函数知识精要

合集下载

函数知识点总结大全

函数知识点总结大全

函数知识点总结大全一、概念与特点1. 函数是一种特殊的关系,指的是在一个数的范围内,与这个数对应的唯一的另一个数。

2. 在数学中,函数通常用字母f, g, h等表示,函数的自变量和因变量分别是x和y。

即y=f(x)。

3. 函数的特点:单值性(对于同一个自变量,函数有唯一的因变量)、可定义域(函数的自变量的取值范围)、值域(函数的因变量的取值范围)。

二、函数的分类1. 一元函数:函数的自变量只有一个。

2. 多元函数:函数的自变量有两个或两个以上。

3. 显式函数:函数的表达式中,因变量能够用自变量唯一表示。

4. 隐式函数:函数的表达式中,因变量无法用自变量唯一表示。

5. 参数方程:函数的表达式中,因变量和自变量都用参数表示。

三、数学函数1. 常用的数学函数有:多项式函数、指数函数、对数函数、三角函数、幂函数、根函数等。

2. 多项式函数:由常数项、一次项、二次项等有限多项组成的函数。

3. 指数函数:以常数e为底的函数。

4. 对数函数:以常数e为底的对数函数。

5. 三角函数:正弦函数、余弦函数、正切函数、余切函数等。

6. 幂函数:指数为自然数的幂函数。

7. 根函数:开平方根、立方根等。

四、函数的运算1. 函数的和、差、积、商:设有函数f(x)和g(x),则它们的和、差、积、商分别为f(x)±g(x)、f(x)g(x)和f(x)/g(x)。

2. 复合函数:将一个函数作为另一个函数的自变量,形成的新函数。

3. 反函数:设有函数f(x),如果存在一个函数g(x),使得g(f(x))=x,同时f(g(x))=x,那么g(x)就是f(x)的反函数。

4. 基本初等函数的复合:常用基本初等函数的复合形成新的函数。

五、函数的图像与性质1. 函数的图像:通过函数的表达式,可以画出函数的图像,通常用直角坐标系表示。

2. 函数的奇偶性:函数在该定义域内,满足f(-x)=f(x)的函数是偶函数;满足f(-x)=-f(x)的函数是奇函数。

高中数学函数完美归纳讲解

高中数学函数完美归纳讲解

第一章函数概念导入1、集合〔子集,真子集、空集、补集、全集等表示和关系〕2、映射〔定义,一一映射〕3、增函数、减函数4、轴对称5、单调性定义设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y 与之对应,称变量y为变量x的函数,记作y=f<x>.自变量x、因变量y映射角度函数定义:定义在非空数集之间的映射称为函数要点1、对应法则和定义域是函数的两个要素2、函数是一种关系3、函数两组元素一一对应的规则〔这种关系使一个集合里的每一个元素对应到另一个集合里的唯一元素;第一组中的每个元素在第二组中只有唯一的对应量〕1、复合函数:y是u的函数,y=ψ〔u〕,u是x的函数,u =f〔x〕,y通过中间变量u构成了x的x→u→y,注意定义域. y=lgsinx2、反函数:x→y, y→x,性质:1、一一映射2、单调函数分类:一次函数y=kx+b★二次函数y=ax2+bx+c〔a,b,c为常数,a≠0>反比例函数y=k/x <k为常数且k≠0>指数函数y=a x<a>0,a≠1>对数函数y=logax〔a>0〕幂函数y=x a★三角函数<正弦,余弦,正切,余切,正割,余割>常用方法:待定系数法平移变换法数形结合法注:注意自定义〔抽象〕函数等学习应用,培养逻辑思维.第一节函数的一般化应用解析1-1-1函数的值域方法:1、巧用定理,整体变换.〔1〕函数3cos 3sin 2+--=x x y 的 最小值;〔2〕已知:αβαsin 5sin 2sin 322=+,α、βR ∈,求βα22cos cos +=u X 围.2、借题发挥,分式转化双曲线.()bc ad ,0c dcx b ax y ≠≠++=型求值域和画图的一般化应用. 〔1〕作函数1231+-=x x y 的图象 〔2〕求函数4235+-=x x y 的值域 1-1-2函数的奇偶性要 点判断函数的奇偶性前提是:函数的定义域必须关于原点对称. 〔1〕若为偶函数函数为奇)()()()()()(x f y x f x f x f y x f x f =⇔=-=⇔-=-〔2〕奇函数;0)0()(=⇒=f x y 在原点处有意义〔3〕任一个定义域关于原点对称的函数)(x f 一定可以表示成一个奇函数和一个偶函数之和即 偶奇2)()()(2)()()(x f x f x f x f x f -++--=例 题:〔1〕定义在),(+∞-∞上的函数)(x f 可以表示成奇函数g<x>与偶函数h<x>之和,若)110lg()(+=x x f ,那么〔 〕A 、)21010lg()(,)(++==-x x x h x x gB 、])110[lg(21)(],)110[lg(21)(x x h x x g x x -+=++=C 、2)110lg()(,2)(x x h x x g x -+==D 、2)110lg()(,2)(x x h xx g x ++=-= 1-1-3函数的单调性★常见于证明类问题,单调性证明一定要用定义.定 义区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数,若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数.性 质奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.证明办法:作差法:若x1<x2,f<x1>-f<x2>>0 单调递减若x1<x2,f<x1>-f<x2><0 单调递增作商法:若x1<x2,f<x1>/f<x2>>0单调递减若x1<x2,f<x1>/f<x2>>0单调递增讨 论复合函数的增减问题ψ<x>为增函数,f<x>为增函数,y 为增函数ψ<x>为增函数,f<x>为减函数,y 为减函数))x ((f y ϕ=ψ<x>为减函数,f<x>为增函数,y 为减函数 ψ<x>为减函数,f<x>为减函数,y 为增函数〔1〕 设)(x f 为奇函数,且在区间[a,b] <0<a<b>上单调减,证明)(x f 在[-b,-a]上单调减.〔2〕)3(log )(221a ax x x f +-=在),2[+∞上减函数,则a 的X 围:〔-4,4] 1-1-4函数的平移和伸缩平移规则:左加右减)()()(a x f y a x f y x f y a a -=−−−−→−+=−−−−→−-=个单位右移个单位左移 上加右减b x f y x f b y bx f y x f b y x f y b b -=→=+−−−−→−+=→=-−−−−→−-=)()()()()(个单位下移个单位上移伸缩规则: 横向变倒数)0()()(1,>=−−−−−−−−−→−=ωωωx f y x f y 倍横坐标变为原来的纵坐标不变 纵向成倍数1-1-5函数的对称性中心对称轴对称若)(x f y =对R x ∈满足)()(x b f x a f -=+,则)(x f y =关于直线2b a x +=对称;〔由2)()(x b x a x -++=求得〕 函数)()(x b f y x a f y -=+=与关于直线2a b x -=对称. 〔由x b x a -=+解得〕例题解析1、函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是〔 〕 A.,020x x y x ⎧≥⎪=< B.2,00x x y x ≥⎧⎪=< C.,020x x y x ⎧≥⎪=⎨⎪<⎩D.2,00x x y x ≥⎧⎪=⎨<⎪⎩ 2、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________. 3、设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于〔 C 〕〔A 〕3 〔B 〕4 〔C 〕5 〔D 〕6 4、的值域求函数x x y -+-=535、221223x x y x x -+=-+求函数的值域6、231223y x x =-+-求函数的值域7、给出四个函数,分别满足①f<x+y>= f<x>+ f<y>②g<x+y>= g<x> g<y>③h<xy>= h<x>+ h<y>④t<xy>= t<x> t<y>,又给出四个函数图象正确的匹配方案是〔 〕〔A 〕①—丁②—乙③—丙④—甲〔B 〕①—乙②—丙③—甲④—丁 〔C 〕①—丙②—甲③—乙④—丁〔D 〕①—丁②—甲③—乙④—丙8.若)(x f y =对R x ∈满足)2()2(x f x f -=+,则)(x f y =的对称轴为函数)2()2(x f y x f y -=+=与的对称轴为 9.f<x>为定义在)0,(-∞ ),0(+∞上的偶函数,且在),0(+∞上为减,①求证f<x>在)0,(-∞上为增函数;10.已知4254)(,252-+-=≥x x x x f x 则有 A .最大值45 B .最小值45 C .最大值1 D .最小值111.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+= 则=)5(fA .0B .1C .25D .512.)(x f 为定义在R 上的偶函数,且)3()5(x f x f -=+对R x ∈恒成立,则 )(x f y =的一个周期为:13.设)12(+=x f y 为偶函数,则)2(x f y =的一条对称轴为第二节二次函数定义,解析式,条件,定义域,值域.一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c则称y 为x 的二次函数.