初三上学期期末数学试卷及答案

合集下载

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

最新初三第一学期数学期末试卷(含答案解析)

最新初三第一学期数学期末试卷(含答案解析)

初三第一学期数学期末试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)在下列函数中,y是x的反比例函数的是()A.y=3x B.y=C.y=D.y=【分析】根据反比例函数的定义回答即可.【解答】解:A、该函数是正比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、该函数是符合反比例函数的定义,故本选项正确;D、y是(x﹣1)反比例函数,故本选项错误;故选:C.【点评】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).2.(3分)下列几何体的左视图和俯视图相同的是()A.B.C.D.【分析】分别画出各种几何体的左视图和俯视图,进而进行判断即可.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.【点评】本题考查简单几何体的三视图,掌握三视图的画法是得出正确结论的前提.3.(3分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(1,﹣3)D.(1,3)【分析】根据二次函数的顶点式解析式写出即可.【解答】解:∵二次函数y=2(x﹣1)2+3,∴顶点坐标是(1,3).故选:D.【点评】本题主要考查了二次函数的性质,二次函数图象的顶点式解析式,如果y=a(x﹣h)2+k,那么函数图象的顶点坐标为(h,k),需要熟记并灵活运用.4.(3分)小明制作了5张卡片,上面分别写了一个条件:①AB=BC;②AB⊥BC;③AD=BC;④AC⊥BD;⑤AC=BD.从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为()A.B.C.D.【分析】根据菱形的判定方法确定能得到菱形的方法,然后利用概率公式求解即可.【解答】解:能判断▱ABCD是菱形的有:①AB=BC、④AC⊥BD,所以从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为,故选:B.【点评】考查了菱形的判定方法及概率公式,能够了解菱形的判定方法是解答本题的关键,难度不大.5.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)已知抛物线y=(x﹣1)2+2上有三点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y2>y1>y3【分析】分别把(﹣2,y1),(﹣1,y2),(2,y3)代入解析式求解.【解答】解:把(﹣2,y1),(﹣1,y2),(2,y3)代入y=(x﹣1)2+2得y1=6.5,y2=4,y3=2.5,∴y1>y2>y3,故选:A.【点评】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数与方程的关系.7.(3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【分析】连接AD,先根据圆周角定理得出∠A及∠ADB的度数,再由直角三角形的性质即可得出结论.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣2,0),对称轴为直线x=1,下列结论:①abc<0;②2a﹣b=0;③b2﹣4ac>0;④无论m为何值时,总有am2+bm≤a+b;⑤9a+c>3b,其中正确的结论序号为()A.①②③B.①③④C.①③④⑤D.②③④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可得c>0,∵x=﹣=1,∴ab<0,∴abc<0,故①正确;②∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②错误;③∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,故③正确;④当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴am2+bm≤a+b,即无论m为何值时,总有am2+bm≤a+b.故④正确;⑤∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,故⑤错误;故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x 轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)如图,AB是⊙O的直径,线段BC与⊙O的交点D是BC的中点,DE⊥AC于点E,连接AD,①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线,则上述结论中正确的个数是()A.1B.2C.3D.4【分析】根据圆周角定理和切线的判定,采用排除法,逐条分析判断.【解答】解:∵AB是直径,∴∠ADB=90°,∴AD⊥BC,故①正确;连接DO,∵点D是BC的中点,∴CD=BD,又∵∠ADC=∠ADB=90°,AD=AD,∴△ACD≌△ABD(SAS),∴AC=AB,∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是圆O的切线,故④正确;∵AB为圆O的直径,∴∠ADB=90°,∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,∴∠EDA=∠ODB,∵∠ODB=∠B,∴∠EDA=∠B,选项②正确;由D为BC中点,且AD⊥BC,∴AD垂直平分BC,∴AC=AB,又OA=AB,∴OA=AC,选项③正确;故选:D.【点评】此题考查了切线的判定,证明切线时连接OD是解这类题经常连接的辅助线.10.(3分)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A →D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.【分析】根据题意结合图形,分情况讨论:①0≤x≤2时,根据S△APQ=AQ•AP,列出函数关系式,从而得到函数图象;②2≤x≤4时,根据S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【解答】解:①当0≤x≤2时,∵正方形的边长为2cm,∴y=S△APQ=AQ•AP=x2;②当2<x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选:A.【点评】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.二、填空题(每小题3分,共15分)11.(3分)在函数y=中,自变量x的取值范围是x≠2.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.12.(3分)请写出一个函数表达式,使其图象在第一、三象限且关于原点对称:y=.【分析】根据正比例函数和反比例函数的性质可得,所有k>0的正比例函数y=kx和反比例函数y=的图象都符合题意.【解答】解:由题意得,所有k>0的正比例函数y=kx和反比例函数y=的图象都在第一、三象限且关于原点对称,故答案为:y=(答案不唯一).【点评】此题考查了正比例函数和反比例函数图象性质的应用能力,关键是能准确理解以上知识.13.(3分)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.【分析】如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.【解答】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.(3分)如图,以BC为直径作⊙O,A,D为圆周上的点,AD∥BC,AB=CD=AD=2.若点P为BC 垂直平分线MN上的一动点,则阴影部分周长的最小值为2+2.【分析】根据对称的性质可知阴影部分的周长的最小值为AC+CD,求出AC的长即可.【解答】解:连接AC,根据对称的意义可知,PD+PC的最小值为AC,∵AD∥BC,AB=CD=AD=2,∴==,∴∠ABC=2∠ACB,∵BC为直径,∴∠BAC=90°,∴∠ACB=30°,∠ABC=60°,∴AC=•AB=2,所以阴影部分周长的最小值为AC+CD=2+2,故答案为:2+2.【点评】本题考查轴对称的性质,圆周角定理,理解轴对称的性质是解决问题的关键.15.(3分)在矩形ABCD中,AB=2,BC=4,点E在边BC上,连接DE,将△CDE沿DE折叠,若点C的对称点C'到AD的距离为1,则CE的长为或2.【分析】当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,则C'G=1,由直角三角形的性质可得出答案.【解答】解:如图1,当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,∵将△CDE沿DE折叠,∴AB=DC=C'D=2,∠CDE=∠C'DE,∵C'M=1,∴,∴∠C'DM=30°,∴∠C'DC=60°,∴∠CDE=∠C'DC=30°,∴CE=CD×tan30°=2×=;如图2,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,C'E与AD交于点H,则C'G=1,同理CD=C'D=2,∴∠C'DG=30°,∴∠C'HD=60°,∵矩形ABCD中,AD∥BC,∴∠C'HD=∠HEC=60°,∴∠DEC=∠HEC=30°,∴CE=2.综上可得,CE的长为或2.故答案为:或2.【点评】本题考查了矩形的判定与性质、折叠的性质、三角函数、勾股定理、直角三角形的性质、角平分线的性质等知识,熟练掌握折叠的性质是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)计算:(1)2﹣2﹣2cos30°+tan60°+(π﹣3.14)0;(2)2cos245°+tan60°•tan30°﹣cos60°.【分析】(1)分别进行负整数指数幂、特殊角的三角函数值、零指数幂等运算,然后合并;(2)将特殊角的三角函数值代入求解.【解答】解:(1)原式=﹣2×++1==;(2)原式=2×()2+﹣=2×+1﹣=1+1﹣=.【点评】本题考查了实数的运算及特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.17.(9分)随着中央电视台《朗读者》节目的播出,“朗读”被越来越多的同学所喜爱,某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18aB2040%C m16%D48%合计b100%请你根据以上信息,解答下列问题:(1)a=36%,b=50;(2)请求出m的值并将条形统计图补充完整;(3)“朗读”活动中,七年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.【分析】(1)“一定参与”的有20人,占调查人数的40%,可求出调查人数b,进而求出“A积极参与”所占的百分比;(2)求出“C组可以参与”的人数,将条形统计图补充完整即可;(3)画树状图,共有12种等可能的结果,其中所选两人都是女生的结果有2种,再由概率公式求解即可.【解答】解:(1)b=20÷40%=50(人),则a=18÷50=36%,故答案为:36%,50;(2)m=50×16%=8,补全条形统计图如图所示;(3)画树状图如下:共有12种等可能的结果,其中所选两人都是女生的结果有2种,∴所选两人都是女生的概率为=.【点评】此题考查的是用树状图法求概率以及条形统计图和统计表.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.18.(9分)2021年“五一”期间,修复后的安阳老城东南城墙及魁星阁与市民见面,这一始建于北魏天兴元年(公元398年)的建筑,在1600多年后,以崭新的面貌向世人展示历史印记,古代安阳“魁星取水”景观即将重现.某数学学习小组利用卷尺和自制的测角仪测量魁星阁顶端距离地面的高度,如图所示,他们在地面一条水平步道FB上架设测角仪,先在点F处测得魁星阁顶端A的仰角是26°,朝魁星阁方向走20米到达G 处,在G处测得魁星阁顶端A的仰角是45°.若测角仪CF和DG的高度均为1.5米,求魁星阁顶端距离地面的高度(图中AB的值).(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,≈1.41,结果精确到0.1米)【分析】解直角三角形求出AG即可解决问题.【解答】解:由题意知,∠ADE=45°,∠ACE=26°,FG=CD=20米,CF=DG=1.5米,设AE=x米,在Rt△ADE中,∵AE=x米,∠ADE=45°,∴ED=AE=x米,∴CE=CD+ED=(20+x)米,在Rt△ACE中,∵tan26°==,∴tan26°(20+x)=x,即0.49×(20+x)≈x,解得x≈19.22(米),∴AB=AE+BE≈19.22+1.5=20.7(米).答:铁塔的高度AB约为20.7米.【点评】本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.(9分)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD 的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.【分析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴=,∴CD•BE=AD•DE.【点评】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.20.(9分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,4),点B的坐标为(n,2).(1)求反比例函数和一次函数的解析式;(2)点E为x轴上一个动点,若S△AEB=5,试求点E的坐标.【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,然后根据待定系数法求得直线AB的解析式;(2)设点E的坐标为(a,0),则点C(6,0),得出CE=|a﹣6|,根据S△AEB=S△AEC﹣S△BEC=5,求出a的值,从而得出点E的坐标.【解答】解:(1)把点A(2,4)代入y=得4=,解得m=8,∴反比例函数的表达式为y=,点B(n,2)代入y=得2=,解得n=4,∴点B的坐标为(4,2),∵直线y=kx+b过点A(2,4),B(4,2),∴,解得,∴一次函数的表达式为y=﹣x+6;(2)设点E的坐标为(a,0),在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=6,∴点C(6,0),∴CE=|a﹣6|,∵S△AEB=S△AEC﹣S△BEC=5,∴×|a﹣6|×(4﹣2)=5,∴|a﹣6|=5,解得a1=11,a2=1,∴点E的坐标为(11,0)或(1,0).【点评】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解此题的关键:(1)熟练掌握待定系数法;(2)得到关于a的方程.21.(10分)在平面直角坐标系xOy中,点A的坐标为(0,5),点B的坐标为(5,5),抛物线y=x2﹣4x+a ﹣1的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标.(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)将(5,5)代入解析式求出a,然后将抛物线解析式化为顶点式求解.(2)分别求出顶点落在AB上,抛物线经过点A,B时a的值,结合图象求解.【解答】解:(1)将(5,5)代入y=x2﹣4x+a﹣1得5=25﹣20+a﹣1,解得a=1,∴y=x2﹣4x+a﹣1=x2﹣4x=(x﹣2)2﹣4,∴点C坐标为(2,﹣4).(2)∵y=x2﹣4x+a﹣1=(x﹣2)2+a﹣5,∴抛物线开口向上,顶点坐标为(2,a﹣5),当抛物线顶点落在线段AB上时,a﹣5=5,解得a=10,当抛物线经过点A(0,5)时,5=a﹣1,解得a=4,当抛物线经过点B(5,5)时,a=1,∴1≤a<5或a=10满足题意.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系.22.(10分)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数y1=﹣(|x﹣2|﹣1)2+3的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.故答案为函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<a<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移2个单位,向上平移3个单位可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象,当2<y1≤3时,自变量x的取值范围是0<x<4且x≠2.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.23.(11分)已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:AM=BN;(2)将△MON绕点O顺时针旋转.①如图2,当点M恰好在AB边上时,求证:AM2+BM2=2OM2;②当点A,M,N在同一条直线上时,若OA=4,OM=3,请直接写出线段AM的长.【分析】(1)通过代换得对应角相等,再根据等腰直角三角形的性质得对应边相等,利用“SAS”证明△AOM≌△BON,即可得到AM=BN;(2)①连接BN,根据等腰直角三角形的性质,利用“SAS”证明△AOM≌△BON,得对应角相等,对应边相等,从而可证∠MBN=90°,再根据勾股定理,结合线段相等进行代换,即可证明结论成立;②分点N在线段AM上和点M在线段AN上两种情况讨论,连接BN,设BN=x,根据勾股定理列出方程,求出x的值,即可得到BN的长,BN的长就是AM的长.【解答】(1)证明:∵∠AOB=∠MON=90°,∴∠AOB+∠AON=∠MON+∠AON,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴AM=BN;(2)①证明:连接BN,∵∠AOB=∠MON=90°,∴∠AOB﹣∠BOM=∠MON﹣∠BOM,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴∠MAO=∠NBO=45°,AM=BN,∴∠MBN=90°,∴MB2+BN2=MN2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴AM2+BM2=2OM2;②解:如图3,当点N在线段AM上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x﹣6)2+x2=82,解得:x=3+(负根已经舍去),∴AM=BN=3+,如图4,当点M在线段AN上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x+6)2+x2=(8)2,解得:x=﹣3(负根已经舍去),∴AM=BN=﹣3,综上所述,线段AM的长为+3或﹣3.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定与性质,图形的旋转,勾股定理等知识点,抓住图形旋转中不变的量,巧妙构造直角三角形是解决问题的关键.。

