浅谈分块矩阵的性质及应用
分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的.根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式.二、研究的基本内容, 拟解决的主要问题:研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用.解决的主要问题:1.了解分块矩阵的基本概念.2.探讨分块对角化的性质.3.研究分块矩阵的应用.三、研究步骤、方法及措施:研究步骤:1.查阅相关资料, 做好笔记;2.仔细阅读研究文献资料;3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;4.翻译英文资料;5.撰写毕业论文;6.上交论文初稿;7.反复修改论文, 修改英文翻译, 撰写文献综述;8.论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料, 参考相关内容. 在老师指导下, 与同组同学研究讨论, 用确定合理的方法来解决问题.四、参考文献:[1] 居余马. 线性代数[M]. 清华大学出版社,1992.[2] 穆大禄, 裴惠生. 高等代数教程[M]. 山东大学出版社, 1990.[3] 北京大学数学系. 高等代数[M]. 高等教育出版社.[4] 叶伯诚. 高等代数[M] . 青岛海洋大学出版社, 1989.[5]张敏. 分块矩阵的应用[J]. 吉林师范大学学报(自然科学版), 2003, 1(1): 120.[6] S.K.Jain. Linear Algebra: An Interactive Approach[M]. 北京: 机械工业出版社, 2003,7.[7] Hamilton J.D, “Time Series Analysis1” Princeton University Press[J].1999, 26 – 291.。
浅析分块矩阵的性质和应用[1]讲解
![浅析分块矩阵的性质和应用[1]讲解](https://img.taocdn.com/s3/m/7d1e919b7f1922791688e84d.png)
浅析分块矩阵的性质和应用作者姓名:周甜河南理工大学数学与信息科学学院数学与应用数学专业2007级2班性质1:分块矩阵都是可逆的,且逆矩阵为分块初等矩阵。
性质2:分块单位矩阵经过一次分块矩阵的初等变换后所得到的矩阵仍为分块初等矩阵。
摘要:分块矩阵在高等代数中有着广泛的应用,矩阵的分块运算是矩阵运算的一种重要方法。
本文主要讨论了分块矩阵的运算性质,初等变换,并举例说明和分析了分块矩阵在解决矩阵特征值计算和有关矩阵证明等问题中的应用。
利用分块矩阵可以使阶数比较高,比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。
关键词:分块矩阵行列式特征值初等变换矩阵的逆Tentative Analysis of Properties and Applications of BlockMatricesAuthor Name:Zhou TianClass 2 Grade 2007 of Mathematics and Applied Mathematics of College Mathematics and Information Scienceof Henan Polytechnic University SchoolSummary:Block matrices has a wide use in Advanced Algebra. Operations of block matrices play an important role in the operation of matrices. This paper mainly illustrates the operation properties and the elementary transformations of block matrices. Several examples are given in the paper to show the applications of block matrices in calculating the eigenvalues of a matrix and proving a subject in connection with matrices. It is convenient to apply block matrices to deal with questions containing matrices with high order and complex appearances and calculating the eigenvalues of abstract matrices.Keywords: block matrices determinant eigenvalues elementary transformation the inverse of a matrix§1引言在高等代数中,矩阵是一项非常重要的内容,也是高等数学的很多分支研究问题的工具。
【文献综述】分块矩阵的性质及其应用

用中还是会遇到很多问题, 在实际生活中, 我们的很多问题可以用矩阵抽象出来, 但这些矩阵
一般都是高阶矩阵, 行数和列数都是一个相当大的数字, 因此我们在计算和证明这些矩阵时
会遇到很烦琐的任务. 这时我们得有一个新的矩阵处理工具, 来使这些问题得到更好的解决!
在文献[3]中给出了分块矩阵定义: 把一个 m n 矩阵 A , 在行的方向分成 s 块, 在列的方
向分成 t 块, 称为 A 的 s t 分块矩阵, 记作 A Akl st , 其中 Akl , k 1, 2,, s ,
l 1, 2,, t 称为 A 的子块, 它们是各种类型的小矩阵.
A
=
I3 0
A1
A2
并称它是 A 的一个 2 2 分块矩阵, 其中的每一个小矩阵称为 A 的一个子块. 常用的矩阵分块
方法, 除了上例中的 4 块矩阵, 矩阵的分块还有以下几种常用的分法:
(1) 按行分块
a11 a12 ... a1n A1
A
a12Βιβλιοθήκη ...a22 ...
... ...
| M || BC | | CA1B | .