判定公式,求根公式,韦达定理等回顾掌握.表达式类型:1、一般式:y=ax 2+bx+c 〔a,b,c 为常数,a ≠0〕2、顶点式:y=a<x-h>2+k [抛物线的顶点P 〔h,k 〕] 对于二次函数y=ax 2+bx+c 其顶点坐标为 <-b/2a,<4a c-b 2>/4a>3、交点式:y=a<x-x ₁><x-x ₂> [仅限于与x 轴有交点A 〔x ₁ ,0〕和 B 〔x ₂,0〕的抛物线]性质关系:1、a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下.IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大2、图像为抛物线,是轴对称图形,对称轴为直线x = -b/2a3、2.抛物线有一个顶点P,坐标为P < -b/2a ,<4ac-b2>/4a >4.一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时〔即ab>0〕,对称轴在y轴左;当a与b异号时〔即ab<0〕,对称轴在y轴右. 5.常数项c决定抛物线与y轴交点.抛物线与y轴交于〔0,c〕6.抛物线与x轴交点个数Δ= b2-4ac>0时,抛物线与x轴有2个交点.Δ= b2-4ac=0时,抛物线与x轴有1个交点.Δ= b2-4ac<0时,抛物线与x轴有0个交点7、当a>0时,函数在x= -b/2a处取得最小值f<-b/2a>=4ac-b2/4,在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}.相反亦然.例题应用解析:1.如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B 两点,交y轴于点C,则△ABC的面积为< >A、6B、4C、3D、12.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x<单位:分>之间满足函数关系:y=-0.1x2+2.6x+43<0<x <30>.y值越大,表示接受能力越强.<1>x在什么X围内,学生的接受能力逐步增强?x在什么X 围内,学生的接受能力逐步降低?<2>第10分时,学生的接受能力是什么?<3>第几分时,学生的接受能力最强?3.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:<1>当销售单价定为每千克55元时,计算月销售量和月销售利润;<2>设销售单价为每千克x元,月销售利润为y元,求y与x 的函数关系式<不必写出x的取值X围>;<3>商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?4.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量〔件〕与每件的销售价〔元〕满足一次函数:〔1〕写出商场卖这种商品每天的销售利润与每件的销售价间的函数关系式.〔2〕如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?5.如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形的边米,面积为平方米.〔1〕求:与之间的函数关系式,并求当米时,的值;〔2〕设矩形的边米,如果满足关系式即矩形成黄金矩形,求此黄金矩形的长和宽.第三节三角函数知识点回顾角①角的静态定义:具有公共点的两条射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.角的大小与边的长短没有关系;角的大小决定于角的两条边X开的程度,角可以分为锐角、直角、钝角、平角、周角这五种.锐角:小于90°的角叫做锐角直角:等于90°的角叫做直角钝角:大于90°而小于180°的角叫做钝角平角:等于180°的角叫做平角周角:等于360°的角叫做周角②角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角.所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边.角的X 围可扩大到实数R.A=a+2k π<k ∈Z>角的度量弧度与角度在数学中,弧度和角度是角的量度单位.定义:弧长等于圆半径的弧所对的圆心角为1弧度. 弧长公式:)n (180rn )(L 为角度π弧长 弧度和角度变化公式〔r=1〕.1-3-1三角函数的初等基本表示正弦余弦正切余切正割余割在平面直角坐标系xOy 中,从点O 引出一条射线OP ,设旋转角为θ,设OP=r,P 点的坐标为〔x,y 〕有 正弦函数 sin θ=y/r 余弦函数 cos θ=x/r 正切函数 tan θ=y/x 余切函数 cot θ=x/y 正割函数 sec θ=r/x 余割函数 csc θ=r/y〔斜边为r,对边为y,邻边为x.〕1-3-2三角函数的数值符号与特殊值特殊角的三角函数值例题函数名称 第一象限第二象限第三象限第四象限正 弦 + + - - 余 弦 + - - + 正 切 + - + - 余 切 + - + - 正 割 + - 1 + 余 割 ++--函数名称 030456090正 弦21 22 23 1余 弦123 22 21 0正 切0 33 13----余 切---- 3133正 割1332 22-----余 割------22332 11. sin<-619π>的值是< > A.21 B. -21C. 23D. -232. 若sin θcos θ>0,则θ在< >A. 第一,二象限B. 第一, 三象限C. 第一, 四象限D. 第二, 四象限5.设tan α=71,tan β=31,α、β均为锐角,则α+2β的值是 < > A.4πB. 43πC.45πD. 434或ππ 2.当x ≠2πk <k ∈Z >时,xx xx cot cos tan sin ++的值是 < > A.恒正B.恒负 C.非负D.无法确定6.如果角θ满足条件sin θ>0,cos θ<0,则θ是 < > A.第二象限角B.第二或第四象限角 C.第四象限角D.第一或第三角限角 7.若cot θ=3,则cos 2θ-21sin 2θ的值是 < > A.-65B.-54C.53D.54 1-3-2三角函数公式1.诱导公式sin<-a>=-sin<a>sin<π/2-a>=cos<a>cos<-a>=cos<a> cos<π/2-a>=sin<a> sin<π/2+a>=cos<a> sin<π-a>=sin<a> cos<π/2+a>=-sin<a> cos<π-a>=-cos<a> sin<π+a>=-sin<a> cos<π+a>=-cos<a> 2.两角和与差的三角函数sin<a+b>=sin<a>cos<b>+cos<α>sin<b>sin<a-b>=sin<a>cos<b>-cos<a>sin<b>cos<a+b>=cos<a>cos<b>-sin<a>sin<b>cos<a-b>=cos<a>cos<b>+sin<a>sin<b>tan<a+b>=<tana+tanb>/<1-tanatanb>tan<a-b>=<tana-tanb> /〔1+tanatanb〕3.和差化积公式sinA+sinB=2sin[<A+B>/2]cos[<A-B>/2]cosA+cosB=2cos[<A+B>/2]cos[<A-B>/2]tanA+tanB=sin<A+B>/cosAcosBtanA-tanB=sin<A-B>/cosAcosB4.积化和差公式2sinAcosB=sin<A+B>+sin<A-B>2cosAsinB=sin<A+B>-sin<A-B>2cosAcosB=cos<A+B>+cos< A-B>2sinAsinB=-cos<A+B>cos<A-B>5.二倍角公式sin<2a>=2sin<a>cos<a>cos<2a>=cos2 <a>-sin2<a>=2cos2<a>-1=1-2sin2<a>6.半角公式7.万能公式8.辅助角公式9.降幂公式10.推导公式tanAtanBtan<A+B>+tanA+tanB-tan<A+B>=0例题1、sin15°sin30°sin75°的值等于< > A.43 B. 83 C. 81 D. 41 2、 已知θ∈﹝0,3π﹞,则315sin θ+35cos θ的取值X 围< > A. ﹝ -35,35﹞ B. ﹝ 0,65﹞ C. ﹝ 35,65﹞ D. ﹝ 0,35﹞ 3、tan300°+cot405°的值为< > A.1+3 B. 1-3C.-1-3 D.-1+3 4.设a=sin14°+cos14°,b=sin16°+cos16°,c=26.则a,b,c 的大小关系是< > A. a <b <c B. a <c <b C. b <c <a D. b <a <c 5.︒-︒+75tan 175tan 1的值为< >A.3 B. -3 C.33 D. -336.设f<sin α+cos α>=sin αcos α ,则f<cos 6π>的值为< > A.83 B.81 C.-81D.-837.sin7°cos37°-sin83°cos53°=________. 8.tan20°+tan40°+3tan20°tan40°=_________.9.sin<2π-α>=53,cos2α=__________.10.已知tan α=3,ααααcos sin 2cos sin 3-+=___________.11、化简:<1> sin50°〔1+3tan10°〕 <2>)5sin()cos()6cos()2sin()2tan(αππααπαπαπ------12、已知sin α=32,α∈<2π,π> ,cos β=-43,β∈<π,23π> 求sin<α-β>, cos<α+β>, tan<α+β>. 