2022-2023学年北京东城区初三第一学期数学期末试卷及答案

2022-2023学年北京东城区初三第一学期数学期末试卷及答案

2022-2023学年北京东城区初三第一学期数学期末试卷及答案一、选择题(每题2分,共16分)1. 若关于的一元二次方程有一个根为,则的值为( ) x 220x x m -+=0m A. 2 B. 1C. 0D.1-【答案】C 【解析】【分析】将代入方程,即可求解.0x =220x x m -+=【详解】解:∵关于的一元二次方程有一个根为, x 220x x m -+=0∴, 0m =故选:C .【点睛】本题考查了一元二次方程的解的定义,将代入方程是解题的关键. 0x =2. 下列图形中是中心对称图形的是( ) A. 正方形 B. 等边三角形C. 直角三角形D. 正五边形 【答案】A 【解析】【分析】根据中心对称图形的概念求解即可. 【详解】解:A 、是中心对称图形,本选项正确; B 、不是中心对称图形,本选项错误; C 、不是中心对称图形,本选项错误; D 、不是中心对称图形,本选项错误. 故选A .【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,绕对称中心旋转180度后与原图形重合.3. 关于二次函数的最大值或最小值,下列说法正确的是( ) 22(4)6y x =-+A. 有最大值4 B. 有最小值4C. 有最大值6D. 有最小值6 【答案】D 【解析】【分析】根据二次函数的解析式,得到a 的值为2,图象开口向上,函数22(4)6y x =-+有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数中,a=2>0,顶点坐标为(4,6), 22(4)6y x =-+∴函数有最小值为6. 故选:D .【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a 的符号和根据顶点坐标求出最值.4. 一只不透明的袋子中装有3个黑球和2个白球,这些除颜色外无其他差别,从中任意摸出3个球,下列事件是确定事件的为( ) A. 至少有1个球是黑球 B. 至少有1个球是白球 C. 至少有2个球是黑球 D. 至少有2个球是白球【答案】A 【解析】【分析】列出摸出的三个球的颜色的所有可能情况即可.【详解】根据题意可得,摸出的三个球的颜色可能为:两个白球,一个黑球;一个白球,两个黑球;三个黑球,则可知摸出的三个球中,至少有一个黑球, 故必然事件是至少有一个黑球, 故选:A .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A. 180(1﹣x)2=461B. 180(1+x )2=461C. 368(1﹣x)2=442D. 368(1+x )2=442【答案】B 【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x ,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程. 【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461, 故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.6. 如图,在中,是直径,弦的长为5,点D 在圆上,且, 则O AB AC 30ADC ∠=︒O 的半径为( )A. B. 5C. D.2.57.510【答案】B 【解析】【分析】连接,由题意易得,在中解三角形求解. BC 30ABC ADC ∠=∠=︒Rt ACB 【详解】连接,BC30ABC ADC ∴∠=∠=︒在中,是直径, O AB ,90ACB ∴∠=︒在中,Rt ACB ,,90ACB ∠=︒30ABC ∠=︒5AC =210AB AC ==5OA =故选:B .【点睛】本题主要考查圆周角定理及含直角三角形的性质;熟练掌握圆周角定理及含30︒直角三角形的性质是解题的关键.30︒7. 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC ,BD 分别与⊙O 切于点C ,D ,延长AC ,BD 交于点P .若,⊙O 的半径为6cm ,则图中的120P ∠=︒ CD长为( )A. π cmB. 2π cmC. 3π cmD. 4π cm【答案】B 【解析】【分析】连接OC 、OD ,利用切线的性质得到,根据四边形的内角和90OCP ODP ∠=∠=︒求得,再利用弧长公式求得答案. 60COD ∠=︒【详解】连接OC 、OD ,分别与相切于点C ,D ,,AC BD Q O ∴,90OCP ODP ∠=∠=︒,120360P OCP ODP P COD ∠=︒∠+∠+∠+∠=︒, ∴,60COD ∠=︒的长, CD∴6062(cm)180ππ⨯==故选:B【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.8. 如图,正方形和的周长之和为,设圆的半径为,正方形的边长为ABCD O 20cm cm x ,阴影部分的面积为.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,cm y 2cm S 则y 与x ,S 与x 满足的函数关系分别是( )A. 一次函数关系,一次函数关系B. 一次函数关系,二次函数关系 C .二次函数关系,二次函数关系D. 二次函数关系,一次函数关系【答案】B 【解析】【分析】根据圆的周长公式和正方形的周长公式先得到,再根据152y x π=-+得到,由此即可得到答案.S S S =-阴影正方形圆2215254S x x πππ⎛⎫=--+ ⎪⎝⎭【详解】解:∵正方形和的周长之和为,圆的半径为,正方形的边ABCD O 20cm cm x 长为, cm y ∴, 4220y x π+=∴, 152y x π=-+∵,S S S =-阴影正方形圆∴,22222211552524S y x x x x x ππππππ⎛⎫⎛⎫=-=-+-=--+ ⎪ ⎪⎝⎭⎝⎭∴y 与x ,S 与x 满足的函数关系分别是一次函数关系,二次函数关系, 故选B .【点睛】本题考查二次函数与一次函数的识别、正方形的周长与面积公式,理清题中的数量关系,熟练掌握二次函数与一次函数的解析式是解答的关键. 二、填空题 (每题2分,共16分)9. 在平面直角坐标系中,抛物线与y 轴交于点C ,则点C 的坐标为xOy 245y x x =-+_________. 【答案】 (0,5)【解析】【分析】令,代入抛物线,得到点C 的纵坐标,即可得解. 0x =245y x x =-+【详解】解:依题意,令,得到,0x =5y =故抛物线与y 轴交于点C 的坐标为, 245y x x =-+(0,5)故答案为 :(0,5)【点睛】本题考查了二次函数与y 轴交点问题,令,即可得到抛物线与y 轴交点的纵0x =坐标. 10. 把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线2112y x =+的解析式为_______. 【答案】 21(1)22y x =+-【解析】【分析】直接根据“上加下减,左加右减”进行计算即可. 【详解】解:抛物线, 2112y x =+向左平移1个单位长度,再向下平移3个单位长度, 得到 ()211132y x =++-即 ()21122y x =+-故答案为:. ()21122y x =+-【点睛】本题主要考查函数图像的平移;熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.11. 请写出一个常数c 的值,使得关于x 的方程有两个不相等的实数根,则220x x c ++=c 的值可以是____________.【答案】0,(答案不唯一,即可). 1c <【解析】【分析】利用一元二次方程根的判别式求出c 的取值范围即可得到答案. 【详解】解:因为方程有两个不相等的实数根, 220x x c ++=所以 2Δ240c =->解得1c <故答案为:0,(答案不唯一,即可)1c <【点睛】本题主要考查了一元二次方程根的判别式;熟知一元二次方程根的判别式是解题的关键.12. 2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100 1000 5000 8000 10000 15000 20000 幼树移植成活数(棵)87 893 4485 7224 8983 13443 18044 幼树移植成活的频率0.870 0.893 0.897 0.903 0.898 0.896 0.902 估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)【答案】0.9【解析】【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】∵幼树移植数20000时,幼树移植成活的频率是0.902,∴估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,故答案为:0.9.【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.13. 以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.【答案】(2,﹣1)【解析】【分析】根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【详解】解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点睛】此题考查中心对称图形的顶点在坐标系中的表示.14. 如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D ,连接CD .若∠B=50°,则∠OCD 的度数等于___________.【答案】20°##20度 【解析】【分析】连接OA ,如图,根据切线的性质得到∠OAB=90°,则利用互余可计算出∠AOB=40°,再利用圆周角定理得到∠ADC=20°,然后根据平行线的性质得到∠OCD 的度数.【详解】解:连接OA ,如图,∵AB 切⊙O 于点A , ∴OA⊥AB, ∴∠OAB=90°, ∵∠B=50°,∴∠AOB=90°-50°=40°, ∴∠ADC=∠AOB=20°, 12∵AD∥OB,∴∠OCD=∠ADC=20°. 故答案为:20°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.15. 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×失+失²).弧田(图中阴影部分)由圆弧和其所对的弦所12=围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径等于4米的弧田,按照上述公式计算出弧田的面积约为______ 米120︒.)21.73≈【答案】 8.92【解析】【分析】由题意可知于D ,交圆弧于C ,由题意得米,解得OC AB ⊥4AO =120AOB ∠=︒米,再求出,最后由勾股定理得到,由垂径定理求出即可得122OD OA ==CD AD AB 出结果.【详解】解:如图,由题意可知,,,(米),120AOB ∠=︒AB CD ⊥4OA OB ==, 30,90DAO ADO ∴∠=︒∠=︒12AD BD AB ==(米)122OD OA ∴==(米)422CD OC OD ∴=-=-=AD ∴===(米)2AB AD ∴==弧田面积 ∴()212AB CD CD =⨯+()21222=⨯+2=+(平方米)8.92≈故答案为:8.92【点睛】本题考查了勾股定理以及垂径定理的应用;熟练掌握垂径定理是解答本题的关键.16. 我们给出如下定义:在平面内,点到图形的距离是指这个点到图形上所有点的距离的最小值.在平面内有一个矩形,中心为O ,在矩形外有一点P ,,,4,2ABCD AB AD ==3OP =当矩形绕着点O 旋转时,则点P 到矩形的距离d 的取值范围为__________.【答案】 32d ≤≤【解析】【分析】根据题意分别求出当过的中点E 时,此时点P 与矩形上所有点的OP AB ABCD 连线中,;当过顶点A 时,此时点P 与矩形上所有点的连线中,;d PE =OP ABCD d PA =当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,,即OP AD ABCD d PF =可求解.【详解】解:如图,当过的中点E 时,此时点P 与矩形上所有点的连线中,OP AB ABCD ,, d PE =112OE AD ==∴;2d PE OP OE ==-=如图,当过顶点A 时,此时点P 与矩形上所有点的连线中,,OP ABCD d PA =矩形,中心为O ,,4,2ABCD AB AD ==∴,2,90BC AD B ==∠=︒∴, AC ==∴ 12OA AC ==∴;3d AP OP OA ==-=-如图,当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,OP AD ABCD ,, d PF =122OF AB ==∴;1d PF OP OF ==-=综上所述,点P 到矩形的距离d 的取值范围为.32d ≤≤故答案为:32d ≤≤【点睛】本题考查矩形的性质,旋转的性质,根据题意得出临界点时点d 的值是解题的关键.三、解答题(共68分,17-22题,每题5分,23-26题,每题6分,27-28题,每题7分)17. 下面是小美设计的“过圆上一点作圆的切线”的尺规作图过程.已知:点A 在上.O 求作:的切线.O AB作法: ①作射线;OA ②以点A 为圆心,适当长为半径作弧,交射线于点C 和点D ;OA ③分别以点C ,D 为圆心,大于长为半径作弧,两弧交点B ; 12CD ④作直线.AB 则直线即为所求作的的切线.AB O 根据小美设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接,.BC BD 由作图可知,, .AC AD =BC =∴ .BA OA ∵ 点A 在上,O ∴直线是的切线( ) (填写推理依据) .AB O 【答案】(1)见解析;(2);;经过半径的外端并且垂直于这条半径的直线是圆的切线.BD ⊥【解析】【分析】(1)依据题意,按步骤正确尺规作图即可;(2)结合作图,完成证明过程即可.【小问1详解】补全图形如图所示,【小问2详解】证明:连接,.BC BD由作图可知,,.AC AD =BC BD =∴,BA OA ⊥∵ 点A 在上,O ∴直线是的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线,AB O 故答案为:;;经过半径的外端并且垂直于这条半径的直线是圆的切线BD ⊥【点睛】本题考查了尺规作图能力和切线的证明;能够按要求规范作图是解题的关键.18. 如图,是的直径,弦于点E ,,若,求的AB O CD AB ⊥2CD OE =4AB =CD 长.【答案】.CD =【解析】【分析】由垂径定理得到,推出,在中,利用勾股定理即CE DE =CE OE =Rt COE △可求解.【详解】解:如图,连接. OC∵是的直径,弦于点E ,AB O CD AB ⊥∴.CE DE =又∵,2CD OE =∴.CE OE =∵,4AB =∴.2OC =在中,,Rt COE △222CE OE OC +=∴CE =∴.CD =【点睛】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键.19. 下面是小聪同学用配方法解方程:的过程,请仔细阅读后,2240x x p --=()0p >解答下面的问题.2240x x p --=解:移项,得:.①224x x p -=二次项系数化为1,得:.② 222p x x -=配方,得.③ 2212p x x -+=即. 2(1)2p x -=∵,0p >∴ 1x -=∴ 11x =+11x =(1)第②步二次项系数化为1的依据是什么?(2)整个解答过程是否正确?若不正确,说出从第几步开始出现的错误,并直接写出此方程的解.【答案】(1)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等(2)不正确,解答从第③步开始出错, 1x =2x =【解析】【分析】(1)根据等式的性质2即可写出依据;(2)根据配方法解一元二次方程的步骤即可求解. 【小问1详解】等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;【小问2详解】不正确,解答从第③步开始出错,正确的步骤为:配方,得.③ 22112p x x -+=+即 22(1)2p x +-=∵,0p >∴.