拌合站拌合楼基础承载力计算书

合集下载

搅拌站地基承载力计算书

搅拌站地基承载力计算书

地基承载力计算书1、拌合站配置情况拌和站配备2台中联-CIFA JS2000拌和机,共配置8个水泥罐,单个罐自重10吨,在装满材料时材料重按照2个150吨,2个100吨计算。

2、拌和站储料罐基础设计根据罐体基础扩大后尺寸为16.8×3.2-3.6×1.5m,由于实际需要基础扇型布置,其扇型底面积为50m2。

按照此尺寸面积检算地基承载力。

图2-1 拌和站基础平面图3、抗倾覆计算1.本次计算按空罐在10级风作用下的倾覆稳定性验算每个储料罐空壳及支起架重为10t,设计储料罐容装水泥重150t (2个)、100t(2个),水泥罐直径2.97m(2个);3.4m(2个),罐身长14.3m(按15m长计算风力弯矩),4个罐基本并排竖立,受风面积182.18m2,整体受风力抵抗风载,在最不利风力、空罐情况下计算基础的抗倾覆性,示意图中A点为抗倾覆点。

C30钢筋混凝土比重2.5t/m3,体积75m3。

风级风速换算参考《桥梁工程师手册》1-2-6表风力、等级的划分,见表3-1。

表3-1 风级风速换算表风级风速m/s 风级风速m/s10 24.5-28.4 11 28.5-32.6图3-2 抗倾覆计算示意图2.计算公式(1)风荷载强度公式 : 0k z s z w w βμμ=k w —风荷载强度(Pa );0w —基本风压值(Pa ),根据《建筑结构荷载规范》附录E ,蚌埠地区重现期R=50年的基本风压值为300Pa ;z β—高度Z 处的风振系数,本次计算取1;s μ—风荷载体型系数,对圆形截面取0.8; z μ—风压高度变化系数; 本次计算取1.18;k w =0.8×1.18×1×300=283.2Pa 。

(2)基础抗倾覆计算/c k f k M M ==G 1×1/2×基础宽/k w ×受风面×(14.3/2+4)≥1.5即满足要求k M —抵抗弯矩 (KN •M ) f M —风荷载弯矩(KN •M )G 1—储蓄空罐+基础自重(KN)k w —风荷载强度(Pa )(3)基础抗滑稳定性验算 K 0= G 1×f/ F 风≥1.3 即满足要求 G 1—储蓄罐与基础自重(KN) F 风—风荷载(KN)f —基底摩擦系数,查表得0.25;罐与基础自重计算求得:G 1=4×10×10+75×2.5×10=2275KN ;k w =283.2Pa ;受风面积:2×14.3×(3.4+2.97)=182.18m 2;/c k f k M M = G 1×1/2×基础宽/k w ×受风面积×(14.3/2+4)=(2275×3.6/2)/(283.2×182.18×11.15/1000)=7.1>1.5,满足抗倾覆要求。

拌和站基础地基承载力计算

拌和站基础地基承载力计算

一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质现场勘探并经过计算得出土基容许的应力σ0=110Kpa。

5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑由于搅拌站粉料罐间距过近,无法设置独立基础,现场基础设置为条形基础,基础平面图及具体结构尺寸入下图所示。

水泥罐高23m,罐身长13m,直径为5.1m。

粉煤灰罐高23m,罐身长13m,直径为5.1m。

2.计算方案按照4*300t粉料罐和4*300+2*200粉料罐分别进行验算,储蓄罐重量通过条形基础作用于土层上,水泥罐体重量15t,最大水泥重量300t。

4个储蓄罐重量整体通过基础作用于土层上,水泥罐体重量4*15t,最大水泥重量4*300t,混凝土重量402.5t,集中力P=16625KN,水泥罐条形基础受力面积A=(9.63+6.96+6.87+4.34+2.98+3.73+3.64+7.97)*7/2=161.42 m²。