13、已知2π<β<α<43π,cos<α-β>=1312,sin<α+β>=-53.求sin2α1-3-3 正弦函数定义对于任意一个实数x 都有唯一确定的值sinx 与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数.正弦型函数解析式:y=Asin<ωx+φ>+b图像定义域与值域 X ∈R, y ∈[-1,1] 最值和零点①最大值:当x=2k π+<π/2> ,k ∈Z 时,y max =1 ②最小值:当x=2k π+<3π/2>,k ∈Z 时,y min =-1 零值点: <k π,0> ,k ∈Z 对称性:1>对称轴:关于直线x=<π/2>+k π,k ∈Z 对称 2>中心对称:关于点<k π,0>,k ∈Z 对称 周期性最小正周期:2π 奇偶性: 奇函数 单调性:在[-<π/2>+2k π,<π/2>+2k π],k ∈Z 上是增函数 在[<π/2>+2k π,<3π/2>+2k π],k ∈Z 上是减函数 正弦型函数与其性质根据正弦型函数解析式:y=Asin<ωx+φ>+bφ:决定波形与X 轴位置关系或横向移动距离〔左加右减〕 ω:决定周期〔最小正周期T=2π/∣ω∣〕 A :决定峰值〔即纵向拉伸压缩的倍数〕b :表示波形在Y 轴的位置关系或纵向移动距离〔上加下减〕 正弦函数的作图"五点作图法〞即取当X 分别取0,π/2,π,3π/2,2π时y 的值.例题1、函数y=2sinxcosx 的最小正周期是< > A. 2π B. π C.2π D. 4π2、函数f<x>=cos 4x-sin 4x 是< > A. 奇函数 B. 偶函数C.非奇非偶函数D. 既是奇函数又是偶函数3.函数y=cos<3x+4π>的图象是由y=cos3x 的图象怎样平移而来的< > A.向左平移4π个单位 B.向右平移4π个单位C.向左平移12π个单位D.向右平移12π个单位4.下列各区间中,函数y=sin<x+4π>的单调增区间是< >A. ﹝2π,π﹞B. ﹝0, 4π﹞C. ﹝4π,2π﹞ D. ﹝-π,0﹞5.<12分>用五点作图法作出函数y=3sin2χ-cos 2χ的图象,并指出这个函数的振幅,周期,频率,相位与最值.6. 右图为)sin(ϕω+=x A y 的图象的一段,求其解析式.7设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .〔Ⅰ〕求ϕ;〔Ⅱ〕求函数)(x f y =的单调增区间;〔Ⅲ〕画出函数)(x f y =在区间],0[π上的图像.8. 设函数x c x b a x f sin cos )(++=的图象经过两点〔0,1〕,〔1,2π〕,且在2|)(|20≤≤≤x f x 内π,##数a 的的取值X 围.9. 若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.1-3-4正弦定理与余弦定理1-3-4-1正弦定理在一个三角形中,各边和它所对角的正弦的比相等.即2R sinCcsinB b sinA a ===〔2R 在同一个三角形中是恒量,是此三角形外接圆的半径的两倍〕1-3-4-1-1 正弦定理的推广与应用一、三角形面积公式: 1.典型公式 2.海伦公式假设有一个三角形,边长分别为a 、b 、c,三角形的面积S 可由以下公式求得: ())c -P )(b -P )(a -P (P S c b a 21P =++=三角形设而公式里的p 为半周长 二. 正弦定理的变形公式<1> a=2RsinA, b=2RsinB, c=2RsinC; <2> sinA : sinB : sinC = a : b : c;<3>相关结论:1-3-4-1余弦定理对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质1-3-5三角函数题型演练1. 试判断方程sinx=π100x实数解的个数. 2. 已知函数.3cos 33cos 3sin )(2xx x x f +=〔Ⅰ〕将f<x>写成)sin(φω+x A 的形式,并求其图象对称中心的横坐标与对称轴方程〔Ⅱ〕如果△ABC 的三边a 、b 、c 满足b 2=ac,且边b 所对的角为x,试求x 的X 围与此时函数f<x>的值域.3. 已知△ABC 三内角A 、B 、C 所对的边a ,b ,c ,且.2222222ca cc b a b c a -=-+-+ 〔1〕求∠B 的大小; 〔2〕若△ABC 的面积为433,求b 取最小值时的三角形形状. 4. 求函数y=)32cot()32sin(ππ--x x 的值域.5. 求函数y=1sec tan 1sec tan +--+x x x x 的单调区间.6. 已知ctgxx x x f ++-=112cos 2sin )(①化简f<x>;②若53)4sin(=π+x ,且π<<π434x ,求f<x>的值;7. 已知ΔABC 的三个内角A 、B 、C 成等差数列,且A<B<C,tgA ·tgC 32+=,①求角A 、B 、C 的大小;②如果BC 边的长等于34,求ΔABC 的边AC 的长与三角形的面积.8. 已知21)(),,2(,53sin =β-πππ∈α=αtg ,求tg<α-2β>.9. 已知函数x x x x f cos sin sin 3)(2+-=〔I 〕求函数)(x f 的最小正周期; 〔II 〕求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域.10. 在⊿ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且10103cos ,21tan ==B A 〔1〕求tanC 的值; 〔2〕若⊿ABC 最长的边为1,求b.11. 如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E,AB=2.〔1〕求cos ∠CBE 的值;〔2〕求AE. 12. 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且c a bC B +-=2cos cos .〔1〕求角B 的大小;〔2〕若4,13=+=c a b ,求a 的值.13.已知S △ABC =103,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.14.已知△ABC 中,Ab B ac c b a c b a cos cos ,2222==-+-+且,试判断△ABC 的形状.15.求值:16.在△ABC 中,a =6,b =2,c=3+1,求A 、B 、C 与S △.17.已知:k 是整数,钝角△ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c〔1〕若方程组⎪⎩⎪⎨⎧+=+=+)1(32722k y kx k y x 有实数解,求k 的值.〔2〕对于〔1〕中的k 值,若,2sin k C =且有关系式C c B b A b c 222sin sin sin )(=+-,试求A 、B 、C 的度数. 第四节 指数函数1-4-1知识点回顾1-4-1-1幂函数形如y=x a <a 为常数〕的函数,称为幂函数.性质:〔1〕所有的图形都通过〔1,1〕这点.<a ≠0>〔2〕当a 大于0时,幂函数为单调递增的,而a 小于0时,幂函数为单调递减函数.〔3〕当a 大于1时,幂函数图形下凸;当a 小于1大于0时,幂函数图形上凸.〔4〕当a 小于0时,a 越小,图形倾斜程度越大.〔5〕显然幂函数无界限.〔6〕a=0,该函数为偶函数{x|x≠0}.1-4-1-1反比例函数幂函数中,a=-1时,为双曲线.画图,研究渐进线.重温习本章1-1-1中的第二题.1-4-1-2指数函数定义与性质指数函数的一般形式为y=a x<a>0,a≠1>性质:〔2〕指数函数的值域为大于0的实数集合.〔3〕函数图形都是下凹的.〔4〕a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.〔5〕函数总是在某一个方向上无限趋向于X轴,永不相交.〔6〕函数总是通过〔0,1〕点〔8〕显然指数函数无界.〔9〕指数函数既不是奇函数也不是偶函数.〔10〕当两个指数函数中的a互为倒数时,两个函数关于y 轴对称,但这两个函数都不具有奇偶性.1-4-1-3指数函数的应用比较大小1、同幂不同底以y轴为分界线分情况讨论2、同底不同幂方法1、比〔差〕商法2、函数单调性应用法3、中值法第五节 对数函数1-5-1对数定义与性质定义:一般地,如果a 〔a 大于0,且a 不等于1〕的b 次幂等于N,那么数b 叫做以a 为底N 的对数,记作b N log a =,其中a 叫做对数的底数,N 叫做真数.底数a 则要大于0且不为1对数的运算性质当a>0且a ≠1时,M>0,N>0,那么:〔1〕N log M log MN log a a a +=〔2〕N log M log NM log a a a -= 〔3〕M nlog M log a n a =〔n ∈R 〕〔4〕换底公式:alog M log M M log b b a =<b>0且b ≠1〕 〔5〕a b b alog 1log = 〔6〕M a M a =log〔7〕N Na a log 1log -=〔8〕M rM a a r log 1log = 〔9〕M rs M a s a r log log = 对数与指数之间的关系 当a>0且a ≠1时,N log x N a a x =→=对数函数的常用简略表达方式:〔1〕常用对数:b log lgb 10=〔2〕自然对数:b log lnbe = e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义.1-5-2对数函数定义与性质对数函数的一般形式为 y=㏒<a>x,它实际上就是指数函数的反函数<图象关于直线y=x 对称的两函数互为反函数〕,可表示为x=a y .