文献[5-12]中还提到了有关分块矩阵的一些用法, 比如用分块矩阵证明有关矩阵乘积的
秩的定理: 矩阵乘积的秩不超过其因子的秩, 即 r( AB) r( A), 且 r( AB) r(B), 或者表示成
r( AB) min{r( A), r(B)}, 其中 r( A) 表示矩阵 A 的秩. 还可以利用分块矩阵求矩阵的行列
AD
式问题, 比如利用分块矩阵求高阶行列式
: 设 A, C 都是 n 阶矩阵, 其中| A | 0 , 并且
高等代数小论文--分块矩阵及其应用

高等代数期中论文课程高等代数专业班级数学0802 姓名徐锴学号 ******** 指导教师牛敏分块矩阵及其应用主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A 划分成若干较小的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡st s s t t A A A A A A A A A 212222111211 其中每个小矩阵 .),1;,1(t j s i A ij==叫做A 的一个子块;分成子块的矩阵叫做分快矩阵[2].1.2 运算规则()1 stij ij st ij st ij B A B A )()()(+=± ()2 tsT ji st Tij A A )()(= ()3 sp ij tp ij st ij C B A )()()(=,ij C =∑-==tk kjik t j s i B A 1),...1,,...1( ()4 stij st ij A k A k )()(=(k 是数量) 在用规则1)时,A 与B 的分块方法须完全相同;用性质3)时,A 的列的分法与B 的行的分法须相同.1.3分块矩阵的性质及其推论在行列式计算中 ,我们经常用到下面三条性质[3]:()1 若行列式中某行有公因子 ,则可提到行列式号外面;()2 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; ()3 把行列式中的某两行互换位置 ,其值变号;利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广.性质 1 设方阵A 是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 级方阵 .对于矩阵B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C MB MB MB A A A则B =MA证明 设s E 为s 级单位矩阵 ,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321000000C C C B B B A A A E M E s s =A E ME s s⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000 于是B =0000ssE ME A =s E M s E A =MA性质 2 设矩阵是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 阶方阵 .对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=321321321C C C MC B MC B MC B A A A D 则A =D证明 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s sE E E 000000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321321321C C C MC B MC B MC B A A A 其中 s E 是s 级单位矩阵 ,对上式两边同时取行列式得A =D性质 3 设方阵A 和'A 写成如下形式A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A ,'A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C A A A B B B 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是 s ×t 矩阵,则|'A |=⎩⎨⎧-为奇数时,当为偶数时当s A s A |||,|证明 A 可由'A 中的1B ,2B ,3B 与1A ,2A ,3A 相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当s 为偶数时|'A |=A 当s 为奇时|'A |=-A可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立.下面举例说明这些性质在行列式计算和证明中的应用.推论 1 设A ,都是n 阶方阵,则有AB =A B ()2.6 证明 作2n 阶行列式C =EA AB由拉普拉斯展开定理得C =AB E =AB又由性质2并应用于列的情况,有E A AB0=E EB A AB AB --0=EB A -0=B A nn n --+++++++2)1(21)1( =B A 推论 2 设,A B 都是n 阶方阵,则有AB BA =B A B A -+ 证明 根据定性质2并应用于列的情况,有AB BA =A AB B B A ++=B A B B A ++0=B A B A -+ 例1 计算n 2阶行列式D =ab a b a b b a b a ba 000000000000000000000000解 令A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡a 00000a 0000a 0000aB =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000 b b b 则 D =ABBA=B A B A -+=a b a b b a b a 00000000 ab a b b aba 00000000 ---- =n b a )(+n b a )(-=nb a )(22-推论 3 设,B ,C ,D 都是n 阶方阵 ,其中A ≠0,并且AC =CA ,则有DC BA=CB AD - ()2.8 证明 根据性质2,因为1-A 存在,并注意到AC =CA ,用1C A --乘矩阵⎥⎦⎤⎢⎣⎡D C B A 的第一行后加到第二行中去得⎥⎦⎤⎢⎣⎡----B CA D B CA A 110 从而D C B A=110A C A B D C A B---- =A B CA D 1--=B ACA AD 1--B CAA AD 1--=CB AD- 