常用不等式-放缩技巧
不等式的放缩技巧

数列型不等式放缩技巧八法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一 利用重要不等式放缩1.均值不等式法例1 设求证.)1(3221+++⋅+⋅=n n S n .2)1(2)1(2+<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k =+=,,2121)1(+=++<+<k k k k k k )21(11∑∑==+<<∴nk n nk k S k 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n 注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式,若放成则得,就放2b a ab +≤1)1(+<+k k k 2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n 过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nnnnn n22111111++≤++≤≤++其中,等的各式及其变式公式均可供选用。
3,2=n例2 已知函数,若,且在[0,1]上的最小值为bxa x f 211)(⋅+=54)1(=f )(x f ,求证:(02年全国联赛山东预赛题)21.2121)()2()1(1-+>++++n n n f f f 简析 )2211()()1()0(22114111414)(⨯->++⇒≠∙->+-=+=n f f x x f xx x x.2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n例3 已知为正数,且,试证:对每一个,b a ,111=+ba *∈N n .(88年全国联赛题)1222)(+-≥--+n n n n n b a b a 简析 由得,又,故111=+b a b a ab +=42)11)((≥++=++abb a b a b a ,而,4≥+=b a ab nn nr r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)(令,则nnnb a b a n f --+=)()(=,因为,倒序相加得)(n f 1111----++++n n n r r n r n n n ab C b a C b a C in ni n C C -==,)(2n f )()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ 而,则1211112422+------=⋅≥≥+==+==+n nnn n n rn r rrn n n b a b a ab b a b a ab b a=)(2n f ))(22())((11r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++,所以,即对每一个,⋅-≥)22(n 12+n )(n f ⋅-≥)22(n n 2*∈N n .1222)(+-≥--+n n n n n b a b a 例4 求证.),1(221321N n n n C C C C n n nnnn∈>⋅>++++- 简析 不等式左边=++++nn n n n C C C C 32112222112-++++=-n n =,原结论成立.nn n 122221-⋅⋅⋅⋅⋅> 212-⋅n n 2.利用有用结论例5 求证.12)1211()511)(311)(11(+>-++++n n 简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质可得)0,0(>>>++>m a b ma mb ab>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn 即⇒12)122563412(2+>-⋅⋅n n n .12)1211()511)(311)(11(+>-++++n n法2 利用贝努利不等式的一个)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 特例(此处)得12121)1211(2-⋅+>-+k k 121,2-==k x n =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k 注:例5是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
基本不等式放缩法

基本不等式放缩法是解决数学问题中的一种常用技巧,特别是在证明不等式时。
放缩法的核心思想是通过适当的放大或缩小某些项,使得原始的不等式更容易处理或者更容易证明。
以下是一些常见的放缩技巧:
1. 添加或舍弃一些正项(或负项):在保持不等式方向不变的前提下,可以适当添加或去掉一些不影响不等式成立的正项或负项。
2. 先放缩再求和(或先求和再放缩):根据问题的需要,可以先对某些项进行放缩,然后再进行求和,或者先求和再对结果进行放缩。
3. 逐项放大或缩小:对不等式中的每项单独进行放缩,然后合并结果。
4. 固定一部分项,放缩另外的项:在某些情况下,可以固定一部分项不变,只对其他项进行放缩。
5. 函数放缩:利用函数的单调性进行放缩,例如,对于递增函数,可以放大小的值,缩小大的值。
6. 裂项放缩:将复杂的项分解成更简单的形式,然后进行放缩。
7. 均值不等式放缩:利用算术平均值大于等于几何平均值的性质进行放缩。
8. 二项放缩:在涉及二项式的情况下,可以利用二项式的性质进行放缩。
9. 指数函数放缩:例如,对于指数函数e^x,有e^x ≥x + 1 当x ≥0。
10. 利用导数判断函数的单调性:通过求导数来判断函数的单调性,然后根据单调性进行放缩。
在实际应用中,放缩法往往需要结合具体问题灵活运用,有时还需要与其他数学方法(如代换法、综合法、反证法等)结合使用。
通过放缩,可以将复杂的不等式转化为更易于处理的形式,从而简化问题的解决过程。
不等式放缩技巧十法