④ 1x -=∴.⑤ 1x =2x =此方程的解为. 1x =2x =【点睛】本题考查等式的性质和解一元二次方程,解题的关键是读懂材料,明确每一步的做题依据.20. 如图,已知抛物线L :y =x 2+bx+c 经过点A(0,﹣5),B(5,0).(1)求b ,c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .求点M 的坐标;【答案】(1),;(2)交点M 的坐标为(2,-3).4b =-5c =-【解析】【分析】(1)将点A 、点B 坐标代入函数解析式,求解方程组即可;(2)设直线AB 的解析式为:,将点A 、点B 坐标代入函数解析式求解确()0y kx b k =+≠定解析式,然后根据(1)中确定二次函数解析式,求出其对称轴,求两条之间交点即可确定点M 的坐标.【详解】解:(1)将点A 、点B 坐标代入函数解析式可得:, 50255c b c -=⎧⎨=++⎩解得:, 45b c =-⎧⎨=-⎩∴,;4b =-5c =-(2)设直线AB 的解析式为:,()0y kx b k =+≠将点A 、点B 坐标代入函数解析式可得:, 505b k b-=⎧⎨=+⎩解得:, 15k b =⎧⎨=-⎩∴一次函数解析式为:,5y x =-由(1)得二次函数解析式为:,245y x x =--对称轴为:, 22b x a=-=直线与的交点为M ,5y x =-2x =∴当时,,2x ==3y -∴交点M 的坐标为(2,-3).【点睛】题目主要考查利用待定系数法确定二次函数与一次函数解析式,两条直线的交点问题,二次函数的基本性质,理解题意,熟练运用待定系数法确定解析式是解题关键.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点,,均为格点(每A B O 个小正方形的顶点叫做格点).(1)作点关于点的对称点;A O 1A (2)连接,将线段绕点顺时针旋转得到线段,点的对应点为,1AB 1A B 1A 90︒11A B B 1B 画出旋转后的线段;11A B (3)连接,,求出的面积(直接写出结果即可).1AB 1BB 1ABB 【答案】(1)见解析 (2)见解析(3)8【解析】【分析】(1)根据网格的特点作出点关于点的对称点;A O 1A(2)根据题意,画出旋转后的线段,即可求解;11A B (3)根据网格的特点,以及三角形面积公式求得面积即可求解.【小问1详解】解:如图所示,点即为所求;1A 【小问2详解】解:如图所示,线段即为所求;11A B 【小问3详解】解:如图所示,. 118282ABB S =⨯⨯= 【点睛】本题考查了画中心对称图形,画旋转图形,网格中求三角形面积,数形结合是解题的关键.22. 2022年3月23日,“天宫课堂”第二课在中国空间站开讲,神舟十三号飞行乘组航天员翟志刚、王亚平、叶光富讲了又一堂精彩的太空科普课.这场充满奇思妙想的太空授课,让科学的种子在亿万青少年的心里生根发芽.小明和小亮对航天知识产生了极大兴趣,他们在中国载人航天网站了解到,航天知识分为“梦圆天路”、“飞天英雄”、“探秘太空”、“巡天飞船”等模块.他们决定先从“梦圆天路”、“飞天英雄”、“探秘太空”三个模块中随机选择一个进行学习,分别设这三个模块为A ,B ,C ,用画树状图或列表的方法求出小明和小亮选择相同模块的概率. 【答案】 13【解析】【分析】先画出树状图,从而可得所有等可能的结果,再找出小明和小亮选择相同模块的结果,然后利用概率公式计算即可得. 【详解】解:由题意,画树状图如下:由图可知,所有等可能的结果共有9种,其中,小明和小亮选择相同模块的结果有3种. 则小明和小亮选择相同模块的概率为, 3193P ==答:小明和小亮选择相同模块的概率为. 13【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.23. 已知关于x 的一元二次方程. ()22120x m x m +++-=(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m 的值,并求出此时方程的解.【答案】(1)见解析 (2),m =122,1x x =-=【解析】【分析】(1)判断判别式的符号,即可得证;(2)求出判别式的值最小时的m 的值,再解一元二次方程即可.【小问1详解】证明:∵,22(21)4(2)49m m m ∆=+-⨯-=+∵,20m ≥∴.2Δ490m =+>∴无论m 取何值,方程总有两个不相等的实数根.【小问2详解】解:由题意可知,当时,的值最小.0m =249m ∆=+将代入,得0m =2(21)20x m x m +++-=220x x +-=解得:.122,1x x =-=【点睛】本题考查一元二次方程的判别式与根的个数的关系,以及解一元二次方程.熟练掌握判别式与根的个数的关系,以及解一元二次方程的方法,是解题的关键.24. 掷实心球是中考体育考试项目之一,实心球投掷后的运动轨迹可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从投掷到着陆的过程中,实心球的竖直高度(单位:y m)与水平距离(单位:m)近似满足函数关系.某位同学进行了两x 2()y a x h k =-+(0)a <次投掷.(1)第一次投掷时,实心球的水平距离与竖直高度的几组数据如下:x y 水平距离x/m 0 2 4 6 8 10竖直距离y/m 1.67 2.632.95 2.63 1.670.07根据上述数据,直接写出实心球竖直高度的最大值,并求出满足的函数关系;2()y a x h k =-+(0)a <(2)第二次投掷时,实心球的竖直高度y 与水平距离近似满足函数关系x .记实心球第一次着地点到原点的距离为,第二次着地点到原点20.09( 3.8) 2.97y x =--+1d 的距离为,则_____ (填“>”“=”或“<”).2d 1d 2d 【答案】(1),2.9520.08(4) 2.95y x =--+(2)>【解析】【分析】(1)先根据表格中的数据找到顶点坐标,即可得出实心球竖直高度的最大值,并利用待定系数法得到抛物线解析式;(2)设着陆点的纵坐标为0,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标即为 和,然后进行比较即可.1d 2d 【小问1详解】解:由表格数据可知,抛物线的顶点坐标为, (42.95),所以实心球竖直高度的最大值为,2.95设抛物线的解析式为:,2(4) 2.95y a x =-+将点代入,得, (01.67),1.67162.95a =+解得,0.08a =-∴抛物线的解析式为:;20.08(4) 2.95y x =--+【小问2详解】解:第一次抛物线解析式为,20.08(4) 2.95y x =--+令,得到(负值舍去), 0y =4x =+第二次抛物线的解析式为,20.09( 3.8) 2.97y x =--+令,得到(负值舍去)0y = 3.8x =+, 4 3.8+>+ ,12d d ∴>故答案为:>【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,解题的关键是读懂题意,列出函数关系式.25. 如图,点在以为直径的上,平分交于点D ,交于点E ,C AB O CD ACB ∠O AB 过点D 作交F .DF AB CO(1)求证:直线是的切线;DF O(2)若°,DF 的长.30A ∠=AC =【答案】(1)见解析 (2) FD =【解析】【分析】(1)连接,证明可得结论;OD DF OD AB OD ⊥⊥,,(2)再中,,,得到,,再在Rt ACB △30A ∠=︒AC =4AB =2OD =Rt ODF △中,由,继而求得;60F ∠=︒FD 【小问1详解】证明:连接. OD∵ 是的直径,平分,AB O CD ACB ∠ AD DB∴=∴ .90AOD BOD ∠=∠=︒又∵ ,FD AB ∥∴ .90ODF BOD ∠=∠=︒即 .OD DF ⊥∴ 直线为的切线.DF O 【小问2详解】解:∵ 是的直径,AB O ∴.90ACB ∠=︒又∵,,30A ∠=︒AC =∴ .4AB =∴ .2OD =∵ ,AO CO =30ACO A ∴∠=∠=︒∴ .60COB A ACO ∠=∠+∠=︒∵ ,DF AB ∴ ,60F ∠=︒,30FOD ∴∠=︒设则,,FD x =22OF FD x ==又,2OD =在中,由勾股定理得:,Rt ODF △22224x x +=解得:, x =故 FD =【点睛】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,特殊角的直角三角形性质,等知识,解题的关键是学会添加常用辅助线解决问题.26. 已知二次函数. ()2430y ax ax a =-+≠(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点都在该二次函数图象上,()()()()12343,1,12,,,,,y y y y --①请判断与的大小关系: (用“”“”“”填空);1y 2y 1y 2y >=<②若,,,四个函数值中有且只有一个小于零,求a 的取值范围.1y 2y 3y 4y 【答案】(1)抛物线与y 轴交点的坐标为,对称轴()0,32x =(2)①; ② =3154a -≤<-【解析】【分析】(1),可得抛物线与y 轴交点的坐标,再根据抛物线对称轴公式解答,即可0x =求解;(2)①根据题意可得点关于直线对称,即可求解;②根据题意可得点()()12,3,1,y y 2x =在对称轴的左侧,点在对称轴的右侧,然后分两种情况:()()()2341,,,1,2,y y y --()13,y 当时,当时,即可求解.0a >a<0【小问1详解】解:令,则,0x =3y =∴抛物线与y 轴交点的坐标为 .()0,3对称轴. 422a x a-=-=【小问2详解】解:① ∵函数图象的对称轴为直线,2x =∴点关于直线对称,()()12,3,1,y y 2x =∴,12y y =故答案为:;=②∵函数图象的对称轴为直线,,2x =3112>>->-∴点在对称轴的左侧,点在对称轴的右侧.()()()2341,,,1,2,y y y --()13,y 当时,在对称轴的左侧,y 随x 的增大而减小,0a >∴,不合题意.1234y y y y =<<当时,在对称轴的左侧,y 随x 的增大而增大,则,a<01234y y y y =>>,,,四个函数值可以满足,1y 2y 3y 4y 12340y y y y >=≥>∴,340,0y y ≥<即当时,,当时,.=1x -3430y a a =++≥2x =-44830y a a =++<解得 . 3154a -≤<-【点睛】本题考查了二次函数图象与性质,掌握二次函数图象与性质是解题的关键.27.如图,是等腰直角三角形,,为延长线上一点,ABC 90ACB AC BC ∠=︒=,D AC 连接,将线段绕点逆时针旋转得到线段,过点作于点,BD BD D 90︒DE E EFAC ⊥F 连接. AE(1)依题意补全图形;(2)比较与的大小,并证明;AF CD (3)连接,为的中点,连接,用等式表示线段之间的数量BE G BE CG CD CG BC ,,关系,并证明.【答案】(1)见解析 (2),见解析AF CD =(3),见解析BC CD =【解析】【分析】(1)根据旋转的性质画图即可;(2)根据旋转的性质以及等腰直角三角形可以得到全等三角形,再根据全等三角形的性质即可求出结论;(3)根据题意画出已知图形,再根据图形得到全等三角形,利用全等三角形的性质和等腰直角三角形的性质即可求出结论.【小问1详解】解:补全图形如图所示【小问2详解】解:,理由如下:AF CD =∵EF AD ⊥∴90EFD ∠=︒∵90ACB ∠=︒∴EFD BCD ∠=∠∵90ACB ∠=︒∴90CBD CDB ∠∠=︒+由题意可知,90BDE ∠=︒∴90EDF BDC ∠∠=︒+∴EDF CBD ∠=∠在和中EFD △DCB △EDF CBD EFD DCB ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴≌EFD △()AAS DCB ∴EF CD DF BC ==,∵BC AC =∴AC DF =∴AF CD =【小问3详解】解: 理由如下:BC CD =连接,DGFG∵ ,为的中点,DE BD =G BE 90BDE ∠=︒∴EG BG DG ==,90DGB ∠=︒∵90EFD DGE ∠=∠=︒∴GEF CDG ∠=∠在和中EFG DCG △EF DC GEF CDG EG DG =⎧⎪∠=∠⎨⎪=⎩∴≌ EFG SAS DCG ()∴,FG CG =EGF DGC ∠=∠∴90EGF EGC DGC EGC ∠+∠=∠+∠=︒即90CGF ∠=︒∴为等腰直角三角形CGF △∴CF =∵ ,BC AC AF CF ==+AF CD =∴BC CD =+【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等相关知识点,掌握全等三角形的性质和旋转的性质是解题的关键.28. 在平面直角坐标系中,我们给出如下定义:将图形M 绕直线上某一点P 顺时xOy 3x =针旋转,再关于直线对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次90︒3x =关联图形.已知点.()0,1A (1)若点P 的坐标是,直接写出点A 关于点P 的二次关联图形的坐标________;()3,0(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知的半径为1,点A 关于点P 的二次关联图形在上且不与点A 重合. O O 若线段,其关于点P 的二次关联图形上的任意一点都在及其内部,求此时 P 点1AB =O 坐标及点B 的纵坐标的取值范围.B y 【答案】(1)()2,3(2)()3,2-(3),, ()3,3-12102B y ≤≤【解析】【分析】(1)根据二次关联图形的定义分别找到和,过点作轴于点D ,可A 'A ''A 'A D x '⊥证得,从而得到,即可求解;AOP PDA ' ≌1,3OA PD OP A D '====(2)根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,过点P 作轴于点PE y ⊥E ,过点作轴交延长线于点F ,坐标为m ,表达点的坐标,可得出结论;A 'A F x '⊥EP A '(3)由(2)可知,点的坐标,由A 关于点P 的二次关联图形在上且不与点A 重合A ''O 可得出点的坐标,由线段,其关于点P 的二次关联图形上的任意一点都在及A ''1AB =O 其内部,找到临界点,可得出的坐标,进而可得出点B 的坐标,即可得出的取值B ''B ''B y 范围.【小问1详解】如图1,根据二次关联图形的定义分别找到和,过点作轴于点D ,A 'A ''A 'A D x '⊥∴90A DP AOP '∠=∠=︒由旋转可知,,90,APA AP A P ''∠=︒=∴,90APO A PD A PD PA D '''∠+∠=∠+=︒∴,APO PA D '∠=∠∴,()AAS AOP PDA ' ≌∴,1,3OA PD OP A D '====∴,()4,3A '∵点和关于直线对称,A 'A ''3x =∴点,()2,3A ''即点A 关于点P 的二次关联图形的坐标为;()2,3故答案为:()2,3【小问2详解】解:根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,如图,过点P 作轴于点E ,过点作轴交延长线于点F ,PE y ⊥A 'A F x '⊥EP由(1)得: ,AEP PFA ' ≌∴,1,3AE PF m EP A F '==-==∴,()4,3A m m '-+根据题意得:点A 和点关于直线对称,A '3x =∴,46m -=解得:,2m =-∴点P 的坐标为,()3,2-【小问3详解】解:设点P 的纵坐标为n ,由(2)得:,()4,3A n n '-+∴,()2,3A n n ''++∵在上,A ''O ∴,()()22231n n +++=解得:(舍去)或,2n =-3-∴点P 的坐标为,()3,3-∵,其关于点P 的二次关联图形上的任意一点都在及其内部,1AB =AB O 此时点是一个临界点,连接,如图, B ''OB∵,1OA A B OB ''''''''===∴是等边三角形,OA B '''' 过点作轴于点M ,则, B ''B M x ''⊥12A M OM ''==∴ B M ''=∴, 1,2B ⎛''- ⎝∴, 13,2B ⎛' ⎝∴, 12B ⎫⎪⎭由对称性得:另一个点的坐标为, 12B ⎛⎫ ⎪ ⎪⎝⎭∴的取值范围为. B y 102B y ≤≤【点睛】本题属于新定义类问题,主要考查轴对称最值问题,等边三角形的性质与判定,圆的定义等相关知识,关键是理解给出新定义,画出对应的图形.。