因此指数函数里对于a 的规定〔a>0且a ≠1〕,同样适用于对数函数. 性质定义域:〔0,+∞〕值域:实数集R定点:函数图像恒过定点〔1,0〕.单调性:a>1时,在定义域上为单调增函数,并且上凸; 0<a<1时,在定义域上为单调减函数,并且下凹.奇偶性:非奇非偶函数,或者称没有奇偶性.周期性:不是周期函数零点:x=1例题1.3log 9log 28的值是 〔 〕 A .32 B .1 C .23 D .2 2.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是〔 〕A .z <x <yB .x <y <zC .y <z <xD .z <y <x 3. 已知x 1是方程3lg =⨯x x 的一个根, 2x 是方程310=⨯x x 的一个根, 那么21x x +的值是 < >A. 6B. 3C. 2D. 14. ,0z log log log y log log log x log log log 324243432===则z y x ++的值为 < >A. 50B. 58C. 89D. 1115. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的 < >6.设5.1344.029.01)21(,8,4-===y y y ,则〔 〕A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 27.在下列图象中,二次函数y =ax 2+bx +c 与函数y =<a b>x 的图象可能是 〔 〕8.已知函数f <x >的定义域是<0,1>,那么f <2x >的定义域是〔 〕A .<0,1>B .<21,1> C .<-∞,0> D .<0,+∞>9.若122-=x a ,则x x xx aa a a --++33等于 〔 〕 A .22-1 B .2-22 C .22+1 D . 2+110.设f <x >满足f <x >=f <4-x >,且当x >2 时f <x >是增函数,则a =f <1.10.9>,b = f <0.91.1>,c =)4(log 21f 的大小关系是〔 〕A .a >b >cB .b >a >cC .a >c >bD .c >b >a11. 若函数)x (f 与=)x (g x ) 21 (的图象关于直线x y =对称, 则)x 4(f 2-的单调递增区间是< >A. ]2 ,2(-B. ) ,0[∞+C. )2 ,0[D. ]0 ,(-∞二. 填空题12. 已知522x x =+-, 则=+-x x 88.13. 若函数=y 2x log 2+的反函数定义域为),3(∞+ , 则此函数的定义域为.14. 已知=y )ax 3(log a -在]2 ,0[上是x 的减函数, 则a 的取值X 围是.15.函数=)x (f )1a ,0a (a x ≠>在]2 ,1[上的最大值比最小值大2a , 则a 的值为.16. 已知函数12x )x (f -=的反函数为)x (f 1-, )1x 3(log )x (g 4+=.<1> 若≤-)x (f 1)x (g ,求x 的取值X 围D;<2> 设函数)x (f 21)x (g )x (H 1--=,当∈x D 时, 求函数)x (H 的值域.17. 已知常数1a >, 变数x 、y 有关系3y log x log a log 3x a x =-+.<1>若t a x =)0t ( ≠, 试以a 、t 表示y ;<2>若t 在) ,1[∞+内变化时, y 有最小值8, 求此时a 和x 的值各为多少?18. 已知函数=)x (f ,329x x ⋅-判断f <x>是否有反函数? 若有, 求出反函数; 若没有, 怎么改变定义域后就有反函数了?19.设0≤x ≤2,求函数y =1224221++⋅--a a xx 的最大值和最小值. 第六节 函数与方程1-6-1理论思想1、函数与方程的思想方法是高中数学思想方法的主线,函数思想是指在解决某些问题时,用联系和变化的观点提出数学对象,抽象出变量间的函数系,再利用函数的有关性质,使问题得以解决.2、方程思想是指将研究的变量设为未知数,根据题意布列方程,通过对方程的研究,使问题得以解决.方程与函数是两个不同的概念,但它们有着密切的联系.对于同一个问题,可以用不同的观点去分析,从而引出不同的方法.3、重要关系A 、方程()()f x g x =的解是两函数()y f x =和y=g(x)图象交点的横坐标;B 、不等式()()x g x f 的解集是函数()y f x =的图象在函数y=g(x)的图象上方的取值集合;C 、不等式()()()f x g x ><的解集的区间端点值要么是函数()y f x =和y=g(x)的公共定义域的区间端点值,要么是相应方程()()f x g x =的解.5. 数形结合是重要的数学思想方法,借助函数的图象,再结合分析、推理来解决与函数有关的问题.6. 函数的思想方法贯穿于高中数学理论和应用的各个侧面,解题时,一般据题意先建立目标函数,而后通过对函数性质的研究加以解决. 7. 解复杂的方程或不等式时,注意换元化归,分类讨论.例题解析函数问题方程化1、已知函数18log )(223+++=x n x mx x f 的定义域为R,值域为[0,2],##数m 、n .设08)(8)1(,91,1822222=-+--++=+≤≤+++=n t x x m t n x mx x t t x nx mx t 得又由则方程问题函数化1、方程lgx+x=3的解所在区间为. 〔〕A .<0,1>B .<1,2>C .<2,3>D .<3,+∞> 2.如果关于的方程有一个根小于-1,另一个根大于1,##数的取值X 围.方程的实根即是的图象与轴交点的横坐标.原方程有一个根小于-1,另一个根大于1的充要条件是函数y=f<x>的图象与轴有两个交点分别在区间<-∞,-1>与〔1,+∞〕上.由于y=f<x>的图象是开口向上的抛物线,因此以上条件等价于即解得3、若关于x的方程lg〔x2+20x〕-lg〔8x-6a-3〕=0有惟一的实根,##数a的取值X围.原方程等价于x2+20x>0,x2+20x=8x-6a-3,即:x<-20或x>0,①x2+12x+6a+3=0. ②令f〔x〕=x2+12x+6a+3.〔1〕若抛物线y=f〔x〕与x轴相切,有Δ=144-4〔6a+3〕=0,即a=〔11/2〕.将a=〔11/2〕代入②,得x=-6,不满足①.∴a≠〔11/2〕.〔2〕若抛物线y=f〔x〕与x轴相交〔如图2-12〕,注意到其对称轴为x=-6,故交点的横坐标有且仅有一个满足①的充要条件为图2-12f〔-20〕≥0,解得-〔163/6〕≤a<-〔1/2〕.f〔0〕<0,∴当-〔163/6〕≤a<-〔1/2〕时,原方程有惟一解.数型结合思想上面方程可以等价于x2+20x=8x-6a-3〔x<-20或x>0〕. ③问题转化为:##数a的取值X围,使直线y=8x-6a-3与抛物线y=x2+20x〔x<-20或x>0〕有且仅有一个公共点.虽然这两个函数的图象都很明确,但在什么情况下它们有且仅有一个公共点,却并不明显.如果把方程③稍作变形,如x2+12x+3=-6a〔x<-20或x>0〕.再在同一直角坐标系中分别作出抛物线y=x2+12x+3〔x<-20或x>0〕和直线y=-6a,如图2-13所示.当且仅当3<-6a≤163,即-〔163/6〕≤a<-〔1/2〕时,直线与抛物线仅有一个公共点.∴当-〔163/6〕≤a<-〔1/2〕时,原方程有惟一的实根.第七节函数与不等式1-7-1理论思想1、不等式的性质与均值定理等重要不等式,是求解函数定义域、值域、判断函数单调性以与求解函数最值问题的有力工具2、利用函数的单调性,是求解比较大小问题或进行某些不等式证明的重要途径3、函数的思想、数形结合的思想、分类讨论的思想以与函数、方程、不等式之间的相互转化,是灵活处理函数与不等式问题的基本的思想和方法.例题解析1、解关于x的不等式分析一:这是解无理不等式,一般思路是化无理不等式为有理不等式解一:原不等式1. 当a>0时:I>II>∴a>0时原不等式的解集为[-a,0]2. a<0时I>II>∴a<0时,原不等式的解集为3.a=0时,原不等式化为此时解集为分析二:用数形结合解不等式解二:在同一直角坐标系XOY中作曲线C:,作直线l: y=2x+a由得∴如图〔3〕得a>0时,原不等式的解集为[-a,0]如图〔4〕得,a<0时,原不等式的解集为当a=0时,解法同解法一〔略〕例3.若对于任意实数x,不等式恒成立,求a的取值X围.分析一:系数较繁,但有联系,先换元,化简不等式.令t=,则原不等式化为:<3+t>x2-2tx+2t>0 令f<x>=<3+t>x2-2tx+2t考察二次函数f<x>的图象知:得t>0∴>0 得0<a<1,即a的取值X围为0<a<1.凸函数的概念:[定义]如果函数f<x>满足对定义域上任意两个数x1,x2都有<f<x1>+f<x2>>/2>=f<<x1+x2>/2>,那么f<x>为凹函数,或下凸函数.[定义]如果函数f<x>满足对定义域上任意两个数x1,x2都有<f<x1>+f<x2>>/2<=f<<x1+x2>/2>,那么f<x>为凸函数,或上凸函数.同样,如果不等式中等号只有x1=x2时才成立,我们分别称它们为严格的凹凸函数。