按最不利承载力计算示意见下图。

粉煤灰罐体重量12t,最大水泥重量200t,整体集中力P=3150*4+2120*2+5752.5=22592.5KN,储料罐条形基础受力面积A=(9.63+6.96+6.87+6.76+9.02+7.58+3.84+3.73+3.64+7.97)*7/2=231m ²。

按最不利承载力计算示意见下图。

3.储料罐基础验算过程3.1 地基承载力根据上面的1力学公式,已知4个水泥罐P=16625KN,计算面积A=161m²,P/A=16625KN/ 161.42m²=103 KPa ≤σ0=110KPa 4个水泥罐地基承载力满足承载要求。

拌合站基础计算

拌合站基础计算

拌合站拌合楼基础承载力计算书德商TJ-4标拌和站,配备HZS90拌和机,设有3个储料罐,单个罐在装满材料时均按照100吨计算。

拌合站在X103县道右侧,对应新建线路里程桩号k16+800。

经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土。

1.计算公式1.1 .地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.109 Mpa。

2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速 m/s,取17m/sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距 KN•MM2—抵抗弯距 KN•MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa2、储料罐基础验算2.1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:输料管储料罐主机楼房地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。

2.2.计算方案开挖深度少于3米,根据规范,不考虑摩擦力的影响,计算时只考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1000KN,单个水泥罐基础受力面积为2.8m×5m,承载力计算示意见下图粉质粘土本储料罐根据历年气象资料,考虑最大风力为17m/s,储蓄罐顶至地表面距离为21米,罐身长14m,3个罐基本并排竖立,受风面120m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。

拌合站基础承载力计算书(003)

拌合站基础承载力计算书(003)

设计计算书计算[2010]003号 共2页 第一页拌合站水泥(粉煤灰)罐基础承载力计算书打鱼凼工程拌合站设6个水泥和粉煤灰罐,其中2个粉煤灰罐为200t 容量。

4个水泥罐分别为60t 和80t 各两个。

基础采用混凝土基础,其施工工艺按照水泥罐罐体提供厂家贵州省黔西南州泰安水泥有限公司和粉煤灰罐制作单位(拌合站主机提供单位)提供的基础图制作。

单个罐体基础为5m ×5m ×1.5m (高)C25素混凝土。

以下黔水公司打鱼凼项目部对基础设计进行验算复合:基础验算包括地基承载力计算、风荷载抗倾覆计算等(1)基础承载力计算:打鱼凼工程所在地处石漠化严重的山区,表面土层覆盖很薄,出露岩层多为灰岩。

所以施工中,在拌合站选址处进行了石方开挖,拌合站全部基础坐落在强风化和中风化灰岩地基上,除去表层覆盖层后,拌合站地基岩石开挖深度1m ~5m 。

其中200t 粉煤灰罐混凝土基础平均高2.8m ,平面面积=A 20.86m 2,基础混凝土方量58.41m 3。

罐体和满载重量kN P g 5.21461065.14200=⨯+=)(基础重量kN P g 25.1460105.241.58=⨯⨯=kpa A P A P j g z 9.17286.20/)25.14605.2146(//=+=+=σ灰岩为硬质岩,该地基岩石基础为强风化和中风化交接处,据建筑《地基基础设计规范》(GBJ7-89)岩石地基承载力表中查得岩石地基承载力在强风化岩层值为500~1000kpa ,或按照灰岩轴心抗拉强度30Mpa 的约最小0.1倍的方式确定承载力,按最小参数取为500kpa 。

kpa kpa A P A P j g z 5009.172//<=+=σ 地基承载力符合要求。

(2)抗倾覆计算:设计资料上显示:本地区为多风地带,多年平均风速 1.9m/s ,多年平均最大风速15.5m/s ,极端最大风速19.0m/s ,风向多为东风和南风为主。

拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书

拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书

拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书目录一.计算公式 (3)1.地基承载力 (3)2.风荷载强度 (3)3.基础抗倾覆计算 (3)4.基础抗滑稳定性验算 (4)5.基础承载力 (4)二、储料罐基础验算 (4)1.储料罐地基开挖及浇筑 (4)2.计算方案 (4)3.储料罐基础验算过程 (5)3.1 地基承载力 (5)3.2 基础抗倾覆 (5)3.3 基础滑动稳定性 (6)3.4 储蓄罐支腿处混凝土承压性 (6)三、拌合楼基础验算 (6)1.拌合楼地基开挖及浇筑 (6)2.计算方案 (7)3.拌合楼基础验算过程 (7)3.1 地基承载力 (7)3.2 基础抗倾覆 (8)3.3 基础滑动稳定性 (8)3.4 储蓄罐支腿处混凝土承压性 (8)拌合站拌合楼基础承载力计算书3号拌合站为先锋村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。

拌合楼处于先锋村内,在103国道右侧180m ,对应新建线路里程桩号DK208+100。

经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。

一.计算公式1 .地基承载力P/A=σ≤σ0P — 储蓄罐重量 KNA — 基础作用于地基上有效面积mm2σ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa (雨天实测允许应力)2.风荷载强度W=K 1K 2K 3W0= K 1K 2K 31/1.6v2W — 风荷载强度 PaW0— 基本风压值 PaK 1、K 2、K 3—风荷载系数,查表分别取0.8、1.13、1.0v— 风速 m/s,取17m/sσ— 土基受到的压应力 MPaσ0— 土基容许的应力 MPa3.基础抗倾覆计算K c =M 1/ M 2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M 1— 抵抗弯距 KN •MM 2— 抵抗弯距 KN •MP1—储蓄罐与基础自重 KNP2—风荷载 KN4.基础抗滑稳定性验算= P1×f/ P2≥1.3 即满足要求KP1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。

HZS90拌合站混凝土拌合站基础计算书

HZS90拌合站混凝土拌合站基础计算书

HZS90拌合站混凝土拌合站基础计算书一、拌和站罐基础设计概括计划投入两套HZS90拌合站,单套HZS90拌合站投入2个150t 型水泥罐(装满材料后),根据公司以往拌合站施工经验,结合现场地质条件以及基础受力验算,水泥罐采用砼扩大基础,基础顶预埋地脚钢板与水泥罐支腿满焊。

二、基本参数1、风荷载参数:查询公路桥涵设计通用规范得知:本工程相邻地区宁国市10年一遇基本风速:s m V /3.2010=;2、仓体自重:150t 罐体自重约15t ,装满材料后总重为150t ;3、扩大基础置于粉质黏土上,地基承载力基本容许值[]Kpa f a 1800=,采用碎石换填进行地基压实处理后,碎石换填地基承载力基本容许值[]Kpa f a 5000=;4、当采用两个水泥罐基础共同放置在一个扩大基础上时,扩大基础尺寸为9m ×4m ×1.5m (长×宽×高);当采用单个水泥罐基础放置在一个扩大基础上,扩大基础尺寸为4m ×4m ×1.5m (长×宽×高);三、空仓时整体抗倾覆稳定性稳定性计算1、受力计算模型(按最不利150吨罐体计算),空仓时受十年一遇风荷载,得计算模型如下所示:F 1图3-1 空仓时整体抗倾覆稳定性稳定性计算模型2、风荷载计算根据《公路桥涵设计通用规范》可知,风荷载标准值按下式计算:gV W d k 22γ=;查《公路桥涵设计通用规范》得各参数取值如下:空气重力密度:01199899.0012017.00001.0==-Z e γ;地面风速统一偏安全按离地20m 取:s m V k k V /4.31105220==; 其中:12.12=k ,38.15=k ,s m V /3.2010=;代入各分项数据得:222/60.08.924.3101199899.02m KN g V W d k =⨯⨯==γ单个水泥罐所受风力计算: ①、迎风面积:218.12.15.1m A =⨯= 作用力:8KN 0.18.16.01=⨯=F 作用高度:m H 35.181= ②、迎风面积:223.36113.3m A =⨯= 作用力:KN 78.213.366.02=⨯=F 作用高度:m H 1.122=③、迎风面积:23125.42/5.23.3m A =⨯= 作用力:KN 475.2125.46.03=⨯=F 作用高度:m H 475.53= 2、单个水泥罐倾覆力矩计算m KN h F M i i ⋅=⨯+⨯+⨯=⨯=∑91.296475.5475.21.1278.2135.1808.131倾3、稳定力矩及稳定系数计算假定筒仓绕单边两支腿轴线倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩1稳M ,另一部分是扩大基础自重产生的稳定力矩2稳M 。

