为y x2 44) 1 12由0 ydx 0(x2C)dx (1x33Cx)113C 2,得到5,3,故满足条ydx 22 的解为y x25) 如图 1-1 所示.x5.求下列两个微分方程的公共解:1) y y2 2x2 2) y 2x x22 y.公共解必须满足2x 2x ,即得到y x2或y x2公共解.6.求微分方程y2y22x4x2 0,1是微分方程22x x4和2x y y2的xy 2 y 0 的直线积分曲线.设直线积分曲线为Ax By C 0 ,两边对x 求导得,By 0,则A 0 ,得到C 0,不可能.故必有B 0 ,则y 代入原方程有0,或(A22B2B A)x C A0 ,BBA2 A 所以, B BCA BB0,,得到AC 0,或 A C B . 0所求直线积分曲线为y0 和yx 1.7.微分方程 4x 2y 22 y3 xy ,证明其积分曲线关于坐标原点 (0,0) 成中心对称的曲线,也是此微分方程的积分曲线.证明设 F(x, y) 0是微分方程 4x 2 y 2 y 2 xy 3的积分曲线,则与其关于坐标原点 (0, 0) 成 中 心 对 称 的 曲 线 是 F( x, y) 0 . 由 于 F(x, y) 0 适 合微 分 方 程22 2 24 x y y3 xy ,故 4x 2F x (x, y) F y (x, y)2 y xy3,分别以 x, y 代 x, y ,亦有4( x) 2 F x ( x, y) F y ( x, y)2( y)2 ( x)( y)3, 而由 F( x ,y) 0 ,得到 y F x ( x , y) ,从而 F ( x, y) 0 也是此微分方程的F y ( x, y)积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在 20 分钟内由100 C 冷至 60 C ,那么,在多久的时间内,这个物体的温度达到 30 C ?假设空气的温度为20 C .解 设物体在时刻 t 的温度为 u u(t) ,u a 20 ,微分方程为 duk(u u a ),解dt得 u u a Ce kt,根据初始条件 u t 0 u 0 100,得 C u 0 u a 80 ,因此ktu u a (u 0 u a )e ,根据 t 20, u u 1 60,得到u 1 u a (u 0 u a )e 20k,由此k1lnu0 u a ln 2,20 u 1 u a 20ln2t所以得到 u 20 80e 20,当 u 30时,解出 t 60 (分钟) 1(小时).在 1 小时的时间内,这个物体的温度达到 30 C . 9.试建立分别具有下列性质的曲线所满足的微分方程: ( 1)曲线上任一点的切线与该点的向径夹角为 ;(0 ,2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l;3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分;5)曲线上任一点的切线的纵截距等于切点横坐标的平方;6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项;7)曲线上任一点的切线的斜率与切点的横坐标成正比.2a;(提示:过点( x , y) d 的横截距和纵截距分别为x y y 和yxy ).解(1)曲线上任一点为( x, y) ,则tanyyx,即y y x tan1,即y yxy ,即xx y tan( 2 )曲线上任一点( x , y)处的切线方程为yX Y xy y ,与两坐标轴交点为2y xy ) 和(xyyy, 0),两点间距离为xy yy2( y xy ) 2l ,即3)4)5)由( 2),y6)同样由( 2),7)易得y kx(x y)y由( 2),有由( 2),有 2 x或xy y 0 .xyxy2 2 2( y xy ) l .xy a2,或(xy y)22a2y .y,或y 2 xyx .k 为常数且k0 ).。