函数知识点高中总结简单

函数知识点高中总结简单

函数知识点高中总结简单一、函数的定义1. 函数的定义函数是一种数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

函数通常表示为f(x),其中x为自变量,f(x)为因变量。

如果对于任意一个x,都存在唯一的f(x)与之对应,则称f是一个函数。

2. 定义域和值域对于函数f(x),x的取值范围称为函数的定义域,记作D(f);而f(x)的取值范围称为函数的值域,记作R(f)。

函数的定义域和值域是函数的重要性质,它们决定了函数的取值范围和定义范围。

3. 函数的表示函数可以用不同的方式表示,其中常见的有解析式表示、图像表示和数据表格表示。

解析式表示是指用公式或方程式来表示函数;图像表示是指通过绘制函数的图像来表示函数;数据表格表示是指通过元素对的形式来表示函数。

二、函数的性质1. 奇函数与偶函数对于任意实数x,如果f(-x) = -f(x),则称f(x)为奇函数;如果f(-x) = f(x),则称f(x)为偶函数。

奇函数的图像关于原点对称,而偶函数的图像关于y轴对称。

2. 单调性函数在定义域上的变化趋势称为函数的单调性。

如果对于任意x1 < x2,都有f(x1) ≤ f(x2),则称函数f(x)在定义域上是递增的;如果对于任意x1 < x2,都有f(x1) ≥ f(x2),则称函数f(x)在定义域上是递减的。