(完整版)拌合站、水泥罐、搅拌站地基计算

(完整版)拌合站、水泥罐、搅拌站地基计算

目录一.计算公式 (2)1.地基承载力 (2)2.风荷载强度 (2)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (3)5.基础承载力 (3)二、储料罐基础验算 (3)1.储料罐地基开挖及浇筑 (3)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (5)3.4 储蓄罐支腿处混凝土承压性 (5)三、拌合楼基础验算 (5)1.拌合楼地基开挖及浇筑 (5)2.计算方案 (6)3.拌合楼基础验算过程 (6)3.1 地基承载力 (6)3.2 基础抗倾覆 (7)3.3 基础滑动稳定性 (7)3.4 储蓄罐支腿处混凝土承压性 (7)拌合站拌合楼基础承载力计算书1号拌合站为华阳村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。

拌合楼处于华阳村内,在78省道右侧30m,对应新建线路里程桩号DK208+100。

经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。

一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取17m/sσ—土基受到的压应力MPaσ0—土基容许的应力MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。

拌合站基础设计计算书

拌合站基础设计计算书

拌合站料仓基础设计一、荷载设计1、考虑空罐重15吨、装料100吨,共115吨。

则每个支座竖向力为F N1=(115*103*9.8/1000)/4=281.75kN2、风荷载考虑查风荷载规范厦门基本风压w0=0.8kN/m2(无漳州基本风压,所以按厦门基本风压取)。

仓高按H=20m,直径d=2m,H/d=10,△≈0,u z w0d2≥0.015。

风载体型u s=0.517,风振系数βz=1.0仓的风荷载分布如图(按5米控制)地面粗糙度按B类考虑F1=βz u s u z w0s=1.0*0.517*1.00*0.8*2*5=4.136 kNF2=βz u s u z w0s=1.0*0.517*1.00*0.8*2*5=4.136 kNF3=βz u s u z w0s=1.0*0.517*1.14*0.8*2*5=4.715kNF4=βz u s u z w0s=1.0*0.517*1.25*0.8*2*5=2.585kN每个桩所受的水平力F s=(F1+ F2+ F3+ F4)/4=(4.136*2+4.715+2.585)/4=3.893 kN轴力F N=(2.585*20+4.715*15+4.136*10+4.136*5)/2/2=46.116kN (-46.116kN)3、地震荷载因拌合站设计使用年限为2年,临时结构,在此不考虑地震荷载。

4、偶然冲击荷载不考虑二、荷载组合1、只考虑恒载轴力F N=1.2*281.75=338.1kN,剪力,弯矩为零。

(此处上人较少,不考虑活荷载)2、考虑恒载和风荷载组合轴力F Nmax=1.2*281.75+1.4*46.116=402.667 kN,F Nmin=1.2*281.75-1.4*46.116=273.538 kN,剪力F s=1.4*3.893=5.45 kN三、抗倾覆验算基础边长按3m*4m设计。