2024北京昌平区初三(上)期末数学试卷及答案

2024北京昌平区初三(上)期末数学试卷及答案

昌平区2023—2024学年第一学期初三年级期末质量抽测数学试卷2024.1本试卷共8页,共三部分,28个小题,满分100分。

考试时间120分钟。

考生务必将答案填涂或书写在答题卡上,在试卷上作答无效。

考试结束后,请交回答题卡。

一、选择题(共8道小题,每小题2分,共16分)第1-8题均有四个选项,符合题意的选项只有一个....1.如图,这是一张海上日出照片,如果把太阳看作一个圆,把海平面看作一条直线,那么这个圆与这条直线的位置关系是(A )相离(B )相切(C )相交(D )不确定2.如果2m =3n (n ≠0),那么下列比例式成立的是(A)32nm =(B )23n m =(C )32=n m (D )nm 32=3.将抛物线22y x =向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线的表达式为(A )22(2)3y x =++(B )22(2)3y x =-+(C )22(2)3y x =--(D )22(2)3y x =+-4.如图,点A ,B ,C ,D 在⊙O 上,AC 是⊙O 的直径,∠BAC =40°,则∠D 的度数是(A )40°(B )50°(C )60°(D )90°5.在平面直角坐标系xOy 中,若点)1,(1x A 和)4,(2x B 在反比例函数xy 4=图象上,则下列关系式正确的是(A )120x x <<(B )210x x <<(C )021<<x x (D )012<<x x 6.如图,一艘轮船航行至O 点时,测得某灯塔A 位于它的北偏东40°方向,且它与灯塔A 相距13海里,继续沿正东方向航行,航行至点B 处时,测得灯塔A 恰好在它的正北方向,则AB 的距离可表示为(A ) 40cos 13海里(B ) 04sin 13海里(C )05sin 13海里(D )cos5013海里1题图(图换了)4题图,则CBD ∠sin 的值且AD =CE ,连接BD ,AE 相交于点F ,则下列说法正确的是①△ABD ≌△CAE ;②∠BFE =60°;③△AFB ∽△ADF ;④若31=AC AD ,则21=BF AF (A )①②③(B )①②④(C )②③④(D )①③④二、填空题(共8道小题,每小题2分,共16分)9.写出一个开口向下且过(0,1)的抛物线的表达式_________.下一家”的主题,让世界观众感受了中国人的浪漫.如图,作出“雪花”图案(正六边形ABCDEF )的外接圆,已知正六边形ABCDEF 的边长是4,则 BC长为______________.12.如图,在平行四边形ABCD 中,E 为BC 的中点,DE ,AC 交于点F ,则△CEF 和△ADF 的面积比为.13.如图,在⊙O 中,半径OC 垂直弦AB 于点D ,若OC=3,AB=24,则CD 的长为___________.10题图11题图12题图13题图7题图8题图14.小明同学测量一个圆形零件的半径时,他将直尺、三角板和这个零件如图放置于桌面上,零件与直尺,三角板均相切,测得点A 与其中一个切点B 的距离为3cm ,则这个零件的半径是__________cm.15.如图,AB 是⊙O 直径,点C 是⊙O 上一点,OC =1且∠BOC =60°,点D 是 BC的中点,点P 是直径AB 上一动点,则CP +DP 的最小值为____________.16.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)的对称轴是直线x =1,其部分图象如图,则以下四个结论中:①0abc >;②20a b +=;③30a c +<;④.ac b a 442>+其中,正确结论的序号是____________________.14题图15题图16题图三、解答题(本题共12道小题,第17题5分,第18题4分,第19题6分,第20-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.计算:2sin 30tan 453tan 30cos 45︒⋅︒+︒-︒.18.如图,△ABC 中,点D 是边AB 上一点,点E 为△ABC 外一点,DE ∥BC ,连接BE.从下列条件中:①∠E =∠A ;②DE DB BABC=.选择一个作为添加的条件,求证:△EDB ∽△ABC .(18题图也换了,字母好看点)19.已知二次函数2(0)y ax bx c a =++≠的y 与x 的部分对应值如下表:x …-3-113…y…-31…(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x 的取值范围为_________时,y >-3.18题图(图换了)20.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CD =3,BD =1,求sin ∠BCD 及AC 的长.21.已知:如图,在△ABC 中,AB =AC .求作:射线BP ,使得12ABP BAC ∠=∠.作法:①以点A 为圆心,AB 长为半径画圆;②延长BA 交⊙A 于点D ,以点D 为圆心,BC 长为半径画弧,与⊙A 交于点P (点C ,P 在线段BD 的同侧);③作射线BP .射线BP 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接AP ,DP .∵AB =AC ,∴点C 在⊙A 上.∵ DPDP =,∴12ABP DAP =∠∠()(填推理依据).∵DP =BC ,∴________DAP =∠.∴12ABP BAC =∠∠.21题图20题图22.如图,在平面直角坐标系xOy 中,点A (1,2)在双曲线1110k y xk =≠()上,点B 在双曲线2220ky k x=≠()上,且满足OA ⊥OB ,连接AB .(1)求双曲线1110k y k x=≠()的表达式;(2)若tan ∠OAB =2,求k 2的值.23.某校组织九年级学生参加社会实践活动,数学学科的项目任务是测量银山塔林中某塔的高度AB ,其中一个数学兴趣小组设计的方案如图所示,他们在点C 处用高1.5m 的测角仪CD 测得塔顶A 的仰角为37°,然后沿CB 方向前行7m 到达点F 处,在F 处测得塔顶A 的仰角为45°.请根据他们的测量数据求塔高AB 的长度大约是多少.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 为 AC 的中点,过点D 作⊙O 的切线,交BC 延长线于点P ,连接OD 交AC 于点E .(1)求证:四边形DECP 是矩形;(2)作射线AD 交BC 的延长线于点F ,若tan ∠CAB =43,BC =6,求DF 的长.22题图24题图23题图123题图225.如图,小静和小林在玩沙包游戏,沙包(看成点)抛出后,在空中的运动轨迹可看作抛物线的一部分,小静和小林分别站在点O 和点A 处,测得OA 距离为6m ,若以点O 为原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,小林在距离地面1m 的B 处将沙包抛出,其运动轨迹为抛物线C 1:2(3)2y a x =-+的一部分,小静恰在点C (0,c )处接住,然后跳起将沙包回传,其运动轨迹为抛物线C 2:21188ny x x c =-+++的一部分.(1)抛物线C 1的最高点坐标为__________;(2)求a ,c 的值;(3)小林在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,若小林成功接到小静的回传沙包,则n 的整数值可为________________.26.在平面直角坐标系xOy 中,点(0,3),(6,1y )在抛物线()02≠++=a c bx ax y 上.(1)当31=y 时,求抛物线的对称轴;(2)若抛物线()02≠++=a c bx ax y 经过点(-1,-1),当自变量x 的值满足-1≤x ≤2时,y 随x 的增大而增大,求a 的取值范围;(3)当0>a 时,点(m -4,2y ),(m ,2y )在抛物线c bx ax y ++=2上.若2y <1y <c ,请直接写出m 的取值范围.25题图125题图227.在△ABC中,AB=AC,∠BAC=90°,点M为BC的中点,连接AM,点D为线段CM上一动点,过点D作DE⊥BC,且DE=DM,(点E在BC的上方),连接AE,过点E作AE的垂线交BC边于点F.(1)如图1,当点D为CM的中点时,①依题意补全图形;②直接写出BF和DE的数量关系为______________;(2)当点D在图2的位置时,用等式表示线段BF与DE之间的数量关系,并证明.27题图127题图228.对于在平面直角坐标系xOy 中⊙T 和⊙T 外的点P ,给出如下定义:已知⊙T 的半径为1,若⊙T 上存在点Q ,满足PQ ≤2,则称点P 为⊙T 的关联点.(1)如图1,若点T 的坐标为(0,0),28题图1①在点1P (3,0),2P (3,-2),3P (-2,2)中,是⊙T 的关联点的是____________;②直线2y x b =+分别交x 轴,y 轴于点A ,B ,若线段AB 存在⊙T 的关联点,求b 的取值范围;(2)已知点C (0,D (1,0),T (m ,1),△COD 上的每一个点都是⊙T 的关联点,直接写出m 的取值范围.28题图2昌平区2023—2024学年第一学期初三年级期末质量抽测数学参考答案及评分标准2024.1一、选择题(本题共8道小题,每小题2分,共16分)题号12345678答案CBDBAADB二、填空题(本题共8道小题,每小题2分,共16分)17.解:=1321232⎛⨯+- ⎝⎭………………………………………………………………………4分11122=+-1=…………………………………………………………………………………………….5分18.证明:选择①∵DE ∥BC ∴∠EDB=∠ABC …………………………………………………………………………….….…3分∵∠E =∠A ∴△EDB ∽△AB C .……………………………………………………………………….………5分或选择②∵DE ∥BC ∴∠EDB=∠ABC ……………………………………………………………………….………….3分∵DE DBBABC=∴△EDB ∽△AB C .………………………………………………………………………….……5分19.解:(1)设二次函数的表达式为1)1(2+-=x a y 把(3,0)代入上式得1)1(2+-=x a y ∴a=14-∴21(1)14y x =--+……………………………………………………………….2分(2)画图………………………………………………………………………….……………………4分(3)当-3<x<5时,y>-3…………………………………………………………………………6分20.解:∵CD ⊥AB ,∴∠CDA =∠CDB =90°.在Rt △CDB 中,BD =1,CD =3,∴CB=2.………………………………………………………….…………………………2分3tan =B .…………………………………………………………………….………………3分∴sin ∠BCD=21..…….…….……………………………………………………….………………4分在Rt △CDB 中,BC =2,3tan =B ,∴AC =32.…………………………………………………………………………………….…5分21.(1)画图………………………………………….…………………………………………………2分(2)一条弧所对的圆周角等于它所对的圆心角的一半………………………………………………4分∠DAP=∠BAC………………………………………….…………………………………………5分22.解:(1)∵点A (1,2)在双曲线1110ky k x=≠()上,∴21=k ∴xy 21=……………………………………………………………….……………1分(2)如图,分别过点A ,B 作x 轴的垂线,垂足分别为C ,D .∴∠AOC +∠OAC =90°,∠BDO =∠OCA =90°.∵OA ⊥OB ,∴∠AOC +∠BOD =90°.∴∠BOD =∠OAC .∴△BOD ∽△OAC .……………………………………………………………….…………………2分∴BD OD OB OC AC AO==.∵A 的坐标为(1,2),∴OC =1,AC =2.∵Rt △AOB 中,tan OB OAB AO ==∠,∴12BD OD ==………………………………………………………….…………………3分∴BD =OD =.∴B 的坐标为(-).……………………………………………………………….………4分∴将B (-)代入2220ky k x =≠()得24k =-.………………………………………5分23.解:根据题意,得AB ⊥BC ,EF ⊥BC ,DC ⊥BC ,DG ⊥AB .∴BG =CD =1.5m ,DE =CF =7m ,∠AEG ==45°,∠ADG =37°,在Rt △AGE 中,∠AEG =45°,∴∠GAE =45°,∴AG =GE .………………………………………………………………………………………1分设AG 为x m ,则GE=x ,GD=x +7在Rt △AGD 中,tan ∠ADG =GD AG ,∴43AG GD≈43(7)x x ≈+………………………………………………………………………………4分x ≈21……………………………………………………………………………5分∴AB =AG +GB ≈21+1.5≈22.5m答:塔高AB 的长约为22.5m .………………………………………………………………………6分24.证明:(1)连接OC∵AB 为⊙O 直径,C 为⊙O 上一点∴∠ACB =90°∴∠ACP =90°∵点D 为AC 的中点∴AD DC =∴∠AOD =∠COD∵OA =OC∴OD ⊥AC∵DP 是⊙O 的切线,D 为切点∴OD ⊥DP ………………………………………………………………………………2分∴四边形DECP 是矩形……………………………………………………………………3分(2)如图补全图形,在Rt △ABC 中,BC =6,tan ∠CAB =43∴AC =8,AB =10…………………………………………………………………………………4分∵OD ⊥AC∴AE =EC =4在Rt △AEO 中,OA =5,AE =4,∴OE =3…………………………………………………………………………………5分∴DE=2在Rt △AEO 中,DE =2,AE =4,∴AD =52∵矩形DECP 对边平行∴OD ∥BF ∴1AO AD OB DF==∴FD =52……………………………………………………………………………………………6分25.解:(1)抛物线C 1的最高点坐标为的(3,2)…………………………………………………1分(2)由题可得点A (6,1)…………………………………………………………………2分将A (6,1)代入抛物线C 1:2(3)2y a x =-+得91-=a ………………………………………………………………………………………3分∵对称轴为直线x =3∴点A 和点C 关于对称轴对称.∴c =1(也可让x =0代入表达式求出c =1)………………………………………………4分(3)n =4或n =5……………………………………………………………………………………6分26.解:(1)∵(0,3),(6,3)为抛物线上的对称点∴3260221=+=+=x x x ……………………………………………………………………2分(2)∵()02≠++=a c bx ax y 过(0,3),(-1,-1)∴3=c ,31a b -+=-4+=a b ∴对称轴422b a x a a +=-=-①当0>a 时∵-1≤x ≤2时,y 随x 的增大而增大∴412a a+-≤-4a ≤∴04a <≤…………………………………………………………………………………………………3分②当0<a 时∵-1≤x ≤2时,y 随x 的增大而增大∴422a a+≥-45a ≥-∴405a -≤<………………………………………………………………………………………………4分综上:a 的取值范围是405a -≤<或40≤<a (3)56m <<或10m >…………………………………………………………………………………6分27.(1)①补图………………………………………………………………………………………2分②BF =2DE …………………………………………………………………………………………4分(2)当点D 在图2位置时,仍满足BF =2DE………………………………………………………5分证明:如图,AM 与EF 交于点N ,连接EM ,EC∵AB =AC ,∠BAC =90°,M 为BC 中点∴AM =BM =CM=12BC ,∠AMC =∠AMB =90°∵DE =DM ,DE ⊥BC ,∴∠EMC =∠AME =45°∵EM =EM∴△AME ≌△CME∴∠EAM =∠ECM∵在△ANE 和△FNM 中,EF ⊥AE ,∠AMB =90°,∠ANE =∠FNM∴∠NAE =∠NFM (即∠EFC )∴∠EFC =∠ECM∴EF =EC∵ED ⊥FC∴CF =2DC∵BC =2CM∴BF =BC -CF =2(CM -DC )=2DM =2DE …………………………………………………………7分28.(1)①1P ,3P ……………………………………………………………………………………2分②如图所示可得531≤<b …………………………………………………………………………………4分同理可得1b -≤<-………………………………………………………………………5分(2)1m 1-≤<-……………………………………………………………………………………6分313m +<≤…………………………………………………………………………………7分仅供参考,其他答案酌情给分。