3. 周期性如果存在一个正数T,使得对于任意x,都有f(x + T) = f(x),则称函数f(x)具有周期性,其中T称为函数的周期。

4. 有界性如果存在正数M,使得对于任意x,都有|f(x)| ≤ M,那么称函数f(x)在定义域上是有界的。

如果存在正数M1和M2,使得对于任意x,都有M1 ≤ f(x) ≤ M2,那么称函数f(x)在定义域上是有界的。

5. 复合函数复合函数是指将一个函数的输出作为另一个函数的输入所得到的函数。

复合函数通常表示为(g∘f)(x),其中f为内函数,g为外函数。

高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分

高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。

- 函数的性质:单调性、奇偶性、周期性等。

2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。

- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。

- 指数函数:y = a^x,a为正常数,图像单调递增或递减。

- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。

3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。

- 复合运算:由两个或多个函数构成一个新的函数。

- 反函数:原函数与定义域互为值域的函数。

- 平移、压缩、翻折等函数的变换。

4. 函数的图像与性质
- 函数图像的绘制和分析方法。

- 函数的最值、零点、极值等特性。

5. 函数的应用
- 函数在物理、经济等领域的应用。

- 函数在数学建模中的应用。

6. 解函数方程
- 求函数方程的解法与步骤。

以上是高中数学函数知识点的精华总结和知识分享。

掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。

注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。

函数常用公式及知识点总结

函数常用公式及知识点总结

函数常用公式及知识点总结一、基本的函数类型及其表达式1. 线性函数线性函数是最简单的一类函数,其表达式可以写成y = kx + b的形式,其中k和b是常数,k代表斜率,b代表截距。

线性函数的图像通常是一条直线,斜率决定了直线的倾斜程度,截距决定了直线和y轴的交点位置。

2. 二次函数二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c分别是二次项系数、一次项系数和常数。

二次函数的图像通常是一条开口向上或向下的抛物线,抛物线的开口方向取决于二次项系数a的正负。

3. 指数函数指数函数的一般形式是y = a^x,其中a是底数。

指数函数的特点是以指数形式增长或衰减,当底数a大于1时,函数图像呈现增长趋势;当底数a介于0和1之间时,函数图像呈现衰减趋势。

4. 对数函数对数函数的一般形式是y = log_a(x),其中a是底数。

对数函数和指数函数是互为反函数的关系,对数函数的图像通常是一条斜率逐渐趋近于零的曲线。

5. 三角函数常见的三角函数包括正弦函数、余弦函数和正切函数,它们分别表示了角的正弦值、余弦值和正切值。

三角函数的图像是周期性的波形,具有很强的周期性和对称性特点。

二、函数的常见性质和变换1. 奇偶性函数的奇偶性是指当x取相反数时,函数值是否相等。

如果函数满足f(-x) = f(x),则称其为偶函数;如果函数满足f(-x) = -f(x),则称其为奇函数。

2. 周期性周期性是指函数在一定范围内具有重复的规律性。

对于三角函数和指数函数等周期函数,周期可以通过函数表达式或图像来确定。

3. 平移、缩放和翻转函数可以通过平移、缩放和翻转等方式进行变换。

平移指的是将函数图像沿着x轴或y轴进行平移,缩放指的是改变函数图像的大小或形状,翻转指的是将函数图像进行对称变换。

4. 复合函数复合函数是指一个函数作为另一个函数的自变量,通过这种方式可以得到新的函数。

复合函数的求导、积分和求极限等运算与单个函数类似,但需要注意变量的替换和链式求导法则。

函数的知识点归纳总结

函数的知识点归纳总结

函数的知识点归纳总结1. 函数的定义和调用- 函数是一段完成特定任务的代码块,可以重复使用。

- 函数的定义一般包括函数名、参数列表和函数体。

- 调用函数时,需要使用函数名和传入参数的值。

2. 函数的参数- 函数可以接收输入参数,用于在函数内部进行操作。

- 参数可以分为位置参数和关键字参数。

- 可以定义默认参数值,使得参数在调用时变得可选。

3. 函数的返回值- 函数可以返回一个值,用于向调用者传递结果。

- 可以返回多个值,以元组的形式返回。

4. 函数的作用域- 函数内部的变量和函数外部的变量是独立的。

- 函数可以访问外部变量,但是不能修改其值,除非使用`global`关键字。

5. 匿名函数- 匿名函数是一种简单的函数,不需要使用`def`关键字来定义。

- 使用`lambda`关键字来创建匿名函数。

6. 递归函数- 递归函数是一种调用自身的函数。

- 递归函数可以解决一些数学和计算问题。

7. 高阶函数- 高阶函数可以接收函数作为参数或者返回一个函数。

- 可以用于实现函数式编程的一些特性,比如map、filter和reduce。

8. 内置函数- 编程语言提供了一些内置函数,用于完成一些常见的操作。

- 例如,Python中的`print`、`len`、`range`等函数。

9. 函数的重载- 有些编程语言支持函数的重载,允许定义多个同名函数。

- 函数的重载可以根据参数的类型和个数来决定调用哪个函数。

10. 闭包- 闭包是一个函数和其环境变量的组合。

- 闭包可以保存函数的状态,使得函数可以记住之前的操作。

11. 装饰器- 装饰器是一种特殊的函数,用于修改其他函数的行为。

- 可以用于添加日志、认证、性能测试等功能。

12. 函数式编程- 函数式编程是一种编程范式,将计算视为数学函数的求值。

- 函数式编程强调函数的纯度和不可变性。

13. 函数的异常处理- 函数中可能会发生异常,需要使用异常处理机制来应对。

- 可以使用`try`、`except`、`finally`关键字来处理异常。

函数知识点(详细)

第二章函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值X 围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值X 围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的X 围出发,推出()y f x =的取值X 围。