不等式放缩技巧十法一、Cauchy-Schwarz不等式:Cauchy-Schwarz不等式是不等式放缩的基础。
对于任意实数a1,a2, …, an和b1, b2, …, bn,有如下不等式成立:(a1^2 + a2^2 + … + an^2)(b1^2 + b2^2 + … + bn^2) ≥ (a1b1+ a2b2 + … + anbn)^2Cauchy-Schwarz不等式可以解决很多不等式问题,如证明两个序列的和的平方大于等于两个序列平方的和。
二、Holder不等式:Holder不等式是Cauchy-Schwarz不等式的推广形式。
对于任意实数a1, a2, …, an和b1, b2, …, bn以及p, q满足1/p + 1/q = 1(其中p,q为正实数),有如下不等式成立:(,a1,^p + ,a2,^p + … + ,an,^p)^(1/p) * (,b1,^q + ,b2,^q + … + ,bn,^q)^(1/q) ≥ ,a1b1 + a2b2 + … + anbn Holder不等式是Cauchy-Schwarz不等式的推广形式,不仅适用于实数,也适用于复数,可以使用Holder不等式解决更多类型的不等式问题。
三、Schur不等式:Schur不等式是不等式放缩中的重要不等式。
对于任意非负实数a, b, c和非负实数r,有如下不等式成立:a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b)≥0Schur不等式在证明其他不等式时经常被使用,尤其在三角形不等式的证明中发挥着重要作用。
四、AM-GM不等式:AM-GM不等式是代数平均-几何平均不等式的缩写,对于任意非负实数a1, a2, …, an,有如下不等式成立:(a1 + a2 + … + an)/n ≥ (a1*a2*…*an)^(1/n)AM-GM不等式是解决不等式问题中常用的一种方法,可以将最大化或最小化转化为相加或相乘的形式。
大学中常用不等式放缩技巧

大学中常用不等式,放缩技巧大学中常用不等式,放缩技巧一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sinaⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1)ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1 tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ai bi)2≤∑ai2∑bi24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp (0<p<1)(a+b)p≥ap+ bp (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤an, b1≤b2≤…≤bn∑aibi≥(1/n)∑ai∑bi若a1≤a2≤…≤an, b1≥b2≥…≥bn∑aibi≤(1/n)∑ai∑bi三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:nn+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
不等式的放缩法基本公式

不等式的放缩法基本公式1.加减法:对于不等式a<b,可以加上一个等式(或不等式)的两边,得到a+c<b+c。
同样地,可以减去一个等式(或不等式)的两边,得到a-c<b-c。
2. 乘除法:对于不等式a < b,如果c > 0,则乘以一个正数的两边,不等号方向不变,得到ac < bc。
如果c < 0,则乘以一个负数的两边,不等号方向反转,得到ac > bc。
同样地,除以一个正数的两边,不等号方向不变;除以一个负数的两边,不等号方向反转。
3.平方:对于不等式a<b,如果a和b都是非负数,可以对其进行平方运算,得到a^2<b^2、如果a和b都是负数,得到a^2>b^24.开方:对于不等式a<b,如果a和b都是非负数且不超过1,可以对其进行开方运算,得到√a<√b。
如果a和b都是正数且大于1,得到√a>√b。
5.绝对值:对于不等式,a,<,b,可以根据a和b的正负情况分别讨论。
如果a和b都是非负数,得到a<b。
如果a和b都是负数,得到-a<-b。
6.倍增法:对于不等式a<b,可以重复加或者减一个相同的数,直到得到符合条件的不等式。
这些是不等式的放缩法的基本公式和方法,但实际问题中常常还需要结合具体情况进行灵活运用。
同时,需要注意的是,放缩法只是解决不等式问题的一种方法,不是唯一的方法,有时候可能需要结合其他方法一起使用。
最重要的是,解决不等式问题时需要保持逻辑性和推理能力,严谨地进行分析和求解。
常见的不等式的放缩方法

常见的不等式的放缩方法天门中学高三数学组一、先求和再放缩类型1、设数列{}n a 的前n 项的和为,n S 42n n a n=-,设2n n n T S =,1,2,3,n =⋅⋅⋅,证明:132nii T =<∑解: 由得S n = 4n 2nna =-23×(2n+1-1)(2n-1) T n = ⇒2n S n= 32×2n (2n+1-1)(2n-1) = 32×(12n -1 - 12n+1-1),所以, = 1ni =∑i T 321(ni =∑12i -1 - 12i+1-1) = 32×(121-1 - 12i+1-1) < 322、已知2113,12n n n a a a a +==-+,求证:20101112k ka =<<∑。
证明:2112737(1)0,,416n n n n n a a a a a a a ++-=->⇒>==>321 ⇒ 当时,,3n ≥2n a >13(1)113n n n n n a a a a a a n n +=-+>+⇒>+-=-()20112011120100,11a a ⇒>⇒∈-21111111(1)11n n n n n n n n a a a a a a a a +++=-+⇒-=-⇒=---1na ()20101112011201111111112111111k n n n ka a a a a a a =+⇒=-⇒=-=-∈-----∑,2 二、先放缩为等比数列再求和类型1、设,证明:n N +∈11nni i e n e =⎛⎫<⎪-⎝⎭∑ 证明:()ln(1)1x x x +≤<- 111111ln 1ln 1111nnnn n ii i i i i i i i i i e e e n n n n n e --+∞--===⎛⎫⎛⎫⎛⎫⎛⎫i -∴-≤-⇒-≤-⇒-≤⇒-<<=⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑11111nni i e n e e =⎛⎫⇒<+=⎪--⎝⎭∑2、已知:113443n n n a k k --⋅=⋅+-,当13k <<时,求证:138nii n k a k =->∑。
不等式放缩技巧