2023-2024学年北京市顺义区九年级(上)期末数学试卷及答案解析

2023-2024学年北京市顺义区九年级(上)期末数学试卷及答案解析

2023-2024学年北京市顺义区九年级(上)期末数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a<﹣4C.a>﹣b D.a<﹣b2.(2分)在△ABC中,∠C=90°,则cos A等于()A.B.C.D.3.(2分)将二次函数y=﹣x2+2x+3化为y=a(x﹣h)2+k的形式,则所得表达式为()A.y=(x+1)2﹣4B.y=﹣(x﹣1)2+4C.y=﹣(x+1)2+2D.y=﹣(x﹣1)2+24.(2分)如图,在⊙O中,弦AB,CD相交于点P,∠CAB=30°,∠ABD=40°,则∠APD的度数为()A.30°B.40°C.60°D.70°5.(2分)如图,D是△ABC的边AB上一点(不与点A,B重合),若添加一个条件使△ACD ∽△ABC,则这个条件不可以是()A.∠ADC=∠ACB B.∠ACD=∠B C.D.6.(2分)对于反比例函数,下列说法正确的是()A.它的图象分布在第二、第四象限B.点(﹣1,4)在它的图象上C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大7.(2分)已知.如图,(1)连接AB;(2)作弦AB的垂直平分线l1,分别交,弦AB于C,D两点;(3)作线段AD,DB的垂直平分线l2,l3,分别交于E,F两点,交弦AB于G,H 两点;(4)连接EF.根据以上作图过程及所作图形,下列结论中错误的是()A.AG=GD=DH=HB B.C.l1∥l2∥l3D.EF=GH8.(2分)学习解直角三角形时,小明编了这样一道题:已知:在△ABC中,∠C=90°,AC=2,BC=3,解这个直角三角形.从同学们的解答思路中节选出以下四个步骤:①由∠B的度数,根据直角三角形的性质得到∠A的度数;②由AC,BC的值,根据∠B的正切值得到∠B的度数;③由AC,BC的值,根据勾股定理得到AB的值;④由BC,AB的值,根据∠B的余弦值得到∠B的度数.请你从中选择三个步骤并排序,形成完整的解上述直角三角形的思路,则下列排序错误的是()A.③④①B.④①③C.②①③D.③②①二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围是.10.(2分)若将抛物线y=2x2向右平移2个单位长度,则所得抛物线的表达式为.11.(2分)如图,直线AE,BF交于点O,AB∥CD∥EF.若OA=1,AC=2,CE=4.则的值为.12.(2分)物理课上我们学习过凸透镜成像规律.如图,蜡烛AB的高为15cm,蜡烛AB 与凸透镜的距离BE为32cm,蜡烛的像CD与凸透镜的距离DE为8cm,则像CD的高为_______cm.13.(2分)如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=76°,则∠ACB=°.14.(2分)已知二次函数y=ax2+bx+c的部分图象如图所示,写出一个满足不等式ax2+bx+c <﹣1的x的值,这个值可以是.15.(2分)在平面直角坐标系xOy中,点A(a,b)在双曲线上,点B(﹣b,a)在双曲线上,则m+n的值为.16.(2分)已知A(3,2),B(﹣1,﹣2)是抛物线上两点,下面有四个推断:①该抛物线与x轴有两个交点;②若该抛物线开口向下,则它与y轴的交点一定在y轴的负半轴上;③若该抛物线开口向下,则它的对称轴在直线x=1右侧;④若该抛物线开口向上,则在A,B两点中,点B到它的对称轴距离较小.所有正确推断的序号是.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-21题,每题5分,第22题6分,第23-4题,每题5分,第25-26题,每题6分,第27-28题,每7分)17.(5分)解不等式组:.18.(5分)计算:|﹣2|﹣2tan60°.19.(6分)已知x2﹣3x﹣1=0,求代数式(2x+1)(x﹣1)﹣(x+1)2的值.20.(5分)如图,AC平分∠BAD,∠B=∠ACD.(1)求证:△ABC∽△ACD;(2)若AB=6,AC=4,求AD的长.21.(5分)已知二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(2,0).(1)求二次函数的表达式;(2)直接写出y>0时,x的取值范围.22.(6分)在一次数学综合实践活动中,某数学小组的同学们一起测量一座小山的高度.如图,在点A处测得山顶E的仰角为22.5°,向山的方向前进20m,在点C处测得山顶E 的仰角为45°,已知观测点A,C到地面的距离AB=1.7m,CD=1.7m.求小山EG的高度(精确到0.1m).(参考数据:,sin22.5°≈0.384,cos22.5°≈0.925,tan22.5°≈0.414)23.(5分)如图,AB是⊙O的直径,CD⊥AB于点E,.(1)求证:∠COB=∠DOB;(2)若⊙O的半径为2,求OE,的长.24.(5分)正面双手前掷实心球是发展学生力量和协调性的运动项目之一,实心球出手后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从出手到着地的过程中,实心球的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).小明进行了三次训练.(1)第一次训练时,实心球的水平距离x与竖直高度y的几组数据如下:水平距离x/m0123456789竖直高度y/m2 2.7 3.2 3.5 3.6 3.5 3.2 3.72 1.1根据上述数据,求出满足的函数关系y=a(x﹣h)2+k(a<0),并求出实心球着地点的水平距离d1;(2)第二次、第三次训练时,实心球的竖直高度y与水平距离x的函数图象的一部分如图所示,其中A,B分别为第二次、第三次训练抛物线的顶点.记小明第二、三次训练时实心球着地点的水平距离分别为d2,d3,则d1,d2,d3的大小关系为.25.(6分)如图,AB为⊙O的弦,点C为AB的中点,CO的延长线交⊙O于点D,连接AD,BD,过点D作⊙O的切线交AO的延长线于点E.(1)求证:DE∥AB;(2)若⊙O的半径为3,tan∠ADC=,求DE的长.26.(6分)在平面直角坐标系xOy中,抛物线y=x2﹣2ax+a2﹣4与x轴交于A,B两点(点A在点B左侧).(1)若a=1,求抛物线的对称轴及A,B两点的坐标;(2)已知点(3﹣a,y1),(a+1,y2),(﹣a,y3)在该抛物线上,若y1,y2,y3中有且仅有一个大于0,求a的取值范围.27.(7分)在菱形ABCD中,∠B=60°,点P是对角线AC上一点(不与点A重合),点E,F分别是边AB,AD上的点,且∠EPF=60°,射线PE,PF分别与DA,BA的延长线交于点M,N.(1)如图1,若点P与C重合,且PA平分∠EPF,求证:AM=AN;(2)连接BP,若∠ABP=45°,BP=3,且PA不平分∠EPF.①依题意补全图2;②用等式表示线段AM,AN的数量关系,并证明.28.(7分)在平面直角坐标系xOy中,有如下定义:对于图形G1、G2,若存在常数d,使得图形G1上的任意一点P,在图形G2上至少能找到一个点Q,满足PQ=d,则称图形G2是图形G1的“映图”,d是G1关于G2的“映距”.(1)如图,点A(﹣4,0),B(0,﹣4),C(﹣1,0),D(0,﹣1),E(4,0),F(0,4),G(5,0),H(0,5).在线段CD,EF,GH中,线段AB的映图是.(2)⊙O的半径为1.①求⊙O关于直线的映距d的最小值;②若直线y=﹣x+m(m≠0)被坐标轴所截的线段是⊙O的映图,直接写出m的取值范围.2023-2024学年北京市顺义区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a<﹣4C.a>﹣b D.a<﹣b【分析】由点在数轴上的位置分析选项可得答案.【解答】解:A选项:由数轴的定义得左大右小,即a<﹣3,该选项错误.B选项:a点在﹣4的左侧,即a>﹣4,该选项错误.C选项:2<b<3,﹣3<﹣b<﹣2,故a在﹣b的左侧,即a<﹣b,该选项错误.D选项:正确.故答案选D.【点评】该题考查对数轴的理解,实数的相关概念及分类.2.(2分)在△ABC中,∠C=90°,则cos A等于()A.B.C.D.【分析】根据余弦等于邻边比斜边列式即可得解.【解答】解:在△ABC中,∠C=90°,则cos A=.故选:A.【点评】本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是关键.3.(2分)将二次函数y=﹣x2+2x+3化为y=a(x﹣h)2+k的形式,则所得表达式为()A.y=(x+1)2﹣4B.y=﹣(x﹣1)2+4C.y=﹣(x+1)2+2D.y=﹣(x﹣1)2+2【分析】将所给二次函数表达式转化为顶点式即可.【解答】解:由题知,y=﹣x2+2x+3=﹣(x2﹣2x+1﹣1)+3=﹣(x2﹣2x+1)+1+3=﹣(x﹣1)2+4.即二次函数的表达式可写成:y=﹣(x﹣1)2+4.故选:B.【点评】本题考查二次函数的三种形式,熟知二次函数解析式中的顶点式是解题的关键.4.(2分)如图,在⊙O中,弦AB,CD相交于点P,∠CAB=30°,∠ABD=40°,则∠APD的度数为()A.30°B.40°C.60°D.70°【分析】利用圆周角定理以及三角形的外角的性质解决问题.【解答】解:∵∠ABD=40°,∴∠ACD=∠ABD=40°,∵∠CAB=30°,∴∠APD=∠ACD+∠CAB=70°,故选:D.【点评】本题考查圆周角定理,三角形的外角的性质等知识,解题的关键是掌握圆周角定理,属于中考常考题型.5.(2分)如图,D是△ABC的边AB上一点(不与点A,B重合),若添加一个条件使△ACD ∽△ABC,则这个条件不可以是()A.∠ADC=∠ACB B.∠ACD=∠B C.D.【分析】利用相似三角形的判定方法依次判断可求解.【解答】解:若∠ADC=∠ACB,且∠A=∠A,则△ACD∽△ABC,故选项A不符合题意;若∠ACD=∠B,且∠A=∠A,则△ACD∽△ABC,故选项B不符合题意;若,且∠A=∠A,则△ACD∽△ABC,故选项D不符合题意;若,且∠A=∠A,则无法证明△ACD∽△ABC,故选项C符合题意;故选:C.【点评】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.6.(2分)对于反比例函数,下列说法正确的是()A.它的图象分布在第二、第四象限B.点(﹣1,4)在它的图象上C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大【分析】根据反比例函数的性质即可逐一分析即可.【解答】解:A、k=4>0,则图象位于第一、三象限,故不符合题意;B、当x=﹣1时,y=﹣4,所以图象经过点(﹣1,﹣4),故不符合题意;C、当x>0时,y随x的增大而减小,故符合题意;D、当x<0时,y随x的增大而减小,故不符合题意.故选:C.【点评】本题主要考查了反比例函数的性质,反比例函数图象上点的坐标的特征等知识,熟练掌握反比例函数的性质是解题的关键,属于基础题.7.(2分)已知.如图,(1)连接AB;(2)作弦AB的垂直平分线l1,分别交,弦AB于C,D两点;(3)作线段AD,DB的垂直平分线l2,l3,分别交于E,F两点,交弦AB于G,H 两点;(4)连接EF.根据以上作图过程及所作图形,下列结论中错误的是()A.AG=GD=DH=HB B.C.l1∥l2∥l3D.EF=GH【分析】理由图象信息判断即可.【解答】解:由作图可知,AG=DG=DH=BH,l1∥l2∥l3,四边形EFGH是矩形,∴EF=GH,故选项A,C,D正确,故选:B.【点评】本题考查作图﹣复杂作图,线段的垂直平分线等知识,解题的关键是读懂图象信息.8.(2分)学习解直角三角形时,小明编了这样一道题:已知:在△ABC中,∠C=90°,AC=2,BC=3,解这个直角三角形.从同学们的解答思路中节选出以下四个步骤:①由∠B的度数,根据直角三角形的性质得到∠A的度数;②由AC,BC的值,根据∠B的正切值得到∠B的度数;③由AC,BC的值,根据勾股定理得到AB的值;④由BC,AB的值,根据∠B的余弦值得到∠B的度数.请你从中选择三个步骤并排序,形成完整的解上述直角三角形的思路,则下列排序错误的是()A.③④①B.④①③C.②①③D.③②①【分析】根据题中所给的条件,得出可求出未知量的步骤即可解决问题.【解答】解:因为题中给出AC和BC的长,所以可先用勾股定理求出AB的长,或求出∠A(∠B)的正切值,进而得出∠A(∠B)的度数.B选项将④放在第一步,此时还未求出AB的值,所以B选项的排序错误.故选:B.【点评】本题考查解直角三角形,熟知解直角三角形的一般步骤是解题的关键.二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围是x≥2.【分析】根据二次根式有意义的条件得到x﹣2≥0,解之即可求出x的取值范围.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故答案为:x≥2.【点评】本题考查了二次根式有意义的条件,解题的关键是掌握二次根式有意义时被开方数是非负数.10.(2分)若将抛物线y=2x2向右平移2个单位长度,则所得抛物线的表达式为y=2(x﹣2)2.【分析】根据函数图象平移的法则解答即可.【解答】解:将抛物线y=2x2向右平移2个单位长度,则所得抛物线的表达式为y=2(x ﹣2)2.故答案为:y=2(x﹣2)2.【点评】本题考查的是二次函数的图象与几何变换,熟知“左加右减”的法则是解题的关键.11.(2分)如图,直线AE,BF交于点O,AB∥CD∥EF.若OA=1,AC=2,CE=4.则的值为.【分析】由CD∥EF,利用平行线分线段成比例,可得出=,结合OC=OA+AC =3,CE=4,即可求出结论.【解答】解:∵CD∥EF,∴=,又∵OA=1,AC=2,CE=4,∴OC=OA+AC=1+2=3,∴=.故答案为:.【点评】本题考查了平行线分线段成比例,牢记“平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例”是解题的关键.12.(2分)物理课上我们学习过凸透镜成像规律.如图,蜡烛AB的高为15cm,蜡烛AB 与凸透镜的距离BE为32cm,蜡烛的像CD与凸透镜的距离DE为8cm,则像CD的高为cm.【分析】根据相似三角形的判定与性质求解即可.【解答】解:∵AB⊥BD,CD⊥BD,∴AB∥CD,∴△ABE∽△CDE,∴=,∵AB的高为15cm,BE为32cm,DE为8cm,∴=,∴CD=(cm),故答案为:.【点评】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.13.(2分)如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=76°,则∠ACB=52°.【分析】连接OA,OB,由切线的性质推出∠PAO=∠PBO=90°,又∠P=76°,即可求出∠AOB=360°﹣90°﹣90°﹣76°=104°由圆周角定理得到∠ACB=∠AOB=52°.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠PAO=∠PBO=90°,∵∠P=76°,∴∠AOB=360°﹣90°﹣90°﹣76°=104°∴∠ACB=∠AOB=52°.故答案为:52.【点评】本题考查圆周角定理,切线的性质,关键是由切线的性质推出∠PAO=∠PBO =90°,由圆周角定理得到∠ACB=∠AOB.14.(2分)已知二次函数y=ax2+bx+c的部分图象如图所示,写出一个满足不等式ax2+bx+c <﹣1的x的值,这个值可以是1.【分析】先求出y=﹣1时的x的值,然后结合图象求解即可.【解答】解:由图象可知,当y=﹣1时,x1=0,x2=2.8,∴当0<x<2.8时,y<﹣1.∴不等式ax2+bx+c<﹣1的解为0<x<2.8,∴满足不等式ax2+bx+c<﹣1的x的值可以是1,故答案为:1.【点评】本题考查了二次函数与不等式组,数形结合是解题的关键.15.(2分)在平面直角坐标系xOy中,点A(a,b)在双曲线上,点B(﹣b,a)在双曲线上,则m+n的值为0.【分析】由点A(a,b)在双曲线上,可得m=ab,由点B(﹣b,a)在双曲线上,可得n=﹣ab,然后得出答案.【解答】解:∵点A(a,b)在双曲线上,点B(﹣b,a)在双曲线上,∴m=ab,n=﹣ab,∴m+n=ab+(﹣ab)=0;故答案为:0.【点评】本题考查反比例函数图象上的点坐标的特征,熟知反比例函数y=(k≠0)的系数k=xy是解题的关键.16.(2分)已知A(3,2),B(﹣1,﹣2)是抛物线上两点,下面有四个推断:①该抛物线与x轴有两个交点;②若该抛物线开口向下,则它与y轴的交点一定在y轴的负半轴上;③若该抛物线开口向下,则它的对称轴在直线x=1右侧;④若该抛物线开口向上,则在A,B两点中,点B到它的对称轴距离较小.所有正确推断的序号是①③④.【分析】依据题意,设抛物线为y=ax2+bx+c,从而.解得b=1﹣2a,c=﹣1﹣3a,再求出Δ=b2﹣4ac=1+16a2,进而可以判断①;依据题意,a<0,从而c=﹣1﹣3a>﹣1,则它与y轴的交点可能在y轴下方或y轴上方,故可判断②;又b=1﹣2a,从而=﹣1,进而﹣=﹣+1,再结合a<0,可以判断③;若a>0,从而对称轴直线x=﹣=﹣+1<1,再分B(﹣1,﹣2)在对称轴右侧或左侧,结合增减性可以判断④.