函数知识点大全总结

函数知识点大全总结一、函数的定义和调用1. 函数的定义:函数是一段封装了特定功能的可重复使用的代码块,通常包括函数名、参数列表和函数体。

2. 函数的调用:使用函数名和参数列表来调用函数,传递参数并获取函数的返回值。

二、函数的参数1. 形参和实参:在函数定义中使用的参数叫做形参,到实际函数调用时传递的参数叫做实参。

2. 位置参数:按照参数的位置来传递参数值的方式。

3. 关键字参数:按照参数名来传递参数值的方式。

4. 默认参数:在函数定义时为参数指定默认值,调用时如果不传递该参数则会采用默认值。

5. 可变参数:允许函数接受任意数量的参数。

在 Python 中可以使用 *args 和 **kwargs 来实现可变参数。

三、函数的返回值1. 返回单个值:函数可以返回一个具体的数值、字符串、变量等。

2. 返回多个值:使用元组或列表等数据结构返回多个值。

四、函数的作用域1. 全局作用域:在函数外部定义的变量拥有全局作用域,可以在整个程序中进行访问。

2. 局部作用域:在函数内部定义的变量拥有局部作用域,只能在函数内部进行访问。

3. 嵌套作用域:当函数嵌套定义时,内部函数可以访问外部函数的变量。

五、函数的返回类型1. 无返回值函数:即返回值为 None 的函数。

2. 有返回值函数:返回具体的值或变量。

3. 返回类型注解:某些编程语言支持在函数定义时注明返回值的数据类型。

六、函数的递归1. 递归函数:函数内部调用自身的函数。

2. 递归终止条件:递归函数需要有终止条件,否则会进入无限循环。

七、匿名函数1. Lambda 表达式:一种简洁的定义小型匿名函数的方式。

2. 使用场景:适用于在不需要创建具体函数名的场合,通常用于函数式编程中。

八、高阶函数1. 函数作为参数:将函数作为参数传递给另一个函数。

2. 函数作为返回值:返回另一个函数,使得函数可以嵌套调用。

九、闭包1. 闭包定义:内部函数会引用外部函数的变量,并将其保留在内存中,形成闭包。

数学函数概念知识点总结

数学函数概念知识点总结一、函数的基本概念1. 函数的定义函数是一种数学关系,它将某个集合的每个元素都对应到另一个集合的唯一元素上。

通常用f(x)表示函数,其中f表示函数名,x表示自变量。

2. 自变量和因变量在函数中,自变量是输入的值,因变量是输出的值。

自变量通常用x表示,因变量通常用y表示。

3. 函数的定义域和值域函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。

函数在定义域上的取值构成了函数的值域。

4. 函数的图像函数的图像是函数在坐标系上的表示,通常用曲线或者点来表示函数的图像。

函数的图像可以帮助我们直观地理解函数的性质和特点。

5. 函数的性质函数可以有多种性质,包括奇偶性、周期性、单调性等。

这些性质可以通过函数的图像和代数表达式来进行分析和判断。

二、常见的函数类型1. 一次函数一次函数是指函数的最高次项为1的函数,通常表示为y=ax+b,其中a和b为常数。

一次函数的图像是一条直线,斜率a决定了直线的斜率,常数b决定了直线与y轴的交点。

2. 二次函数二次函数是指函数的最高次项为2的函数,通常表示为y=ax^2+bx+c,其中a、b、c为常数且a不等于0。

二次函数的图像是抛物线,a决定了抛物线的开口方向,b决定了抛物线在x轴上的位置,c决定了抛物线在y轴上的位置。

3. 幂函数幂函数是指函数的表达式为y=ax^n的函数,其中a为常数,n为整数。

幂函数的图像通常呈现出不同的形状,包括指数增长、指数衰减以及平方、立方等曲线形状。

4. 指数函数指数函数是一种特殊的幂函数,表达式为y=a^x,其中a为底数,x为指数。

指数函数的图像通常呈现出指数增长或者指数衰减的趋势。

5. 对数函数对数函数是指函数的表达式为y=log_a(x),其中a为底数。

对数函数的图像通常呈现出对数增长或者对数衰减的趋势。

6. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们是以圆上的角度为自变量的周期函数。

三角函数在物理、工程、天文等领域有着广泛的应用。

初中函数类型总结知识点

初中函数类型总结知识点一、函数的定义函数是一种特殊的关系,它将一个或多个输入映射到一个输出。

函数可以看作是一个黑盒子,输入是函数的自变量,输出是函数的因变量。

函数通常用字母表示,如f(x)、g(x)等。

二、函数的符号表示1. 函数的定义域和值域函数的定义域是所有可能的输入值的集合,函数的值域是所有可能的输出值的集合。

例如,y = x²的定义域是所有实数,值域是大于等于0的实数。

2. 函数的图形表示函数的图形是在坐标系中展示函数输入和输出之间的关系的方式。

例如,y = x²的图形是一个抛物线。

3. 函数的表达式函数可以用表达式来表示,如y = 2x + 3、f(x) = x²等。

三、常见的函数类型1. 线性函数线性函数的表达式为f(x) = mx + b,其中m和b是常数,m表示斜率,b表示y轴的截距。

2. 二次函数二次函数是形如f(x) = ax² + bx + c的函数,其中a≠0。

它的图形是一个抛物线。

3. 指数函数指数函数的表达式为f(x) = aⁿ,其中a是常数,n是自变量的指数。

4. 对数函数对数函数的表达式为f(x) = loga(x),其中a是底数,x是真数。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们表示三角形的角与边之间的关系。

6. 绝对值函数绝对值函数的表达式为f(x) = |x|,它的图形是以原点为中心的V形图形。

7. 复合函数复合函数是由两个或多个函数组合而成的函数,表示为h(x) = g(f(x))。

8. 逆函数如果函数f和g满足f(g(x)) = x和g(f(x)) = x,那么函数f和g是互为逆函数。

逆函数可以表示为y = f⁻¹(x)。

四、函数的性质1. 奇偶性如果对于函数f(x),对于任意x,有f(-x) = f(x),则函数f(x)是偶函数;如果对于函数f(x),对于任意x,有f(-x) = -f(x),则函数f(x)是奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年6月7日星期六 3
2、集合之间的关系
(1)子集:若x∈A,则 x∈B,集合A叫做集合B的子集。 表示为 A B 或 B A 。
性质:① A A ② Φ A ③若 A B, B C 则 A C
(2)若 A B ,且至少有一个x∈B,但 x∈A,集合A 叫做集合B的真子集。表示为 A B 或 B A 。
2014年6月7日星期六 17
§1.7函数的单调性 1、定义:设函数f(x)的定义域为I:如果对于属于 定义域内某个区间上的任意两个自变量x1、x2, 当 x1<x2时,都有f(x1) <f(x2) ( f(x1) >f(x2) ), 那么就说f(x)在这个区间上是增(减)函数。 2、注意定义的变形:设x1、x2∈[a,b] f(x1) -f(x2) >0或 (x1-x2)( f(x1) -f(x2))>0 x1-x2 f(x)为偶函数
4、空集φ是一个特殊的集合,它是任何集合的子 集,是任何非空集合的真子集,在解题中,若未 指明集合非空时要考虑到空集的可能性。
2014年6月7日星期六 5
5、常用的集合元素: ①对于集合A={x|x2+x-1=0}中,A即为方程的解。
②对于集合A={x|x+1≤3-x}中,A即为不等式的解。
③对于集合A={y|y=x2-2x+5}中,A为函数的值域。
2014年6月7日星期六
11
〖方法小结〗
1、求解函数的定义域实际上是转化为求解不 等式或不等式组。 2、已知f(x)的定义域为D,求f[g(x)]的定义 域时,可令g(x) ∈D解得x的范围C,即为 f[g(x)]的定义域;已知 f[g(x)]的定义域为D, 求f(x)定义域时,可先由x∈D,求出g(x) 的 范围C,即为f(x)定义域。
4、补集:A={x|x∈I 且x∈A}
性质:A∪A=I,A∩ A = φ , A=A
2014年6月7日星期六 7
〖方法小结〗 解集合问题的基本思路是:读懂集合,弄清关系, 依据概念,结合图形,分步解决: 1、对于集合问题,要首先确定属于哪一类集合(数 集、点集或某类图形),然后确定处理此类问题的 方法。 2、关于集合的运算,一般应把各参与运算的集合化 到最简形式,再进行运算。 3、含参数的集合问题,多根据集合的互异性来处理 有时需进行讨论。 4、集合的问题常与函数、方程、不等式有关,要 注意各类知识的融会贯通。
φ A 性质:① 若A≠φ则 ; ②若 A B ,B C ,则 A
C
(3)若 B A 且 A 为A=B。
B ,那么这两个集合相等。表示
2014年6月7日星期六
4
〖方法小结〗
1、明确集合中元素的确定性、互异性和 无序性,并注意此性质在解题中的应用。 2、熟练掌握集合图形表示(韦恩图)、 数轴表示等基本方法。 3、理解集合的基本概念、相互关系、术 语符号等,能正确地表示出一些较简单的 集合。
2014年6月7日星期六 12
§1.5函数的值域
函数的值域就是在对应法则f的作用下,自变量 x的值对应的y值的集合。
〖方法小结〗 1、求函数值域的常用方法有: ①配方法:求形如F(x)=af2(x)+bf(x)+c的函数值 域问题,要注意f(x)的取值范围对值域的影响. ②真分式法:求式函数f(x)= ax+b 形函数的值域, cx+d 5 2x+1 如f(x)= 转化为f(x)=1- 求值域; 2x+3 x+3
常用此法但要注意函数的定义域不是R时还需要用二 次方程根的分布来求解. ⑤单调性法:利用函数在其定义域或定义域的子集 上的单调性求出函数的值域. ⑥换元法:运用代数或三角代换,将所给函数化成值 域容易求出的另一类函数
2014年6月7日星期六 14
⑦数形结合法:利用函数所表示的几何意义,借助于 几何方法求出函数值域.
3、若原函数过点(a , b),则反函数过点(b, a) ,即 若f(a)=b,则f-1(b)=a。
4、互为反函数的两个函数具有相同的单调性。
2014年6月7日星期六 22
§1.9正、反比例函数、一次、二次函数 1、正比例函数:y=kx(k≠0) 图象
y
o k>0 y x
x
性质:1、定义域为R; 2、值域为R; 3、是奇函数; 4、单调性: k>0时为增函数, K<0时为减函数。