把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设A ,B ,C ,D 都是n 级方阵则有AB =A B ABBA =B A B A -+ 结论()2.6告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论()2.7则说明,当一个行列式可以分成四个级数相等的方阵A ,B ,B ,A 时(即AB BA ), 2.1分块矩阵在矩阵的秩的相关证明中的应用定理 1 秩()AB≤秩()A ,且秩()AB ≤秩()B ,则秩()AB ≤min{秩A ,秩B }[4]证明 令s m C ⨯=n m A ⨯⋅s n B ⨯,A =()12,n aa a ,C =()12,s γγγ 则(s γγγ 21,)=()12,naa a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ns n n s s b b b b b bb b b212222111211 ∴nns s s s nn n n a b a b a b a b a b a b a b a b a b +++=+++=+++=22112222112212211111γγγ∴s γγγ 21,()1可由n a a a 21,()2线性表示 ∴秩()I ≤秩()I I ,即秩()C =秩()AB ≤秩()A令=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21,B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ 21 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a aa a a212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nβββ 21即nmn m m s nn n n a a a a a a a a a βββηβββηβφβη+++=+++=+++=22112222112212211111∴m ηηη 21,()3可由nβββ 21,()4线性表示 ∴秩()III ≤秩()IV ,即秩()C=秩()AB ≤秩()B即秩()AB ≤()()m i n {A B }秩,秩 定理 2 设、都是n 级矩阵,若0A B =则秩()A +秩()B ≤n[5].证明 对分块如下:()12nB B B B = 由于0A B =即()120nA B A B A B = 即()01,2,,i A B i n == 说明的各列B 都是0A X =的解.从而秩()12nB B B ≤基础解系=n -秩()A 即秩()A+秩()B ≤n3.1 分块矩阵在求逆矩阵方面的应用命题1[10]设P =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中B 为r 阶方阵, C 为k 阶方阵,当B 与)(1A DB C --都是可逆矩阵时,则P 是可逆矩阵,并且1-P=⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C 特例 ()1 当A =0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡--0011B C . ()2 当A =0,D ≠0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----01111B C DB C ()3 当A ≠0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----1111AC B BC 证明 设P 可逆,且1-P =⎥⎦⎤⎢⎣⎡W Z Y X,其中Y 为k 阶方阵,Z 为r 阶的方阵.则应有 于是得到下面的等式(4.1)0(4.2)0(4.3)(4.4)k r X AY C E X BY D Z AW C Z BW DE +=⎧⎪+=⎪⎨+=⎪⎪+=⎩因为可逆,用1-B 右乘(3.2)式可得代入(3.1)式得Y -11)(---A DB C 则X =11)(----A DB C D 1-B . 用右乘(3.4)式可得=()r E W D -1-B =1-B -1W D B - 代入(3.3)式得W =1B A -11)(---A DB C则 可得Z =1-B +1B A -11)(---A DB C D 1-B .所以1-P=⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C . 命题2 设Q =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中A 为r 阶方阵,D 为k 阶方阵,当A 与(B CA D 1--)都是可逆矩阵时,则Q 是可逆矩阵,并且1-Q =1-⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A特例 (1) 当B =0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡--1100D A (2) 当B ≠0,C=0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D BD A A 1X Y D B-=(3) 当B =0,C ≠0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D CA D A 此结论参考命题1.例1 设M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------6000004000001001095201473,求1-M . 解 令=⎥⎦⎤⎢⎣⎡--5273,=⎥⎦⎤⎢⎣⎡--109014,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001.则很容易求得1-A =⎥⎦⎤⎢⎣⎡--3275,1-D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--6/10004/10001 且11---BD A =-⎥⎦⎤⎢⎣⎡--3275⎥⎦⎤⎢⎣⎡--109014⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001=⎥⎦⎤⎢⎣⎡---2/12/1196/74/543 由命题2可得,1-M =⎥⎦⎤⎢⎣⎡-----1111D O BD A A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------6/1000004/1000001002/12/119326/74/54375 3.