【解答】解:由题意,设抛物线为y=ax2+bx+c,∴.∴b=1﹣2a,c=﹣1﹣3a.∴Δ=b2﹣4ac=(1﹣2a)2﹣4a(﹣1﹣3a)=1﹣4a+4a2+4a+12a2=1+16a2.∵对于任意a都有a2≥0,∴Δ=1+16a2≥1>0.∴该抛物线与x轴有两个交点,故①正确.∵a<0,∴3a<0.∴﹣3a>0.∴﹣1﹣3a>﹣1.∴c=﹣1﹣3a>﹣1.∴它与y轴的交点可能在y轴下方或y轴上方.∴②错误.∵b=1﹣2a,∴=﹣1.∴﹣=﹣+1.∵a<0,∴对称轴直线x=﹣=﹣+1>1.∴它的对称轴在直线x=1右侧,故③正确.若a>0,∴对称轴直线x=﹣=﹣+1<1.∴当A(3,2),B(﹣1,﹣2)在对称轴右侧,y随x的增大而增大,显然B到它的对称轴距离较小;当A(3,2),B(﹣1,﹣2)在对称轴两侧,又B关于直线x=﹣对称的点﹣+1<3,故B到它的对称轴距离较小.∴④正确.故答案为:①③④.【点评】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-21题,每题5分,第22题6分,第23-4题,每题5分,第25-26题,每题6分,第27-28题,每7分)17.(5分)解不等式组:.【分析】分别解两个不等式得到x>﹣1和x<1,然后根据“大小小大中间找”确定不等式组的解集.【解答】解:,解不等式①得x>﹣1,解不等式②得x<1,所以不等式组的解集为﹣1<x<1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.18.(5分)计算:|﹣2|﹣2tan60°.【分析】首先计算零指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|﹣2|﹣2tan60°=4×+1+2﹣2=2+1+2﹣2=3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.19.(6分)已知x2﹣3x﹣1=0,求代数式(2x+1)(x﹣1)﹣(x+1)2的值.【分析】先根据完全平方公式和多项式乘多项式进行计算,合并同类项,求出x2﹣3x=1,最后代入求出答案即可.【解答】解:(2x+1)(x﹣1)﹣(x+1)2=2x2﹣2x+x﹣1﹣x2﹣2x﹣1=x2﹣3x﹣2,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=1﹣2=﹣1.【点评】本题考查了整式的化简求值,能正确根据整式的运算法则进行计算是解此题的关键.20.(5分)如图,AC平分∠BAD,∠B=∠ACD.(1)求证:△ABC∽△ACD;(2)若AB=6,AC=4,求AD的长.【分析】(1)利用两角法证得结论;(2)根据相似三角形的对应边成比例列出比例式,代入相关数值计算.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠CAD.∵∠B=∠ACD,∴△ABC∽△ACD;(2)解:∵△ABC∽△ACD,∴=.∵AB=6,AC=4,∴AD=.【点评】本题主要考查了相似三角形的判定与性质,解题关键是要懂得找相似三角形,利用相似三角形的性质求解.21.(5分)已知二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(2,0).(1)求二次函数的表达式;(2)直接写出y>0时,x的取值范围.【分析】(1)依据题意,由二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(2,0),进而代入求出a,b即可得解;(2)依据题意,由抛物线y=x2﹣x﹣2开口向上,与x轴交点为A(﹣1,0),B(2,0),从而y>0时,x的取值范围是图象在x轴上方部分对应的自变量的范围,进而可以判断得解.【解答】解:(1)∵二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(2,0),∴.∴a=1,b=﹣1.∴二次函数的表达式为y=x2﹣x﹣2.(2)∵抛物线y=x2﹣x﹣2开口向上,与x轴交点为A(﹣1,0),B(2,0),∴y>0时,x的取值范围是图象在x轴上方部分对应的自变量的范围.∴x<﹣1或x>2.【点评】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.22.(6分)在一次数学综合实践活动中,某数学小组的同学们一起测量一座小山的高度.如图,在点A处测得山顶E的仰角为22.5°,向山的方向前进20m,在点C处测得山顶E 的仰角为45°,已知观测点A,C到地面的距离AB=1.7m,CD=1.7m.求小山EG的高度(精确到0.1m).(参考数据:,sin22.5°≈0.384,cos22.5°≈0.925,tan22.5°≈0.414)【分析】延长AC交EG于点H,根据三角形的外角性质得到∠CEA=22.5°,得到∠CEA =∠EAH,根据等腰三角形的判定求出EC,再根据中正弦的定义求出EH,进而求出EG.【解答】解:如图,延长AC交EG于点H,由题意得:AH⊥EG,∵EG⊥BG,CD⊥BG,∴四边形FGDC为矩形,∴HG=CD=1.7m,HC=GD,∵∠ECH=45°,∠EAH=22.5°,∴∠CEA=∠ECH﹣∠EAH=22.5°,∴∠CEA=∠EAH,∴EC=AC=20m,∵∠ECH=45°,∴EH=EC•sin∠ECH=20×=10(m),∴EG=EH+HG=10+1.7≈15.8(m),答:小山EG的高度约为15.8m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(5分)如图,AB是⊙O的直径,CD⊥AB于点E,.(1)求证:∠COB=∠DOB;(2)若⊙O的半径为2,求OE,的长.【分析】(1)由垂径定理推出=,由圆心角、弧、弦的关系推出∠COB=∠DOB;(2)由垂径定理推出=,而=,得到∠COD=120°,由等腰三角形的性质求出∠C=30°,由含30°角的直角三角形的性质得到OE=OC=1,由弧长公式即可求出的长.【解答】(1)证明:∵直径AB⊥CD,∴=,∴∠COB=∠DOB;(2)解:∵直径AB⊥CD,∴=,∵=,∴的度数=×360°=120°,∴∠COD=120°,∵OC=OD,∴∠C=∠D=×(180°﹣120°)=30°,∵∠OEC=90°,∴OE=OC=×2=1,∵⊙O的半径为2,∠COD=120°,∴的长==π.【点评】本题考查垂径定理,弧长的计算,圆心角、弧、弦的关系,关键是由垂径定理推出=,=,掌握弧长公式.24.(5分)正面双手前掷实心球是发展学生力量和协调性的运动项目之一,实心球出手后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从出手到着地的过程中,实心球的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).小明进行了三次训练.(1)第一次训练时,实心球的水平距离x与竖直高度y的几组数据如下:水平距离x/m0123456789竖直高度y/m2 2.7 3.2 3.5 3.6 3.5 3.2 3.72 1.1根据上述数据,求出满足的函数关系y=a(x﹣h)2+k(a<0),并求出实心球着地点的水平距离d1;(2)第二次、第三次训练时,实心球的竖直高度y与水平距离x的函数图象的一部分如图所示,其中A,B分别为第二次、第三次训练抛物线的顶点.记小明第二、三次训练时实心球着地点的水平距离分别为d2,d3,则d1,d2,d3的大小关系为d2<d1<d3.【分析】(1)先根据表格中的数据找到顶点坐标,即可得出实心球竖直高度的最大值;选出表格中的数据,利用待定系数法即可求出函数解析式;再令y=0求出x的值即可;(2)根据三次投掷实心球所得抛物线的对称轴和抛物线都过点(0,2),由函数的对称性得出结论.【解答】解:(1)根据表格中的数据可知,抛物线的顶点坐标为(4,3.6),∴抛物线的解析式可表示为:y=a(x﹣4)2+3.6,∵当x=0时,y=2,∴2=a(0﹣4)2+3.6,解得a=﹣,∴函数解析式为y=﹣(x﹣4)2+3.6;令y=0,则﹣(x﹣4)2+3.6=0,解得x1=10,x2=﹣2(舍去),∴d1=10,∴实心球着地点的水平距离d1为10米;(2)根据图象知,第二次、第三次抛物线的对称轴分别为直线x=3.83和直线x=4.07,∵三次抛物线都过点(0,2),3.83<4<4.07,∴小明第一、第二、三次训练时实心球着地点的水平距离d2<d1<d3,故答案为:d2<d1<d3.【点评】本题考查二次函数的应用,待定系数法求函数关系式,实数大小比较,解题的关键是读懂题意,能够从表格中获取有用信息列出函数关系式.25.(6分)如图,AB为⊙O的弦,点C为AB的中点,CO的延长线交⊙O于点D,连接AD,BD,过点D作⊙O的切线交AO的延长线于点E.(1)求证:DE∥AB;(2)若⊙O的半径为3,tan∠ADC=,求DE的长.【分析】(1)连接OB,由等腰三角形的性质推出OC⊥AB,由切线的性质得到OD⊥DE,即可证明DE∥AB;(2)由tan∠ADC==,令AC=x,CD=2x,得到OC=2x﹣3,由勾股定理得到(2x﹣3)2+x2=32,求出x=,得到AC=,OC=2x﹣3=,由锐角的正切定义得到=,代入有关数据即可求出DE长.【解答】(1)证明:连接OB,∵OB=OA,点C为AB的中点,∴OC⊥AB,∵DE切圆于D,∴OD⊥DE,∴DE∥AB;(2)解:∵tan∠ADC==,∴令AC=x,CD=2x,∵⊙O的半径为3,∴OA=OD=3,∴OC=2x﹣3,∵OA2=OC2+AC2,∴(2x﹣3)2+x2=32,∴x=,∴AC=,OC=2x﹣3=,∵∠DOE=∠AOC,∴tan∠DOE=tan∠AOC,∴=,∴==,∴DE=4.【点评】本题考查切线是性质,勾股定理,解直角三角形,关键是由勾股定理得到(2x ﹣3)2+x2=32,求出AC,OC的长.26.(6分)在平面直角坐标系xOy中,抛物线y=x2﹣2ax+a2﹣4与x轴交于A,B两点(点A在点B左侧).(1)若a=1,求抛物线的对称轴及A,B两点的坐标;(2)已知点(3﹣a,y1),(a+1,y2),(﹣a,y3)在该抛物线上,若y1,y2,y3中有且仅有一个大于0,求a的取值范围.【分析】利用对称轴的公式x=﹣求出对称轴,再令y=0,求出A、B坐标;把x的值代入y中,得到y1大于0,从而求出a的取值范围.【解答】解:(1)∵a=1,∴y=x2﹣2x﹣3,∴抛物线的对称轴是:直线x=﹣=1,当x2﹣2x﹣3=0时,∴(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),故答案为:对称轴是:直线x=1,A(﹣1,0),B(3,0).(2)当x=3﹣a时,y1=4a2﹣12a+5;当x=a+1时,y2=﹣3<0;当x=﹣a时,y3=4a2﹣4;∵y1,y2,y3中有且仅有一个大于0,∴分两种情况:①当y1=4a2﹣12a+5>0,而y3=4a2﹣4<0时,∵y1=4a2﹣12a+5>0,令4a2﹣12a+5=0,∴(2a﹣5)(2a﹣1)=0,∴a1=,a2=,∴a的取值范围是:a<或a>.∵y3=4a2﹣4<0,令4a2﹣4=0,∴a1=1,a2=﹣1,∴a的取值范围是:﹣1<a<1,故﹣1<a<;②当y1=4a2﹣12a+5<0,而y3=4a2﹣4>0时,∵y1=4a2﹣12a+5<0,令4a2﹣12a+5=0,∴(2a﹣5)(2a﹣1)=0,∴a1=,a2=,∴a的取值范围是:<a<.∵y3=4a2﹣4>0,令4a2﹣4=0,∴a1=1,a2=﹣1,∴a的取值范围是:a<﹣1或a>1,故1<a<.综上所述,a的取值范围是:﹣1<a<或1<a<.故答案为:﹣1<a<或1<a<.【点评】本题考查了抛物线的对称轴的求法,抛物线与坐标轴交点的坐标,以及抛物线大于0的求法,掌握解题方法是解题关键.27.(7分)在菱形ABCD中,∠B=60°,点P是对角线AC上一点(不与点A重合),点E,F分别是边AB,AD上的点,且∠EPF=60°,射线PE,PF分别与DA,BA的延长线交于点M,N.(1)如图1,若点P与C重合,且PA平分∠EPF,求证:AM=AN;(2)连接BP,若∠ABP=45°,BP=3,且PA不平分∠EPF.①依题意补全图2;②用等式表示线段AM,AN的数量关系,并证明.【分析】(1)由点P与C重合,且PA平分∠EPF,得∠ACE=∠ACF,由菱形的性质得AB=CB=AD=CD,∠D=∠B=60°,所以△ABC和△ADC都是等边三角形,则∠BAC =∠DAC=60°,所以∠CAM=∠CAN=120°,而AC=AC,即可根据“ASA”证明△ACM≌△ACN,得AM=AN;(2)①按题中所给条件补全图形即可;②作PH∠AB于点H,由∠BAC=∠DAC=60°,得∠PAM=∠NAP=120°,∠N+∠APF=∠BAC=60°,而∠APM+∠APF=∠EPF=60°,可证明∠APM=∠N,所以△PAM ∽△NAP,则=,所以AM•AN=AP2,因为∠ABP=45°,BP=3,所以=sin45°=,则HP=BP,因为=sin60°=,所以AP==BP=,即可证明AM•AN=6.【解答】(1)证明:如图1,∵点P与C重合,且PA平分∠EPF,∴∠ACE=∠ACF,∵四边形ABCD是菱形,∠B=60°,∴AB=CB=AD=CD,∠D=∠B=60°,∴△ABC和△ADC都是等边三角形,∴∠BAC=∠DAC=60°,∴∠CAM=180°﹣∠DAC=120°,∠CAN=180°﹣∠BAC=120°,∴∠CAM=∠CAN,在△ACM和△ACN中,,∴△ACM≌△ACN(ASA),∴AM=AN.(2)解:①补全图形,如图2所示.②AM•AN=6,证明:如图2,作PH∠AB于点H,则∠AHP=∠BHP=90°,∵∠BAC=∠DAC=60°,∴∠PAM=∠NAP=180°﹣60°=120°,∠N+∠APF=∠BAC=60°,∵∠APM+∠APF=∠EPF=60°,∴∠APM+∠APF=∠N+∠APF,∴∠APM=∠N,∴△PAM∽△NAP,∴=,∴AM•AN=AP2,∵∠ABP=45°,BP=3,∴=sin∠ABP=sin45°=,∴HP=BP,∵=sin∠BAC=sin60°=,∴AP===BP=×3=,∴AP2=()2=6,∴AM•AN=6.【点评】此题重点考查菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、锐角三角函数与解直角三角形等知识与方法,此题综合性强,难度较大,属于考试压轴题.28.(7分)在平面直角坐标系xOy中,有如下定义:对于图形G1、G2,若存在常数d,使得图形G1上的任意一点P,在图形G2上至少能找到一个点Q,满足PQ=d,则称图形G2是图形G1的“映图”,d是G1关于G2的“映距”.(1)如图,点A(﹣4,0),B(0,﹣4),C(﹣1,0),D(0,﹣1),E(4,0),F(0,4),G(5,0),H(0,5).在线段CD,EF,GH中,线段AB的映图是EF,GH.(2)⊙O的半径为1.②若直线y=﹣x+m(m≠0)被坐标轴所截的线段是⊙O的映图,直接写出m的取值范围.【分析】(1)利用“映图”的定义解答即可;(2)①由题意画出图形,利用映距d的定义和圆的有关性质解答即可;②利用分类讨论的思想方法分两种情况讨论解答:Ⅰ.当m>0时,过点O作直线l⊥直线y=﹣x+m,垂足为K,分别交⊙O与点M,N,设⊙O与x轴交于点C,D,与y轴交于点E,F,利用①的方法求得⊙O关于直线y=﹣x+m的映距d的最小值,再利用⊙O上的点到端点A,B的最小距离不小于d的最小值列式解答即可;Ⅱ.当m<0时,同理解答即可.【解答】解:(1)由题意:AB∥CD∥EF∥GH,平行线之间的距离相等,∵若存在常数d,使得图形G1上的任意一点P,在图形G2上至少能找到一个点Q,满足PQ=d,则称图形G2是图形G1的“映图”,∴线段AB的映图大于或等于AB,且映距d的最小值为两条平行线段的距离,∴线段AB的映图是:EF,GH.故答案为:EF,GH;(2)①过点O作直线l⊥直线,垂足为K,分别交⊙O与点M,N,如图,设直线与坐标轴交于点A,B,令x=0,则y=3,令y=0,则x=3,∴A(3,0),B(0,3),∴OA=OB=3,∴△OAB为等腰直角三角形,∴∠OAB=∠OBA=45°.∵OK⊥AB,∴△OAK为等腰直角三角形,∴OK=OA=3,∴NK=ON+OK=1+3=4,∴⊙O关于直线的映距d的最小值为4.②Ⅰ.当m>0时,过点O作直线l⊥直线y=﹣x+m,垂足为K,分别交⊙O与点M,N,设⊙O与x轴交于点C,D,与y轴交于点E,F,如图,则⊙O关于直线y=﹣x+m的映距d的最小值为NK,设直线与坐标轴交于点A,B,令x=0,则y=m,令y=0,则x=m,∴A(m,0),B(0,m),∴OA=OB=m,∴△OAB为等腰直角三角形,∴∠OAB=∠OBA=45°.∵OK⊥AB,∴△OAK为等腰直角三角形,∴OK=OA=m.∴NK=ON+OK=m+1.∵直线y=﹣x+m(m≠0)被坐标轴所截的线段是⊙O的映图,⊙O上的点到端点A,B 的最小距离为CA=EB=m﹣1,∴m﹣1≥m+1,∴m≥4+2.Ⅱ.当m>0时,过点O作直线l⊥直线y=﹣x+m,垂足为K,分别交⊙O与点M,N,设⊙O与x轴交于点C,D,与y轴交于点E,F,如图,用同样的方法计算可得:m≤﹣4﹣2.综上,若直线y=﹣x+m(m≠0)被坐标轴所截的线段是⊙O的映图,m的取值范围m≥4+2或m≤﹣4﹣2.【点评】本题主要考查了圆的有关性质,等腰直角三角形的性质,一次函数的图象与性质,一次函数图象上点的坐标的特征,本题是新定义型,正确理解新定义的规定并熟练应用是解题的关键。