(沿短边3m方向验算)风荷载倾覆力矩:M风=2.585*20+4.715*15+4.136*10+4.136*5=184.465kN.m 空仓反倾覆力矩M仓=(15*1000*9.8/1000+25*3*4*1)*1.5=447kN. m>184.465kN.m满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泸州长江六桥及连接线工程正桥南段主线及立交工程
江南拌合站基础计算书
编制:
复核:
审核:
中国葛洲坝集团股份有限公司
泸州长江六桥施工总承包项目经理部
2017年7月
目录
一.概况 (2)
二.依据 (2)
三.计算公式 (2)
1.地基承载力 (2)
2.风荷载强度 (2)
3.基础抗倾覆计算 (3)
4.基础抗滑稳定性验算 (3)
5.基础承载力 (3)
四、储料罐基础验算 (3)
1.储料罐地基开挖及浇筑 (3)
2.计算方案 (4)
3.储料罐基础验算过程 (5)
3.1 地基承载力 (5)
3.2 基础抗倾覆 (5)
3.3 基础滑动稳定性 (5)
3.4 储蓄罐支腿处混凝土承压性 (6)
五、拌合楼主站基础验算 (6)
1.计算方案 (6)
2.拌合楼基础验算过程 (7)
2.1 地基承载力 (7)
2.2 基础抗倾覆 (7)
2.3 基础滑动稳定性 (7)
2.4 拌合站主站支腿处混凝土承压性 (7)
六、结论 (8)
拌合站拌合楼基础承载力计算书
一.概况
泸州长江六桥江南拌合站紧挨正桥南段主线(K2+330~K2+400)路基左侧处,配备2套HZQ90拌和机,每套拌合机设有5个储料罐,单个罐在装满材料时均按照100吨计算。

二.依据
建筑结构荷载规范GB5009-2012 公路桥涵施工技术规范JTG/TF50-2011
三.计算公式
1 .地基承载力
0σσ≤=A
P
P —储蓄罐重量kN
A — 基础作用于地基上有效面积2
mm
σ— 土基受到的压应力MPa
0σ— 土基容许的应力MPa
通过动力触探检测得出土基容许的应力Mpa 25.00=σ
2.风荷载强度
6
.12
3210321v K K K W K K K W ⨯⨯⨯=⨯⨯⨯=
W — 风荷载强度pa
0W — 基本风压值pa
1K 、2K 、3K —风荷载系数,查表分别取0.8、1.13、1.0 v — 风速s m /,取18s m /
σ— 土基受到的压应力Mpa
0σ— 土基容许的应力Mpa
3.基础抗倾覆计算
==
21M M K c P 1×2
1
×基础宽×21P ×受风面≥1.5即满足要求 1M — 抵抗弯距M kN ⋅ 2M — 抵抗弯距M kN ⋅ 1P —储蓄罐与基础自重kN 2P —风荷载kN
4.基础抗滑稳定性验算
3.12
10≥⨯=
P f P K 即满足要求 1P —储蓄罐与基础自重kN 2P —风荷载kN
f —基底摩擦系数,查表得0.25;
5 .基础承载力
0σσ≤=A
P
P — 储蓄罐单腿重量kN
A — 储蓄罐单腿有效面积2mm σ— 基础受到的压应力Mpa
0σ— 砼容许的应力Mpa (设计采用C25砼)
四.储料罐基础验算
1.储料罐地基开挖及浇筑
根据厂家提供的拌和站安装施工图,现场平面尺寸如下:
储量罐基础宽3.9m,基础深1.2m,采用0.6m厚钢筋混凝土结构,为增加基础稳定性,5个料罐基础连为一体。

支撑柱采用0.7m钢筋砼方柱。

砼采用标号C25。

2.计算方案
开挖深度少于3米,根据规范,不考虑摩擦力的影响,计算时只考虑单个储蓄罐重量通过基础作用于土层上,集中力P=1000KN,单个水泥罐基础受力面积为3.9m×3.9m,混凝土体积为9m3,钢筋砼比重按25KN/m3计。