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果[11]. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A OOA O A A21或H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A AO A O OA21其中sA A A ,,,21 均为方阵,则 H =s A A A 21.3.2.1矩阵A 或B 可逆时行列式|H|的计算 命题 1 B A 、分别为m 与n 阶方阵. 证明 : (1)当可逆时 ,有BCD A =A D CA B 1-- (3.5) (2)当可逆时 ,有BCD A =C DB A 1--B (3.6) 证明 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D CA B D A B C D A E CA E 1100 由引理知,两边取行列式即得(3.5).()2 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡--E DB E 01⎥⎦⎤⎢⎣⎡B C D A =⎥⎦⎤⎢⎣⎡--B C C DB A 01两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1 设,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵. 证明 B C DE m=CD B - ( 3.7) nE CD A =DC A - (3.8) 证明 只需要在命题1的(3.5)中令=m E , 即得(3.7);在(3.6)中令=n E ,即得(3.8). 推论2 ,C D 分别是n m ⨯和mn ⨯矩阵.证明 nm E CD E =CD E n -=DC E m - (3.9) 证明 在推论1的(3.7)中,令=n E ,在(3.8)中,令=m E ,即得(3.9)例3 计算下面2n 阶行列式n H 2=bcb c d a da()0a ≠解 令=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a ,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b b,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c ,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dd为n 阶方阵.由于0a ≠,故为可逆方阵.又易知-D CA1-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------d ca b d ca b d ca b 111从而由命题1中()1得n H 2=AD C B=DCA B A 1-- =nn d ca b a )(1--=n cd ab )(-.例4 计算行列式()1);,,2,1,0(,00100100111121n i a a a a a i n=≠ ()2cb b b b a a a a nn3213211000100010001解 ()1 设=BC DA ,其中 =()0a ,=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a21,=T )1,,1,1( ,D =)1,,1,1( . 因为n i a i ,,2,1,0 =≠所以是可逆矩阵.又易知 A -C DB 1-=⎥⎦⎤⎢⎣⎡-∑=ni i a a 10/1从而由命题1中的结论()4.2得BC D A=1A DB CB -- =⎥⎦⎤⎢⎣⎡-∑=ni i n a a a a a 1021/1 (2)设Q =BC DE n,其中 B =(c ),C =),,,(21nb b b ,D =Tn a a a ),,(21 由于C D =),,,(21nb b b Tn a a a ),,(21 =∑=ni ii ba 1从而由推论1知,=BC DEn=B CD -=c -∑=ni ii ba 1.3.2.2矩阵,A B C D==时行列式|H|的计算 命题 2 ,A C 是两个n 阶方阵.则AC CA=|A+C||A-C| 证明 根据行列式的性质和定理,有AC CA =A A C C C A ++=C A C C A -+0 =A CA C +-. 例1 计算行列式.D =000xyzx zy y z x z y x解 这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设=⎥⎦⎤⎢⎣⎡00x x ,=⎥⎦⎤⎢⎣⎡y z z y 由命题2知D =ACCA=C A C A -+ =yzx z x y++yzx z x y ----=])(][)([2222z x y z x y --+- =))()()((z y x z y x z y x z y x ++--+-+-++行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如H =BC DA (,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成,,,ABCD 后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.。
分块矩阵的运算

分块矩阵的运算分块矩阵的运算是一种特殊的运算方式,它可以有效地减少矩阵计算时间和存储空间,在科学计算、信号处理等领域有广泛的应用。
本文针对分块矩阵的定义、特性、计算方式和应用进行深入细致的介绍,以期为读者提供更多有价值的信息。
一、什么是分块矩阵分块矩阵是将原始矩阵按一定规则拆分,得到格式一致的若干小矩阵,每一小矩阵叫做分块,组成分块矩阵。
简单地说,分块矩阵的概念就是将原始矩阵拆分成若干小矩阵,每一小矩阵称为一块,它可以更加细致地描述不同的矩阵元素,有助于明确矩阵的结构和信息。
二、分块矩阵的特性1、存储空间的优化:由于分块矩阵可以将原始矩阵拆分,根据分块矩阵的定义可知,当其中某块恒为零时,即可认为该块不存在,从而节省内存空间;2、线性计算时间的优化:分块矩阵的计算时间较简单的矩阵更少,相比普通的矩阵该方法可以节省计算时间;3、实现快速收敛:由于分块矩阵可以分解矩阵,把复杂的计算问题分解为若干子问题,相比普通的矩阵可以实现更快的收敛;4、具有可扩展性:由于分块矩阵分解了原来的矩阵,新增的分块矩阵可以随时添加,也可以方便地删除,能够更容易实现分块矩阵的扩展性;三、分块矩阵的计算方式分块矩阵的计算方式主要有三种:第一种是基于普通的矩阵运算计算方式,这种方式集中计算分块矩阵所有的分块,是一种普通的矩阵运算。