2024年北京东城区初三上学期期末考数学试卷和答案

2024年北京东城区初三上学期期末考数学试卷和答案

东城区2023—2024学年第一学期期末统一检测初三数学2024.1一、选择题(每题2分,共16分)1.下列四个交通标志图案中,是中心对称图形的是2.若3x =是关于x 的方程22=0x x m --的一个根,则m 的值是A .-15B .-3C .3D .153.关于二次函数22(1)2y x =-+,下列说法正确的是A .当x =1时,有最小值为2B .当x =1时,有最大值为2C .当x =-1时,有最小值为2D .当x =-1时,有最大值为24.在下列事件中,随机事件是A .投掷一枚质地均匀的骰子,向上一面的点数不超过6B .从装满红球的袋子中随机摸出一个球,是白球C .通常情况下,自来水在10℃结冰D .投掷一枚质地均匀的骰子,向上一面的点数为25.如图,正方形ABCD 的边长为6,且顶点A ,B ,C ,D 都在⊙O 上,则⊙O 的半径为A.3B.6C.32D.626.北京2022年冬奥会以后,冰雪运动的热度持续.某地雪场第一周接待游客7000人,第三周接待游客8470人.设该地雪场游客人数的周平均增长率为x ,根据题意,下面所列方程正确的是A .27000(1)8470x +=B .270008470x =C .7000(1+2)8470x =D .37000(1)8470x +=7.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72°.若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是A .2πm 10B .2πm5C .22πm5D .24πm58.⊙O 是△ABC 的内切圆,与AB ,BC ,AC 分别相切于点D ,E ,F .若⊙O 的半径为2,△ABC 的周长为26,则△ABC 的面积为A.3B.24C.26D.52二、填空题(每题2分,共16分)9.把抛物线22y x =向下平移3个单位长度,所得到的抛物线的解析式为.10.若一元二次方程261=0x x +-经过配方,变形为()23x n +=的形式,则n 的值为.11.为了解某小麦品种的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550100200500100020003000发芽种子个数m 4449218947695118982851发芽种子频率m n0.8000.8800.9200.9450.9520.9510.9490.950(1)估计该品种小麦在相同条件下发芽的概率为(结果保留两位小数);(2)若在相同条件下播种该品种小麦种子10000个,则约有个能发芽.12.在平面直角坐标系xOy 中,已知点A 的坐标为(1,2),点B 与点A 关于原点对称,则点B 的坐标为_____________.13.已知二次函数2+8+3y x x =-,当x >m 时,y 随x 的增大而减小,则m 的值可以是____________(写出一个即可).14.如图,A ,B ,C 是⊙O 上的三个点,若∠ACB=40°,则∠OBA 的大小是_____________°.15.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分.铅球出手位置的高度为35m,当铅球行进的水平距离为4m 时,高度达到最大值3m.铅球的行进高度y (单位:m)与水平距离x (单位:m)之间的关系满足二次函数.若以最高点为原点,过原点的水平直线为x 轴,建立如图2所示的平面直角坐标系xOy ,则该二次函数的解析式为2121x y -=.若以过出手点且与地面垂直的直线为y 轴,y 轴与地面的交点为原点,建立如图3所示的平面直角坐标系xOy ,则该二次函数的解析式为.16.某单位承担了一项施工任务,完成该任务共需A ,B ,C ,D ,E ,F ,G 七道工序.施工要求如下:①先完成工序A ,B ,C ,再完成工序D ,E ,F ,最后完成工序G ;②完成工序A 后方可进行工序B ;工序C 可与工序A ,B 同时进行;③完成工序D 后方可进行工序E ;工序F 可与工序D ,E 同时进行;④完成各道工序所需时间如下表所示:工序A B C D E F G 所需时间/天11152817163125(1)在不考虑其它因素的前提下,该施工任务最少_____________天完成.(2)现因情况有变,需将工期缩短到80天.工序A ,C ,D 每缩短1天需增加的投入分别为5万元,4万元,6万元,其余工序所需时间不可缩短,则所增加的投入最少是_____________万元.三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解方程:()()3121x x x +=+.18.如图,在Rt △ACB 中,∠C =90°.求作:⊙O ,使得△ACB 的三个顶点都在⊙O 上.作法:①作边AB 的垂直平分线,交AB 于点O ;②以点O 为圆心,OA 长为半径作圆.则⊙O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC .由作图可知,OB =OA=12AB .∴点B 在⊙O 上.在Rt △ACB 中,∠ACB =90°,∴OC =12________()(填推理依据).∴OC =OA .∴点C 在⊙O 上.∴△ACB 的三个顶点都在⊙O 上.19.在平面直角坐标系xOy 中,二次函数2y x bx =+的图象过点A (3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0x <<3时,对于x 的每一个值,都有2kx x bx +>,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A,B,C,D,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是⊙O 的弦,半径OD ⊥AB 于点C .若AB =16,CD =2,求⊙O 的半径的长.22.已知关于x 的一元二次方程()222120x m x m -++-=(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为O A ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段O A ',OB ';(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ',连接A C ''.若=5A C '',求∠B OC ''的度数.24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,22BC =,求CD 的长.25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t分钟,农药的去除率为y1%,部分实验数据记录如下:方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x%,农药的去除率为y2%,部分实验数据记录如下:结合实验数据和结果,解决下列问题:(1)通过分析以上实验数据,发现可以用函数刻画方式一中农药的去除率y1(%)与浸泡时间t(分)之间的关系,方式二中农药的去除率y2(%)与食用碱溶液的浓度x(%)之间的关系,请分别在下面的平面直角坐标系中画出这两个函数的图象:(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为__________分钟.(3)方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度x %中,x 的取值范围可以是_____________.26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在△ABC 中,AB =AC ,∠BAC =120°,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60°得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE ⊥BC ;(2)当BD ≠CD 时(图2中BD <CD ,图3中BD >CD ),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE 的大小,并证明.28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y +6的“和距离”d 的取值范围.东城区2023—2024学年度第一学期期末统一检测初三数学参考答案及评分标准2024.1一、选择题(每题2分,共16分)题号12345678答案BCADCABC二、填空题(每题2分,共16分)9.223y x =-10.1011.0.95950012.(-1,-2)13.答案不唯一,m ≥4即可14.5015.21251233y x x =-++16.86,38三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解:移项,得()()31210.x x x +-+=因式分解,得()()1320.x x +-=……………………………..1分于是得10x +=,或320.x -=……………………………..3分所以方程的两个根分别为1=-1x ,22.3x =……………………………..5分18.解:(1)作图如下,------------------------3分(2)AB直角三角形斜边上的中线等于斜边的一半.------------------------5分19.解:(1)∵点A (3,3)在抛物线二次函数2y x bx =+的图象上,∴2333b =+.解得2b =-.∴二次函数的解析式为22y x x =-.------------------------2分(2)列表:x …-10123…y…3-13…描点,连线------------------------4分(3)当k ≥1.------------------------5分20.解:(1)所有可能出现的结果共6种:AB ,AC ,AD ,BC ,BD ,CD .…………3分(2)记抽到的2张卡片中恰好有数学家华罗庚邮票图案为事件M ,M 包含的结果有3种,即AC ,BC ,CD ,且6种可能的结果出现的可能性相等,所以()31==62P M …………5分21.解:连接OA .∵半径OD ⊥AB 于点C ,AB =16,∴∠ACO =90°,AC =12AB =8,………2分设OA =r ,则OC =2r -.在Rt △AOC 中,根据勾股定理,得222OA AC OC =+,即2228(2)r r =+-.………4分解得17r =.∴⊙O 的半径的长17.………5分22.解:(1)∵关于x 的一元二次方程22(21)20x m x m -++-=有两个不相等的实数根,∴[]()2222=(21)4244148490m m m m m m ∆-+--=++-+=+> (2)分解得94m >-.∴m 的取值范围是94m >-.………..3分(2)由(1)可知,49m ∆=+.由求根公式,得()1212m x +=,()2212m x +=.………..5分∵该方程的两个实数根互为相反数,∴12+0x x =.∴()()2121+21022m m m +++=+=.解得1=2m -,符合题意.∴当方程的两个实数根互为相反数时,1=2m -.………..6分23.解:(1)如图.……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+.∴△A OC ''是直角三角形.∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称,∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''-=︒-︒=︒∠∠∠.………………..5分24.(1)证明:如图1,连接OD .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD=45°.---------------1分∴∠ABD =∠ACD=45°.∵OD =OB ,∴∠ODB =∠OBD =45°.--------------2分∵DE ∥AB ,∴∠BDE =∠OBD =45°.∴∠ODE =∠ODB+∠BDE=90°.∴OD ⊥DE .∵OD 为⊙O 的半径,∴直线DE 是⊙O 的切线.------------------3分(3)如图2,过点B 作BF ⊥CD 于点F .∴∠BFC =∠BFD =90°.∵∠BCD =45°.∴∠CBF =45°.图1∴BF CF =.------------------4分在Rt △BFC 中,BC =根据勾股定理,得=2BF CF =.∵ BCBC =,∴∠CDB =∠BAC =30°.------------------5分∴2=4.BD BF =在Rt △BFD 中,根据勾股定理,得DF∴CD CF DF =+------------------6分25.解:(1)画图如下,---------------------------------------------------------------------2分(2)10-------------------------------------------4分(3)答案不唯一,如7x ≤≤12.---------------------------6分26.解:(1)由题意可知,42a b c c ++=,∴2b a =-.∴12bt a=-=.---------------------------2分(2)∵0a >,1t =,∴当1x >时,y 随x 的增大而增大,当1x <,时y 随x 的增大而减小.---------------------------3分①当1m ≥时,∵11m x m <<+,212m x m +<<+,∴121x x <<.∴12y y <,符合题意.---------------------------4分②当112m <≤时,有3122m +<,(i )当111x m <+≤时,∵212m x m +<<+,∴121x x <≤.∴12y y <.(ii )当11m x <<时,设11()M x y ,关于抛物线对称轴1x =的对称点为01()M 'x y ,,则01x >,011=1x x --.∴012x x =-.∵112m <≤,∴0312x <<.∵3122m +≤<,212m x m ++<<∴232x >.∴02312x x <<<.∴12y y <.∴当112m <≤时,符合题意.---------------------------5分③当102m <≤时,3112m +<≤,令11=2x ,23=2x ,则12=y y ,不符合题意.④当102m -<≤时,有1112m +<≤,令1=0x ,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑤当112m -<-≤时,1012m +<≤,令11=2x -,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑥当1m <-时,1221x x m <<+<,∴.12>y y ,不符合题意.综上所述,m的取值范围是12m ≥.---------------------------6分27.(1)证明:∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =30°.将线段DA 绕点D 顺时针旋转60°得到线段DE ,∴DE =DA ,∠ADE =60°.∴△ADE 是等边三角形.∴∠BAE =60°.∴∠AHB =90°.∴BC ⊥AE.………..3分(2)解:选择图2:①补全图形如图所示:………..4分②猜想∠AFE =90°.………..5分证明:如图,过点A 作AH ⊥BC 于H ,连接AE .则∠AHB =∠AHC =90°.∵AB =AC ,∠BAC =120°,∴∠CAH =12∠BAC =60°,∠C =30°.∴AH =12AC .∵F 为线段AC 中点,∴AF =12AC .∴AH =AF .由(1)可知△ADE 是等边三角形.∴∠DAE =60°=∠CAH ,AD=AE.∴∠DAH =∠EAF.在△ADH 和△AEF 中,.DAH EA AD AE AH AF F ∠==⎧∠⎪⎨⎪=⎩,,∴△ADH ≌△AEF (SAS ).∴∠AFE =∠AHD =90°.………7分选择图3:①补全图形如图所示:②(选择图3的答案与选择图2的答案一致)28.解:(1)P 1,P 2.………2分(2)3.………4分(3)71122d ≤≤.………7分。