不等式常用放缩技巧:模型一、等比数例倒求放缩目标。
小于常值题是重点,因为它涉及一个考点,例如:证明不等式:11112112123123n++++<⨯⨯⨯⨯⨯⨯⨯首先这个2不是随便的一个数,为什么不是5/3,不是3? 我们首先代入一下:q-11=5/3,3,2分别解得: q=52,32,21那么通项公式:an=(52)1-n,(32)1-n ,( 21)1-n <1+2)25(1+3)25(1+…+n )25(1<5211-=5/3(n 取多少开始才有可能后式大于前式,就很难求出。
)<1+2)23(1+3)23(1+…+n)23(1<5211-=5/3(n>2)<1+2)2(1+3)2(1+…+n)2(1<2111-=2(n>1)后两种很容易发现不超三项就开始成立。
所以一般出题出n>1时就开始成立 再见青海高考2014年高考题:解:(1)a n+1=3an +1,根据模型求解:是一次函数斜截式肯定可以用点斜式表示 (a n+1-Y0)=3(an –X0),为构成等比式,直接X0=Y0 解得Y0=X0=-1/2所以(a n+1+1/2)=3(a n +1/2) 所以a n +1/2为等比数列所a n +1/2=(a1+1/2)31-n =23n所以a n =213-n(2)小于3/2,不妨用等比数列极限=q-11=3/2,解得q=1/3 所以通项Bn=(31)1-n ,只需n a 1=132-n <(31)1-n =131-n ,也即2.13-n <13-n ,也即 1<n 3-2.13-n = .13-n (只要N>1显然成立)则<1+31+(31)2+…+(31)n<3111-=3/2当然考试时不用那么啰嗦。
这只是思路建立目标与已知的关系。
上述放缩是等比数列为模板倒求放缩比,此方法用在指数型,首先考虑,等比数列模型放缩。
常用不等式,放缩技巧

常用不等式,放缩技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2n a=sin2n+1a/2n+1sinaⅳ:e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1)ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式 e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word 编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用) 2:伯努利不等式(1+x1)(1+x2)…(1+x n)≥1+x1+x2+…+x n(x i符号相同且大于-1)3:柯西不等式(∑ a i b i)2≤∑a i2∑b i24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2p max(︱a p︱,︱b p︱)(a+b)p≤a p+ b p (0<p<1)(a+b)p≥a p+ b p (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤a n, b1≤b2≤…≤b n∑a i b i≥(1/n)∑a i∑b i若a1≤a2≤…≤a n, b1≥b2≥…≥b n∑a i b i≤(1/n)∑a i∑b i三:常见的放缩(√是根号)(均用数学归纳法证) 1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:n n+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x 7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一:一些重要恒等式
ⅰ:12+22+…+n2=n(n+1)(2n+1)/6
ⅱ: 13+23+…+n3=(1+2+…+n)2
Ⅲ:cosa+cos2a+…+cos2n a=sin2n+1a/2n+1sina
ⅳ:e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1) ⅴ:三角中的等式(在大学中很有用)
cosαcosβ= 1/2[cos(α+β)+cos(α-β)]
sinαcosβ= 1/2[sin(α+β)+sin(α-β)]
cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)
sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)
cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)
cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)
tan+tanB+tanC=tanAtanBtanC
cotAcotB+cotBcotC+cotCcotA=1
tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1
sin2A+sin2B+sin2C=4sinAsinBsinC ⅵ:欧拉等式 e∏i=-1 (i是虚数,∏是pai)
ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word 编)
二重要不等式
1:绝对值不等式
︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)
2:伯努利不等式
(1+x1)(1+x2)…(1+x n)≥1+x1+x2+…+x n(x i符号相同且大于-1)
3:柯西不等式
(∑ a i b i)2≤∑a i2∑b i2
4:︱sin nx︱≤n︱sin x︱
5; (a+b)p≤2p max(︱a p︱,︱b p︱)
(a+b)p≤a p+ b p (0<p<1)
(a+b)p≥a p+ b p (p>1)
6:(1+x)n≥1+nx (x>-1)
7:切比雪夫不等式
若a1≤a2≤…≤a n, b1≤b2≤…≤b n
∑a i b i≥(1/n)∑a i∑b i
若a1≤a2≤…≤a n, b1≥b2≥…≥b n
∑a i b i≤(1/n)∑a i∑b i
三:常见的放缩(√是根号)(均用数学归纳法证)
1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);
2:1+1/√2+1/√3+…+1/√n>√n;
3:n!<【(n+1/2)】n
4:n n+1>(n+1)n n!≥2n-1
5:2!4!…(2n)!>{(n+1)!}n
6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x 7:(2/∏)x≤sinx≤x
8:均值不等式我不说了(绝对的重点)
9:(1+1/n)n<4
四:一些重要极限
(书上有,但这些重要极限需熟背如流)。