第二种方式为拆解结构计算方式,这种方式先把分块矩阵拆解,把各个分块转化为普通矩阵,再采用普通矩阵计算方式进行各个分块的计算,最后综合各个分块的计算结果得到最终结果。
第三种则通过调整运算顺序来提高运算效率,这种方式根据分块矩阵的特性,分析每一个分块元素之间的依赖性,调整每一步运算的先后顺序,以达到提高运算效率的目的。
四、分块矩阵的应用分块矩阵的计算方式在科学计算、信号处理等领域有广泛的应用,其中包括:1、分块矩阵在解决线性方程组时有着强大的能力,可以更加有效地解决大规模的线性方程组;2、分块矩阵可以用来处理稀疏矩阵,在机器学习、数据分析、金融数据等领域有重要的应用;3、分块矩阵在信号处理领域有广泛的应用,可以有效地处理正交调制、小波变换等信号处理任务;4、在矩阵的LU分解、矩阵的幂运算等复杂的线性代数计算中,分块矩阵可以极大地提高计算效率。
浅谈分块矩阵的应用毕业论文

长沙学院CHANGSHA UNIVERSITY毕业设计(论文)资料设计(论文)题目:浅谈分块矩阵的应用系部:信息与计算科学系专业:数学与应用数学学生姓名:班级:指导教师:最终评定成绩毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。
作者签名:日期:目录第一部分毕业论文一、毕业论文第二部分外文资料翻译一、外文资料原文二、外文资料翻译第三部分过程管理资料一、毕业设计(论文)课题任务书二、本科毕业设计(论文)开题报告三、本科毕业设计(论文)中期报告四、毕业设计(论文)指导教师评阅表五、毕业设计(论文)评阅教师评阅表六、毕业设计(论文)答辩评审表2009届本科生毕业论文资料第一部分毕业论文(2009届)本科生毕业论文浅谈分块矩阵的应用系部:信息与计算科学系专业:数学与应用数学学生姓名:涛班级:一班学号 2005031110 指导教师:兰艳职称副教授最终评定成绩2009年5月学院本科生毕业论文浅谈分块矩阵的应用系(部):信息与计算科学系专业:数学与应用数学学号:2005031110 学生:涛指导教师:兰艳副教授2009年5月摘要分块矩阵可以用来降低较高级数的矩阵级数,使矩阵的结构更清晰明朗,从而使一些矩阵的相关计算简单化,而且还可以用于证明一些与矩阵有关的问题. 本文重点就分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题,以及求逆矩阵和方阵行列式的计算问题上进行了分析,通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解,所以分块矩阵作为高等代数中的一个重要概念,我们需要透彻的了解分块矩阵并能很好学会在何时应用矩阵分块,从而研究它的性质及应用是非常必要的。
浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用摘要:本文主要谈及分快矩阵的思想在线性代数的证明。
解线性方程组,矩阵得知逆及矩阵的逆,和初等变换中的应用。
关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换On the nature of block matrix and its applicationAbstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix.Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言:矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。
1.预备知识:1.1分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,一子块为元素的形式上的矩阵成为分块矩阵。
1.2分块矩阵的运算:1.2.1分块矩阵的加法:设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有A=1111n m mn A A A A ⎛⎫ ⎪⎪⎪⎝⎭,1111n m mn B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A BA B ++⎛⎫⎪⎪ ⎪++⎝⎭1.2.2分块矩阵与数的乘法:A=1111n m mn A A A A ⎛⎫ ⎪ ⎪⎪⎝⎭,1111n m mn A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭1.2.3设A 为m l ⨯矩阵,B 为l n ⨯矩阵,分块成11111111t r s st t tr A A B B A B A A B B ⎛⎫⎛⎫⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么1111r s sr C C AB C C ⎛⎫ ⎪=⎪ ⎪⎝⎭,其中1tij ik ik k C A B ==∑(i=1……s ;j=1,……,r)1.2.4设1111t s st A A A A A ⎛⎫⎪=⎪⎪⎝⎭,则1111T T t TT T s st A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭2. 分块矩阵的性质及应用:2.1 分块矩阵的性质:设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即A=100n A A ⎛⎫ ⎪⎪ ⎪⎝⎭,其中i A (i=1,2……,s )都是方阵,那么称A 为分块对角矩阵,分块矩阵的行列式一般据有下列性质12s A A A A =,由此性质可知,若i A ≠0(1,2i s =)则A 0≠,并有11110s A A A ---⎛⎫ ⎪=⎪ ⎪⎝⎭例:设A=500031021⎛⎫ ⎪⎪ ⎪⎝⎭ 求1A -解:500031021A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=1100A A ⎛⎫⎪⎝⎭,其中()11115,5A A -⎛⎫== ⎪⎝⎭,23121A ⎛⎫= ⎪⎝⎭,121123A --⎛⎫= ⎪-⎝⎭,所以11005011023A -⎛⎫⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭ 2.2 将分块矩阵与初等变换结合在矩阵运算及球逆矩阵中具有重要作用:现将某个单位矩阵如下进行分块:00mn EE ⎛⎫⎪⎝⎭对其进行行(列)对换等作用,可得到如下类型一些矩阵:0000,,,,0000n m mmm n n n E P E P E E E E E P E