承载力计算示意见下图
本储料罐受东北季风气候影响,根据历年气象资料,考虑最大风力为18m/s,储蓄罐顶至地表面距离为18.3米,罐身长12m,5个罐基本并排竖立,每个罐体自重10t,受风面200m2,基础作为整体受风力抵抗风载,在最不利风力下空载计算基础的抗倾覆性。

计算示意图如图所示。

基础采用的是商品混凝土25C ,储料罐支腿受力最为集中,混凝土受压面积为
mm mm 400400⨯,等同于试块受压应力低于MPa 25即为满足要求。

3.储料罐基础验算过程
1)地基承载力 根据公式1 已知kN P 1000=
计算面积2
10621.15mm A ⨯=
MPa MPa mm kN A P 25.0066.010621.1510002
≤=⨯= 地基承载力满足承载要求。

2)基础抗倾覆 根据公式2
风压Pa v K K K W 06.1836
.118113.18.06.12
2321=⨯⨯⨯=⨯⨯⨯= 根据公式2
基础抗倾覆稳定性系数
5.1
6.11)
617(20006.18395
.15.0)25595000()(5.021121≥=++⨯⨯⨯⨯⨯⨯+=+⨯⨯⨯⨯==
h h A W b N M M K c 抗倾覆能力满足要求。

3)基础滑动稳定性 根据公式4
基础滑动稳定性3.18.41200
06.183100025.0)25595000(210≥=⨯⨯⨯⨯⨯+=⨯=
P f P K 满足基础滑动稳定性要求。

4)储蓄罐支腿处混凝土承压性
根据公式5,已知T 100的储存罐,单腿受力kN P 350=,承压面积为mm mm 400400⨯
MPa MPa mm
mm kN
A P 2519.2400400350≤=⨯= 满足受压要求。

经过验算,储料罐基础满足承载力和稳定性要求。

五.拌合楼主站基础验算
1.计算方案
开挖深度少于3米,根据规范,不考虑摩擦力的影响,计算时考虑四个支腿重量通过基础作用于土层上,集中力kN kN P 8004200=⨯=,单个基础受力面积为
269.13.13.1m m m =⨯,承载力计算示意见下图
本拌合楼受西南季风气候影响,根据历年气象资料,考虑最大风力为s m /18,楼顶至地表面距离为15米,受风面2
80m ,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。

计算示意图如下
基础采用的是商品混凝土25C ,拌合楼支腿受力最为集中,混凝土受压面积为
mm mm 470470⨯,等同于试块受压应力低于MPa 25即为满足要求。

2.拌合楼基础验算过程
1)地基承载力
根据公式1,已知静荷载kN P 800=,取动荷载系数为1.4,动荷载P1=1120KN,单个支腿受力280KN ,计算面积积2
6
1069.1mm A ⨯=
MPa MPa mm kN A P 25.0165.01069.128002
61
=≤=⨯=σ 地基承载力满足承载要求。

2)基础抗倾覆 根据公式3
5.13.168
8006.1831000
4.280021≥=⨯⨯⨯⨯==
M M K c 满足抗倾覆要求
其中Pa W K K K W 06.1836
.11813.18.02
0321=⨯⨯=⨯⨯⨯= 3)基础滑动稳定性 根据公式4
3.17.1380
06.1831000
25.0800210≥=⨯⨯⨯=⨯
=P f P K 满足基础滑动稳定性要求。

4)拌合站主站支腿处混凝土承压性
根据5力学计算公式,已知单腿受力kN P 200=,承压面积为mm mm 800800⨯
MPa MPa mm
mm kN A P 2531.0800800200≤=⨯= 满足受压要求。

经过验算,拌合楼基础满足承载力和稳定性要求。

六、结论
经过计算,拌合楼和储料罐的基础满足受力要求。

相关文档
最新文档