2014年6月7日星期六 16
〖方法小结〗
1、判断函数的奇偶性必须先考虑定义域是否关于 原点对称。 2、函数奇偶性的可用如下变形判定:
f(-x) =-1 奇函数:f(-x) + f(x)=0 或 f(x) (f(x)≠0) f(-x) =1 偶函数:f(-x) - f(x)=0 或 f(x)
3、求函数中字母参数满足什么条件能使函数是 奇函数或偶函数的方法有:①根据恒等式性质, 利用待定系数法;②利用特殊值法。特别是当奇 函数在x=0时有意义必有f(0)=0。
3、复合函数单调性的判断方法:设y=f(u),u=g(x), x∈(a,b),u∈(m,n),都是单调函数,则y=f(g(x))在[a,b] 上也是单调函数。若y=f(u)是(m , n)上的增(减)函 数,则y=f(g(x))的增减性与u=g(x)的增减性相同(相 反)。也可概括为“同增、同减为增,一增一减为 减”。
④对于集合A={(x,y)|y=x2-2x+5}中,A为函数上所 有点组成的集合,即为抛物线上所有点组成的集合。
6、识记以下重要的结论: ①A∩B=A ,A∪B=A A B ②A∩B=A∪B
2014年6月7日星期六
A
B

A∪B=A∩B
6
ቤተ መጻሕፍቲ ባይዱ
§1.2集合的运算 1、交集:A∩B={x|x∈A且x∈B} 性质:A∩A=A,A∩φ=φ,A∩B=B∩A 2、并集:A∪B={x|x∈A或x∈B} 性质:A∪A=A,A∪φ=A,A∪B=B∪A 3、全集:在研究集合与集合之间的关系时这些集合 都是某个集合的子集,这个给定的集合叫做全集。
o k< 0
2014年6月7日星期六
23
2、反比例函数:y= k (k≠0)
x
图象 y
x
o k> 0
y
o k<0
2014年6月7日星期六 20
§1.8反函数 1、定义:函数y=f(x)(x∈A)中,设它的值域为C,由 y=f(x)解出x=f-1(y),如果对于y在C中的任何一个值, 由x=f-1(y) ,x在A中都有唯一的值和它对应,那么 x=f-1(y)就表示x是y的函数,则函数x=f-1(y)就叫做 y=f(x)的反函数。习惯上把y看成函数,将x、y调换, y=f(x)的反函数表示为y=f-1(x)。 2、反函数的定义域和值域分别是原函数的值域 和定义域。互为反函数的两个图象关于直线y=x 对称。 3、反函数的求法:①由y=f(x)解出x=f-1(y); ②将x=f-1(y) 中的x、y互换,得y=f-1(x) ;③ 由 y =f( x ) 的值域,写出 y =f-1( x )的定义域。
①两个增(减)函数的和仍为增(减)函数;一个 增(减)函数与一个减(增)函数的差是增(减) 函数;②奇函数在对称的两个区间上有相同的单调 性,偶函数在两个对称的区间上有相反的单调性; ③y=f(x)与y=-f(x)有相反的单调性;④当 y=f(x)恒 为正或恒为负时, y=f(x)与y=1/f(x)有相反的单调性。
2014年6月7日星期六 13
ax + b ③反函数法:求式函数f(x)= 形函数的值域, cx+d 均可使用反函数法. ④判别式法:把函数转化成关于x的二次方程F(x,y)=0, 通过方程有实根,判别式Δ≥0,从而求得原函数的值域. a1x2+b1x+c2 形如y= a2x2+b2x+c2 (a1,a2不同时为0)的函数的值域
2014年6月7日星期六 10
§1.4函数的定义域
1、函数的定义域是指自变量的取值范围。
2、求函数的定义域的主要依据是:①分式的分母 不为0;②偶次方根的被开方数非负;③对数的真 数大于0;④指数、对数函数的底数大于0且不等于 1;⑤指数为0或负数时,底数不为0;⑥实际问题 的函数除要考虑函数解析式有意义外,还应考虑有 实际意义。 3、如果函数是由一些基本函数通过四则运算而得 到的,那么它的定义域是各基本函数定义域的交集。
2014年6月7日星期六 19
〖方法小结〗 1、函数的单调性必须在定义域内进行,在定义域 内的不同区间上可能有不同的单调性,因此必须说 明在哪个区间上递增或递减。 2、根据定义证明函数单调性的方法: ①设x1、x2∈A,且设x1<x2 ;②作差:f(x1)-f(x2), 并变形(分解、配方、通分等);③判断差的符号, 并作结论。
2014年6月7日星期六 21
〖方法小结〗 1、只有从定义域到值域上的一一映射所确定的函 数才有反函数。因此,定义域上的单调函数必有反 函数;偶函数一般不存在反函数,但偶函数 f(x)=1(x=0)有反函数;奇函数不一定存在反函数; 周期函数不存在反函数。
2、若原函数是奇函数,则反函数也一定是奇函数。
f(x1) -f(x2) <0或 (x1-x2)( f(x1) -f(x2))<0 x1-x2 f(x)为奇函数
2014年6月7日星期六 18
几何意义:增(减)函数图象上任意两点连线 的斜率都大于(小于)零。 3、熟练掌握一次函数、二次函数、幂函数、指数 函数、对数函数的单调性。
4、了解以下结论,对直接判定函数的单调性有 好处:
〖方法小结〗 1、理解映射的概念①A、B为非空数集;②A中 的元素必有象,但B中的元素不一定有原象;③A 中的任一元素的象是唯一的,因此对应是“一对 一或多对一”。 2、理解函数与映射的关系。函数的“三要素” 是对应法则、定义域、值域。只有“三要素”完 全相同的两个函数才是同一函数。 3、若函数在定义域的不同子集上对应法则不同, 可用几个式子来表示函数,这种形式的函数叫 做分段函数。 4、若y是u的函数,u又是x的函数即y=f(u), u=g(x),x∈(a,b),u∈(m,n),那么y关于x 的函数y=f(g(x)),叫做f和g的复合函数。
相关文档
最新文档