P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭用这些矩阵左乘或右乘任一个分块矩阵A B C D ⎛⎫⎪⎝⎭,只要分块乘法能够进行,其结果就是对它进行相应的变换,如0mn EA B A B PE C D C PA D PB ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭,适当选择P 可使C PA +=0,例如A 可逆时,选1P CA -=-则0C PA +=,于是上式的右端可成为10A B D CA B -⎛⎫⎪-⎝⎭,其在求逆矩阵方面是非常有用的,例1:0A T C D ⎛⎫=⎪⎝⎭,A D 可逆,求1T -解:由10000mn E A A CA E C D D -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭及1110000A A D D ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭易知11100A TD ---⎛⎫= ⎪⎝⎭10m n E CA E -⎛⎫ ⎪-⎝⎭=11110A D CA D ----⎛⎫⎪-⎝⎭例2:1A B T C D ⎛⎫= ⎪⎝⎭,设T 可逆,D 可逆,试证11()A BD C ---存在,并求11T -解:由10mn A B E BD C D E -⎛⎫-⎛⎫ ⎪ ⎪⎝⎭⎝⎭10A BD CCD -⎛⎫-= ⎪⎝⎭,而又端仍可逆故11()A BD C ---存在再由上题例1可知11111111()0()A BD C T D C A BD C D -------⎛⎫-= ⎪--⎝⎭10m n E BD E -⎛⎫- ⎪⎝⎭=111111111111()()()()m m A BD C E A BD C BD D C A BD C E D C A BD C BD D ------------⎛⎫---= ⎪---+⎝⎭2.3分块矩阵在证明关于矩阵乘积的秩的定理中的作用:例:设A 是数域P 上n m ⨯矩阵,B 是数域P m s ⨯上矩阵,于是秩(AB)min ≤秩(A),秩(B),即乘积的秩不超过各因子的秩证明:只需证明秩()AB ≤秩()B ,同时秩()AB ≤秩()A ,分别证明这两个不等式设1112121222123m m n n n a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,111212122212s s m m ms b b b b b b B b b b ⎛⎫⎪ ⎪=⎪ ⎪⎝⎭令12,,,m B B B 表示B的行向量(即对B进行分块)12,,,n C C C 表示AB 的行向量,由计算可知,i C 的第j 个分量和1122i i im m a B a B a B +++的第j 的分量都等于1mik kj k a b =∑,因而()11221,2,,i i i im m C a B a B a B i n =+++=即矩阵AB 的行向量组12,,,n C C C 可经由B 的行向量组线性表示出所以AB 的秩不能超过B 的秩,即秩()AB ≤秩()B同样,令12,,,m A A A 表示A 的列向量,12,,,s D D D 表示AB 的列向量,由计算可知,()11221,2,,i i i mi m D b A b A b A i s =+++=这个式子表明,矩阵AB 的列向量组可由矩阵A 的列向量组线性表示出,因而前者的秩不仅\可能超过后者的秩,这就是说秩()AB ≤秩()A(注:在此证明中用分块矩阵的方法,即12m B B B B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭这就是B 的一种分块,按分块相乘就有111122121122221122m m m m n n nm m a B a B a B a B a B a B AB a B a B a B +++⎛⎫⎪+++ ⎪= ⎪⎪+++⎝⎭很容易看出AB 的行向量是B 的行向量的线性组合) 2.4 分块矩阵在线性方程组方面的应用对于线性方程组11112211211222221112n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 记()ij A a =,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,12m b b b b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,11121112n m m mnm a a a b B a a a b ⎛⎫ ⎪=⎪ ⎪⎝⎭,A 为系数矩阵,X 为未知向量,b 为常数项向量,B 为增广矩阵按分块矩阵记法可记为()B A b =或(),B A b =此方程也可记为AX b =,把系数矩阵A 按行分成m 块,则AX b =可记做12m A A A ⎛⎫⎪ ⎪ ⎪⎪⎝⎭X =12m b b b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭把系数矩阵A 按列分成n 块,则与相乘的X 对应按行分成n 块,记作()12,,,n ααα 12n x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭b =,即1122n n x x x b ααα+++=,其都为线性方程组的各种变形形式,在求解过程中变形以更方便快捷例:利用分块矩阵证明克拉默法则:对于n 个变量n 个方程线性方程组11112211211222221112n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果他的系数行列式0D ≠,则它有唯一解,即()()1122111,2,,j j j j n nj x D b A b A b A j n D D==+++=证明把方程组改写成矩阵方程AX b =,这里()ijn nA a ⨯=为n 阶矩阵,因0A D =≠,故1A -存在,令1X A b -=,有1AX AA b -=表明1X A b -=是方程组的解向量,由Ax b = ,有11A AX A b --= ,即1X A b -=,根据逆矩阵的唯一性,知1X A b -=是方程的唯一解向量,由逆矩阵公式11A A A-*=,有11x A b A b D-*==即111211111122112122222112222212112211n n n n n n n n nnn n n n n nn x A A A b b A b A b A x A A A b b A b A b A D D x A A A b b A b A b A +++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪+++ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭即()()1122111,2,,j j j n nj j x b A b A b A D j n D D=+++==结束语:矩阵得分快不算是一个抽象的概念,我们能够清楚的了解知道并掌握它的概念及性质,进而能够灵活的运用,这样对我们今后的学习与研究都会有很大的帮助。
分块矩阵及其应用

分块矩阵及其应用【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。
而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。
本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。
【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式目录1引言 (2)2矩阵分块的定义和性质 (2)2.1 矩阵分块的定义 (2)2.2 分块矩阵的运算 (2)2.3 分块矩阵的初等变换 (3)2.4 n阶准对角矩阵的性质 (3)3分块矩阵在高等代数中的应用 (4)3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4)3.2 利用分块矩阵计算行列式 (7)3.3 分块矩阵在求逆矩阵方面的应用 (11)3.4 分块矩阵在解线性方程组方面的应用 (16)4总结 (19)参考文献 (20)1 引言矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。
在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。
比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。
利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。
本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。
矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈分块矩阵的性质及应用摘要:本文主要谈及分快矩阵的思想在线性代数的证明。
解线性方程组,矩阵得知逆及矩阵的逆,和初等变换中的应用。
关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换On the nature of block matrix and its applicationAbstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix.Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言:矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。
1.预备知识:1.1分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,一子块为元素的形式上的矩阵成为分块矩阵。
1.2分块矩阵的运算:1.2.1分块矩阵的加法:设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有A=1111n m mn A A A A ⎛⎫ ⎪⎪⎪⎝⎭,1111n m mn B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A BA B ++⎛⎫⎪⎪ ⎪++⎝⎭1.2.2分块矩阵与数的乘法:A=1111n m mn A A A A ⎛⎫ ⎪ ⎪⎪⎝⎭,1111n m mn A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭1.2.3设A 为m l ⨯矩阵,B 为l n ⨯矩阵,分块成11111111t r s st t tr A A B B A B A A B B ⎛⎫⎛⎫⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么1111r s sr C C AB C C ⎛⎫ ⎪=⎪ ⎪⎝⎭,其中1tij ik ik k C A B ==∑(i=1……s ;j=1,……,r)1.2.4设1111t s st A A A A A ⎛⎫⎪=⎪⎪⎝⎭,则1111T T t TT T s st A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭2. 分块矩阵的性质及应用:2.1 分块矩阵的性质:设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即A=100n A A ⎛⎫ ⎪⎪ ⎪⎝⎭,其中i A (i=1,2……,s )都是方阵,那么称A 为分块对角矩阵,分块矩阵的行列式一般据有下列性质12s A A A A =,由此性质可知,若i A ≠0(1,2i s =)则A 0≠,并有11110s A A A ---⎛⎫ ⎪=⎪ ⎪⎝⎭例:设A=500031021⎛⎫ ⎪⎪ ⎪⎝⎭ 求1A -解:500031021A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=1100A A ⎛⎫⎪⎝⎭,其中()11115,5A A -⎛⎫== ⎪⎝⎭,23121A ⎛⎫= ⎪⎝⎭,121123A --⎛⎫= ⎪-⎝⎭,所以11005011023A -⎛⎫⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭ 2.2 将分块矩阵与初等变换结合在矩阵运算及球逆矩阵中具有重要作用:现将某个单位矩阵如下进行分块:00mn EE ⎛⎫⎪⎝⎭对其进行行(列)对换等作用,可得到如下类型一些矩阵:0000,,,,0000n m mmm n n n E P E P E E E E E P E P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭用这些矩阵左乘或右乘任一个分块矩阵A B C D ⎛⎫⎪⎝⎭,只要分块乘法能够进行,其结果就是对它进行相应的变换,如0mn EA B A B PE C D C PA D PB ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭,适当选择P 可使C PA +=0,例如A 可逆时,选1P CA -=-则0C PA +=,于是上式的右端可成为10A B D CA B -⎛⎫⎪-⎝⎭,其在求逆矩阵方面是非常有用的,例1:0A T C D ⎛⎫=⎪⎝⎭,A D 可逆,求1T -解:由10000mn E A A CA E C D D -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭及1110000A A D D ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭易知11100A TD ---⎛⎫= ⎪⎝⎭10m n E CA E -⎛⎫ ⎪-⎝⎭=11110A D CA D ----⎛⎫⎪-⎝⎭例2:1A B T C D ⎛⎫= ⎪⎝⎭,设T 可逆,D 可逆,试证11()A BD C ---存在,并求11T -解:由10mn A B E BD C D E -⎛⎫-⎛⎫ ⎪ ⎪⎝⎭⎝⎭10A BD CCD -⎛⎫-= ⎪⎝⎭,而又端仍可逆故11()A BD C ---存在再由上题例1可知11111111()0()A BD C T D C A BD C D -------⎛⎫-= ⎪--⎝⎭10m n E BD E -⎛⎫- ⎪⎝⎭=111111111111()()()()m m A BD C E A BD C BD D C A BD C E D C A BD C BD D ------------⎛⎫---= ⎪---+⎝⎭2.3分块矩阵在证明关于矩阵乘积的秩的定理中的作用:例:设A 是数域P 上n m ⨯矩阵,B 是数域P m s ⨯上矩阵,于是秩(AB)min ≤秩(A),秩(B),即乘积的秩不超过各因子的秩证明:只需证明秩()AB ≤秩()B ,同时秩()AB ≤秩()A ,分别证明这两个不等式设1112121222123m m n n n a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,111212122212s s m m ms b b b b b b B b b b ⎛⎫⎪ ⎪=⎪ ⎪⎝⎭令12,,,m B B B 表示B的行向量(即对B进行分块)12,,,n C C C 表示AB 的行向量,由计算可知,i C 的第j 个分量和1122i i im m a B a B a B +++的第j 的分量都等于1mik kj k a b =∑,因而()11221,2,,i i i im m C a B a B a B i n =+++=即矩阵AB 的行向量组12,,,n C C C 可经由B 的行向量组线性表示出所以AB 的秩不能超过B 的秩,即秩()AB ≤秩()B同样,令12,,,m A A A 表示A 的列向量,12,,,s D D D 表示AB 的列向量,由计算可知,()11221,2,,i i i mi m D b A b A b A i s =+++=这个式子表明,矩阵AB 的列向量组可由矩阵A 的列向量组线性表示出,因而前者的秩不仅\可能超过后者的秩,这就是说秩()AB ≤秩()A(注:在此证明中用分块矩阵的方法,即12m B B B B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭这就是B 的一种分块,按分块相乘就有111122121122221122m m m m n n nm m a B a B a B a B a B a B AB a B a B a B +++⎛⎫⎪+++ ⎪= ⎪⎪+++⎝⎭很容易看出AB 的行向量是B 的行向量的线性组合) 2.4 分块矩阵在线性方程组方面的应用对于线性方程组11112211211222221112n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 记()ij A a =,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,12m b b b b ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,11121112n m m mnm a a a b B a a a b ⎛⎫ ⎪=⎪ ⎪⎝⎭,A 为系数矩阵,X 为未知向量,b 为常数项向量,B 为增广矩阵按分块矩阵记法可记为()B A b =或(),B A b =此方程也可记为AX b =,把系数矩阵A 按行分成m 块,则AX b =可记做12m A A A ⎛⎫⎪ ⎪ ⎪⎪⎝⎭X =12m b b b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭把系数矩阵A 按列分成n 块,则与相乘的X 对应按行分成n 块,记作()12,,,n ααα 12n x x x ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭b =,即1122n n x x x b ααα+++=,其都为线性方程组的各种变形形式,在求解过程中变形以更方便快捷例:利用分块矩阵证明克拉默法则:对于n 个变量n 个方程线性方程组11112211211222221112n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩如果他的系数行列式0D ≠,则它有唯一解,即()()1122111,2,,j j j j n nj x D b A b A b A j n D D==+++=证明把方程组改写成矩阵方程AX b =,这里()ijn nA a ⨯=为n 阶矩阵,因0A D =≠,故1A -存在,令1X A b -=,有1AX AA b -=表明1X A b -=是方程组的解向量,由Ax b = ,有11A AX A b --= ,即1X A b -=,根据逆矩阵的唯一性,知1X A b -=是方程的唯一解向量,由逆矩阵公式11A A A-*=,有11x A b A b D-*==即111211111122112122222112222212112211n n n n n n n n nnn n n n n nn x A A A b b A b A b A x A A A b b A b A b A D D x A A A b b A b A b A +++⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪+++ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭即()()1122111,2,,j j j n nj j x b A b A b A D j n D D=+++==结束语:矩阵得分快不算是一个抽象的概念,我们能够清楚的了解知道并掌握它的概念及性质,进而能够灵活的运用,这样对我们今后的学习与研究都会有很大的帮助。