2022-2023学年北京海淀区初三第一学期数学期末试卷及答案

2022-2023学年北京海淀区初三第一学期数学期末试卷及答案第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 刺绣是中国民间传统手工艺之一.下列刺绣图案中,是中心对称图形的为( )A. B.C. D.【答案】B 【解析】【分析】如果一个图形绕某一点旋转180度后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.依据中心对称图形的概念即可解答. 【详解】解:A 、是轴对称图形不是中心对称图形,故此选项不符合题意; B 、是中心对称图形,故此选项符合题意; C 、不是中心对称图形,故此选项不符合题意; D 、不是中心对称图形,故此选项不符合题意; 故选:B .【点睛】本题考查中心对称图形,熟练掌握中心对称图形的概念是解题的关键. 2. 点关于原点对称的点的坐标是( ) ()1,2A A. B.C. D.()1,2-()1,2-()1,2--()2,1【答案】C 【解析】【分析】根据关于原点对称点的坐标特点:横、纵坐标均取相反数可直接得到答案. 【详解】解:点A (1,2)关于原点对称的点的坐标是(-1,-2), 故选:C .【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律. 3. 二次函数的图象向左平移1个单位长度,得到的二次函数解析式为( ) 22y x =+A.B.23y x =+()212y x =-+C. D.21y x =+()212y x =++【答案】D 【解析】【分析】根据函数平移规律:左加右减,上加下减即可得到答案. 【详解】解:由题意可得,的图象向左平移1个单位长度可得,22y x =+, 2(1)2y x =++故选D .【点睛】本题考查函数图像平移规律,解题关键是熟练掌握规律:左加右减,上加下减. 4. 如图,已知正方形,以点为圆心,长为半径作,点与的位置关ABCD A AB A C A 系为( )A. 点在外B. 点在内C. 点在上D. 无法确C A C A C A 定 【答案】A 【解析】【分析】设正方形的边长为,用勾股定理求得点到的圆心之间的距离,为a C A AC AB 的半径,通过比较二者的大小,即可得到结论.A 【详解】解:设正方形的边长为, a则,,AB a =AC ==,AB AC < 点在外,∴C A 故选:A .【点睛】本题考查了点与圆的位置关系,解题的关键是确定圆的半径和点到圆心之间的距离的大小关系.5. 若点,在抛物线上,则的值为( )()0,5M ()2,5N ()223y x m =-+m A. 2 B. 1 C. 0 D.1-【答案】B 【解析】【分析】由函数的解析式可知函数对称轴为,从而得出的值. 022x m +==m 【详解】由函数可知对称轴是直线, ()223y x m =-+x m =由,可知,M ,N 两点关于对称轴对称,即 ()0,5M ()2,5N 0212x +==,,1m ∴=故选B .【点睛】本题考查二次函数图象上点的坐标特征,注意掌握二次函数图像上点的对称性是解题的关键.6. 勒洛三角形是分别以等边三角形的顶点为圆心,以其边长为半径作圆弧,由三段圆弧组成的曲边三角形.如图,该勒洛三角形绕其中心旋转一定角度后能与自身重合,则该O α角度可以为( )αA. B. C. D.30︒60︒120︒150︒【答案】C 【解析】【分析】连接,可得,从而得到,即可,OA OB AB AC BC==13601203AOC ∠=⨯︒=︒求解.【详解】解:如图,连接,,OA OC∵是等边三角形, ABC ∴,AB AC BC ==即, AB AC BC==∴. 13601203AOC ∠=⨯︒=︒∴该角度可以为.α120︒故选:C【点睛】本题主要考查了弧,弦,圆心角的关系,图形的旋转,等边三角形的性质,熟练掌握弧,弦,圆心角的关系是解题的关键.7. 如图,过点作的切线,,切点分别是,,连接.过上一点A O AB AC B C BC BC作的切线,交,于点,.若,的周长为4,则的D O AB ACEF 90A ∠=︒AEF △BC 长为( )A. 2B.C. 4D. 【答案】B 【解析】【分析】利用切线长定理得出,,,再根据三角形周长等于AB AC =DF FC =DE EB =4,可求得,从而利用勾股定理可求解.2AB AC ==【详解】解:∵,是的切线,切点分别是,, AB AC O B C ∴,AB AC =∵、是的切线,切点是D ,交,于点,, DF DE O AB AC E F ∴,,DF FC =DE EB =∵的周长为4,即, AEF △4AF EF AE AF DF DE AE AC AB ++=+++=+=∴, 2AB AC ==∵, 90A ∠=︒∴BC ===故选:B .【点睛】本题考查切线长定理,勾股定理,熟练掌握切线长定理是解题的关键. 8. 遥控电动跑车竞速是青少年喜欢的活动.如图是某赛道的部分通行路线示意图,某赛车从人口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该赛车从口驶出的F 概率是( )A.B.C.D.13141516【答案】B 【解析】【分析】根据“在每个岔路口都有向左或向右两种可能,且可能性相等”可知在点H 、G 、E 、F 处都是等可能情况,从而得到在四个出口H 、G 、E 、F 也都是等可能情况,然后根据概率的意义列式即可得解.【详解】解:由图可知,在每个岔路口都有向左或向右两种可能,且可能性相等, 赛车最终驶出的点共有H 、G 、E 、F 四个, 所以,最终从点F 驶出的概率为, 14故选:B .【点睛】本题考查了概率,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.第二部分 非选择题二、填空题(共16分,每题2分) 9. 二次函数的图象与轴的交点坐标为______.243y x x =-+y 【答案】 ()0,3【解析】【分析】令,求得的值即可. 0x =y 【详解】令,得, 0x =2433y x x =-+=∴二次函数的图象与轴的交点坐标为, y ()0,3故答案为:.()0,3【点睛】本题考查的是二次函数与轴的交点,正确计算是解答此题的关键. y 10. 半径为3且圆心角为的扇形的面积为________. 120︒【答案】3π. 【解析】【分析】直接利用扇形的面积公式S=,进而求出即可.2360n r π【详解】解:∵半径为3,圆心角为120°的扇形,∴S 扇形===3π.2360n r π21203360π⨯⨯故答案为3π.【点睛】此题主要考查了扇形面积公式应用,熟练记忆扇形面积公式是解题关键. 11. 下表记录了一名球员在罚球线上投篮的结果. 投篮次数 n 50 100 150 200 300 400 500 投中次数 m 284978102153208255投中频率m n0.56 0.49 0.52 0.51 0.51 0.52 0.51根据以上数据,估计这名球员在罚球线上投篮一次,投中的概率为______. 【答案】0.51(答案不唯一) 【解析】【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.51附近,∴这名球员在罚球线上投篮一次,投中的概率为0.51, 故答案为:0.51(答案不唯一).【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.12. 若关于的一元二次方程有两个不相等的实数根,则的取值范围是x 230x x m -+=m ______. 【答案】 94m <【解析】【分析】根据一元二次方程根的判别式列出关于m 的不等式,即可解得答案. 【详解】解:∵的一元二次方程有两个不相等的实数根, 230x x m -+=∴,即, 0∆>()2340m -->解得:, 94m <故答案为:. 94m <【点睛】本题考查一元二次方程根的判别式,解题的关键是掌握时,一元二次方程有0∆>两个不相等的实数根.13. 二次函数的图象如图所示,则______0(填“”,“”或“”).2y ax bx =+ab ><=【答案】 <【解析】【分析】根据抛物线的开口方向,判断的符号,根据对称轴的位置,判断的符号,进而a b 得到的符号.ab 【详解】解:由图象,可知:抛物线的开口向上:, 0a >对称轴在的右侧:,即:, y bx 02a=->0b <∴; 0ab <故答案为:.<【点睛】本题考查二次函数的图象与二次函数的系数之间的关系.熟练掌握二次函数的图象和性质,是解题的关键.14. 如图,是的内接三角形,于点,若,ABC O OD AB ⊥E O ,则______.45ACB ∠=︒OE =【答案】1 【解析】【分析】连接,,由圆周角定理求得,再由等腰三角OA OB 224590AOB ACB ∠=∠=⨯︒=︒形三线合一性质求得,从而求得,1452AOE BOE AOB ∠=∠=∠=︒45AOE OAE ∠=∠=︒得到,然后在中,,由勾股定理求解即可. OE AE =Rt AOE △90AEO ∠=︒【详解】解:连接,,OA OB∴, 224590AOB ACB ∠=∠=⨯︒=︒∵于点, OD AB ⊥E OA OB =∴, 1452AOE BOE AOB ∠=∠=∠=︒∴, 45AOE OAE ∠=∠=︒∴,OE AE =在中,,由勾股定理,得Rt AOE △90AEO ∠=︒,222OE AE OA +=∴,2222OE OA ==∴, 1OE =故答案为:1.【点睛】本题考查圆周角定理,等腰三角形的性质,勾股定理,熟练掌握圆周角定理,等腰三角形三线合一性质是解题的关键.15. 对于二次函数,与的部分对应值如表所示.在某一范围内,2y ax bx c =++y x x y 随的增大而减小,写出一个符合条件的的取值范围______.x xx …1-0 1 2 3 …y …3- 1331…【答案】(答案不唯一,满足即可) 2x >32x ≥【解析】【分析】根据表格,用待定系数法求出二次函数解析式,再根据二次函数的性质求解即可.【详解】解:把,;,;,分别代入=1x -=3y -0x =1y =1x =3y =,得2y ax bx c =++,解得:, 313a b c c a b c -+=-⎧⎪=⎨⎪++=⎩131a b c =-⎧⎪=⎨⎪=⎩∴,22373124y x x x ⎛⎫=-++=--+ ⎪⎝⎭∵, 10a =-<∴当时,随的增大而减小, 32x >y x ∴当时,随的增大而减小, 2x >y x 故答案为:(答案不唯一,满足即可). 2x >32x ≥【点睛】本题考查待定系数法求二次函数解析式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.16. 如图,,,分别是某圆内接正六边形、正方形、等边三角形的一边.若AB AC AD ,下面四个结论中,2AB =①该圆的半径为2; ②的长为; AC π2③平分; ④连接,,则与的面积比为AC BAD ∠BC CD ABC ACD .所有正确结论的序号是______.【答案】①③④ 【解析】【分析】根据圆内接正六边形、内接正方形的性质、弧长公式,勾股定理逐一判断可选项即可.【详解】解:根据题干补全图形,连接,BC CD OA OB OC OD OE ,,,,,,根据内接正六边形的性质可知:, 60AOB ∠=︒OA OB =∴是等边三角形,AOB ,圆的半径为2,所以①正确;2OA OB AB ===根据内接正方形的性质可知:,=90AOC ︒∠的长为:,所以②错误; AC90π2π180⨯=∵,, OA OD =120AOD ∠=︒∴,30OAD ∠=︒∵,, OA OC ==90AOC ︒∠∴, 45OAC ∠=︒∵,60OAB ∠=︒∴, 604515BAC =︒-︒=︒∠∴,BAC DAC ∠=∠∴平分, 所以③正确;AC BAD ∠过点A 作交延长线于点H ,交延长线于点G , AH BC ⊥CB AG CD ⊥DC ∵, 1302ACB AOB ∠=∠=︒∴, 12AH AC =∵AC==∴AH =, 1245ADC AOC ∠=∠=︒∴, AG AD =设交于点M ,OB AD ∵,60AOM ∠=︒∴,,OM AD ⊥2AD AM =∵,30OAM ∠=︒∴, 112MD OA ==∴,AM==∴,2AD AM ==∴AG =∵,=BAC CAD ∠∠∴,CD BC =∴,所以④正确;1212ABCACD BC AH S AH S AG DC AG ∙====∙ 因此正确的结论:①③④故答案为:①③④【点睛】本题考查圆内接正六边形、内接正方形的性质、弧长公式,勾股定理,得出圆形的半径是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解方程:.226x x -=【答案】,11x =+21x =-【解析】【分析】用配方法求解即可.【详解】解:,22161x x -+=+,()217x -=∴1x -=∴,.11x =+21x =-【点睛】本题考查解一元二次方程,熟练掌握用配方法求解一元二次方程是解题的关键.18. 已知抛物线过点和,求该抛物线的解析式.22y x bx c =++()1,3()0,4【答案】2234y x x =-+【解析】【分析】把和代入,解方程组求出b 、c 的值即可得答案.()1,3()0,422y x bx c =++【详解】解:∵抛物线过点和,∴ 22y x bx c =++()1,3()0,432,4.b c c =++⎧⎨=⎩解方程组,得 3,4.b c =-⎧⎨=⎩∴抛物线的解析式是.2234y x x =-+【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.19. 已知为方程的一个根,求代数式的值.a 22310x x --=()()()1132a a a a +-+-【答案】1【解析】【分析】将a 代入方程中得,将所求代数式化简整理后,把整体2231a a -=2231a a -=代入即可.【详解】解:∵为方程的一个根,a 22310x x --=∴.22310a a --=∴.2231a a -=∴原式=.()222213646122312111a a a a a a a -+-=--=--=⨯-=【点睛】本题主要考查了一元二次方程的解的概念,以及用整体代入法求代数式的值.解题的关键是掌握整体代入法. 20. 如图,四边形内接于,为直径,.若,求的ABCD O AB BCCD =50A ∠=︒B ∠度数.【答案】65B ∠=︒【解析】【分析】连接.利用等弧所对圆周角相等,得出,从而得出AC DAC BAC ∠=∠,再利用直径所对圆周角是直角,最后由直角 三角形两锐角互1252BAC DAB ∠=∠=︒余求解即可.【详解】解:如图,连接. AC∵, BCCD =∴.DAC BAC ∠=∠∵,50DAB ∠=︒∴. 1252BAC DAB ∠=∠=︒∵为直径,AB ∴.90ACB ∠=︒∴.9065B BAC ∠=︒-∠=︒【点睛】本题考查圆周角定理的推论,直角三角形的性质,熟练掌握圆周角定理的推论是解题的关键.21. 为了发展学生的兴趣爱好,学校利用课后服务时间开展了丰富的社团活动.小明和小天参加的篮球社共有甲、乙、丙三个训练场.活动时,每个学生用抽签的方式从三个训练场中随机抽取一个场地进行训练.(1)小明抽到甲训练场的概率为______;(2)用列表或画树状图的方法,求小明和小天在某次活动中抽到同一场地训练的概率.【答案】(1) 13(2) 13【解析】【分析】(1)直接根据概率公式求解即可;(2)画树状图得出所有等可能结果,从中找到符合条件的结果,再根据概率公式求解即可.【小问1详解】 解:小明抽到甲训练场的概率为, 13故答案为:; 13【小问2详解】根据题意,可以画出如下树状图:由树状图可以看出,所有可能出现的结果有9种,并且这些结果出现的可能性相等. 小明和小天抽到同一场地训练(记为事件)的结果有3种,A 所以,. ()3193P A ==【点睛】此题考查了树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.22. 已知:如图,是的切线,为切点.PA O A 求作:的另一条切线,为切点.O PB B 作法:以为圆心,长为半径画弧,交于点;P PA O B 作直线. PB 直线即为所求.PB(1)根据上面的作法,补全图形(保留作图痕迹);(2)完成下面证明过程.证明:连接,,.OA OB OP ∵是的切线,为切点,PA O A ∴.OA PA ⊥∴.90PAO ∠=︒在与中,PAO PBO ,,______,PA PB OP OP =⎧⎪=⎨⎪⎩∴.∴.PAO PBO ≌△△90∠=∠=︒PAO PBO ∴于点.∵是的半径,OB PB ⊥B OB O ∴是的切线(____________________)(填推理的依据).PB O 【答案】(1)见解析 (2),经过半径外端并且垂直于这条半径的直线是圆的OA OB =切线【解析】【分析】(1)按照作法作出图形即可;(2)连接,,,证明即可证明是的切线.OA OB OP PAO PBO ≌△△PB O 【小问1详解】补全图形,如图所示:【小问2详解】连接,,.OA OBOP∵是的切线,A 为切点,PA O ∴.OA PA ⊥∴.90PAO ∠=︒在与中,PAO PBO ,,,PA PB OP OP OA OB =⎧⎪=⎨⎪=⎩∴.∴.PAO PBO ≌△△90∠=∠=︒PAO PBO ∴于点.∵是的半径,OB PB ⊥B OB O ∴是的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).PB O 故答案为:,经过半径外端并且垂直于这条半径的直线是圆的切线.OA OB =【点睛】本题考查了尺柜作图,切线的性质和判定,以及全等三角形的判定与性质,熟练掌握切线的判定与性质是解答本题的关键.23. 紫砂壶是我国特有的手工制造陶土工艺品,其制作过程需要几十种不同的工具,其中有一种工具名为“带刻度嘴巴架”,其形状及使用方法如图1.当制显艺人把“带刻度嘴巴架”上圆弧部分恰好贴在壶口边界时,就可以保证需要粘贴的壶嘴、壶把、壶口中心在一条直线上.图2是正确使用该工具时的示意图.如图3,为某紫砂壶的壶口,已知,两点O A B 在上,直线过点,且于点,交于点.若,O l O l AB ⊥D O C 30mm AB =,求这个紫砂壶的壶口半径的长.5mm CD =r【答案】25mm 【解析】【分析】连接,根据垂径定理求得,又由,即可由勾股定OB 1152BD AB ==5DO r =-理求解.【详解】解:如图,连接.OB∵过圆心,,,l O l AB ⊥30AB =∴. 1152BD AB ==∵,5CD =∴.5DO r =-∵,222BO BD DO =+∴.()222155r r =+-解得.25r =∴这个紫砂壶的壶口半径的长为.r 25mm 【点睛】本题考查垂径定理,勾股定理,熟练掌握垂径定理是解题的关键.24. 如图,是的直径,点在上.过点作的切线,过点作AB O C O C O l B BD l ⊥于点. D(1)求证:平分;BC ABD ∠(2)连接,若,,求的长.OD 60ABD ∠=︒3CD =OD【答案】(1)见解析 (2)OD =【解析】【分析】(1)连接,求得,得到,即可求得平分.OC OC BD ∥OBC CBD ∠=∠BC ABD ∠(2)连接,求得,在中,求得;在中,AC 90ACB ∠=︒Rt BDC 6BC =Rt ACB △,;在中,利用勾股定理可求得.2AB AC =OC =Rt OCD △OD =【小问1详解】证明:如图,连接. OC∵直线与相切于点,l O C ∴于点.OC l ⊥C ∴.90OCD ∠=︒∵于点,BD l ⊥D ∴.=90BDC ∠︒∴.180OCD BDC ︒∠+∠=∴.OC BD ∥∴.OCB CBD ∠=∠∵,OC OB =∴.OBC OCB ∠=∠∴.OBC CBD ∠=∠∴平分.BC ABD ∠【小问2详解】解:连接. AC∵是的直径,AB O ∴.90ACB ∠=︒∵,60ABD ∠=︒∴. 1302OBC CBD ABD ︒∠=∠=∠=在中,Rt BDC ∵,,30CBD ∠=︒3CD =∴.26BC CD ==在中,Rt ACB △∵,30ABC ∠=︒∴.2AB AC =∵,222AC BC AB +=∴ AB =∴. 12OC AB ==在中,Rt OCD △∵,222OC CD OD +=∴OD =【点睛】本题是圆与三角形综合题,考查了切线的性质、角平分线的判定和和勾股定理,作出恰当的辅助线是解决问题的关键25. 学校举办“科技之星”颁奖典礼,颁奖现场人口为一个拱门.小明要在拱门上顺次粘贴“科”“技”“之”“星”四个大字(如图1),其中,“科”与“星”距地面的高度相同,“技”与“之”距地面的高度相同,他发现拱门可以看作是抛物线的一部分,四个字和五角星可以看作抛物线上的点.通过测量得到拱门的最大跨度是10米,最高点的五角星距地面6.25米.(1)请在图2中建立平面直角坐标系,并求出该抛物线的解析式;xOy (2)“技”与“之”的水平距离为米.小明想同时达到如下两个设计效果: 2a ① “科”与“星”的水平距离是“技”与“之”的水平距离的2倍;②“技”与“科”距地面的高度差为1.5米.小明的设计能否实现?若能实现,直接写出的值;若不能实现,请说明理由.a 【答案】(1)(答案不唯一)20.25y x =-(2)能实现;a =【解析】【分析】(1)建立平面直角坐标系,写出点的坐标,代入求解析式即可; (2)设“技”的坐标,表示“科”,列出方程解方程即可. ()20.25a a --,()22a a --,【小问1详解】 解:如图,以抛物线顶点为原点,以抛物线对称轴为轴,建立平面直角坐标系. y设这条抛物线表示的二次函数为.2y ax =∵抛物线过点,()5, 6.25-∴25 6.25a =-∴0.25a =-∴这条抛物线表示的二次函数为.20.25y x =-【小问2详解】能实现;.a =由“技”与“之”的水平距离为米,设“技”,“之”, 2a ()20.25a a --,()20.25a a -,则 “科”,()22a a --,“技”与“科”距地面的高度差为1.5米,,()220.25 1.5a a ∴---=解得:舍去)a =a =【点睛】本题考查运用二次函数解决实际问题,建立适当的平面直角坐标系,求出函数解析式是解题的关键.26. 在平面直角坐标系中,抛物线过点.xOy 21y ax bx =++()2,1(1)求(用含的式子表示); b a(2)抛物线过点,,.()2,M m -()1,N n ()3,P p ①判断:______0(填“>”“<”或“=”);()()11m n --②若,,恰有两个点在轴上方,求的取值范围.M N P x a 【答案】(1)2b a =-(2)①<②的取值范围是或 a 1138a -<≤-1a ≥【解析】【分析】(1)把代入,计算即可;()2,121y ax bx =++(2)①把代入,得,把代入()2,M m -21y ax bx =++18m a -=()1,N n ,得,当时,,,得21y ax bx =++1n a -=-0a >180m a -=>10n a -=-<;当时,,,得;()()110m n --<a<0180m a -=<10n a -=->()()110m n --<即可得出结论;②把,,代入,得,,()2,M m -()1,N n ()3,P p 21y ax bx =++81m a =+1n a =-+.当时,抛物线开口向上,对称轴为,则抛物线在时,取得最31p a =+0a >1x =1x =小值.所以,在轴上方,在轴上或轴下方,则,解得.当n M P x N x x 81031010a a a +>⎧⎪+>⎨⎪-+≤⎩1a ≥时,抛物线开口向下,对称轴为,所以抛物线在时,取得最大值,且0a <1x =1x =n .所以,在轴上方,在轴上或轴下方.则,解得<m p N P x M x x 10310810a a a -+>⎧⎪+>⎨⎪+≤⎩. 1138a -<≤-【小问1详解】解:把代入,得()2,121y ax bx =++,4211a b ++=∴;2b a =-【小问2详解】解:①把代入,得()2,M m -21y ax bx =++,421m a b =-+由(1)知:,2b a =-∴,18m a -=把代入,得()1,N n 21y ax bx =++,1n a b =++,1n a -=-当时,,,0a >180m a -=>10n a -=-<∴,()()110m n --<当时,,,a<0180m a -=<10n a -=->∴,()()110m n --<绽上,;()()110m n --<②由(1)知,2b a =-∴221y ax ax =-+∴抛物线对称轴为.1x =∵抛物线过点,,,()2,M m -()1,N n ()3,P p ∴,,.81m a =+1n a =-+31p a =+当时,抛物线开口向上,对称轴为,0a >1x =∴抛物线在时,取得最小值.1x =n ∵,,恰有两点在轴上方,M N P x ∴,在轴上方,在轴上或轴下方.M P x N x x ∴,解得.81031010a a a +>⎧⎪+>⎨⎪-+≤⎩1a ≥当时,抛物线开口向下,对称轴为,0a <1x =∴抛物线在时,取得最大值,且.1x =n <m p ∵,,恰有两点在轴上方,M N P x ∴,在轴上方,在轴上或轴下方.N P x M x x ∴,解得. 10310810a a a -+>⎧⎪+>⎨⎪+≤⎩1138a -<≤-综上,的取值范围是或. a 1138a -<≤-1a ≥【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的图象性质是解题的关键.27. 如图,在中,,.是边上一点,交ABC AB AC =120BAC ∠=︒D AB DE AC ⊥的延长线于点.CA E(1)用等式表示与的数量关系,并证明;AD AE (2)连接,延长至,使.连接,,.BE BE F EF BE =DC CF DF ①依题意补全图形;②判断的形状,并证明.DCF 【答案】(1),理由见解析;2AD AE =(2)①如图;②结论:是等边三角形,理由见解析.DCF 【解析】【分析】(1)根据,可知,DE AC ⊥120BAC ∠=︒90DEA ∠=︒,利用含角的直角三角形性质:角所对直角边等30ADE BAC DEA ∠=∠-∠=︒30︒30︒于斜边的一半,可得.2AD AE =(2)①根据题意补全图形即可;②延长至点使,连接,,根据可知,由BA H AH AB =CH FH AB AC =AH AC =,得是等边三角形,,18060HAC BAC ∠=︒-∠=︒ACH HC AC =, 根据,,可知,,60AHC ACH ∠=∠=︒AH AB =EF BE =2HF AE =HF AE ∥得,,,由60FHA HAC ∠=∠=︒120FHC FHA AHC ∠=∠+∠=︒FHC DAC ∠=∠,得,由,可证明,可得,2AD AE =HF AD =HA AC =FHC DAC ≌△△FC DC =,,从而可证明是等边三角形.HCF ACD ∠=∠60FCD ACH ∠=∠=︒DCF 【小问1详解】解:线段与的数量关系:.AD AE 2AD AE =证明: ,DE AC ⊥ .90DEA ∴∠=︒,120BAC ∠=︒30ADE BAC DEA ∴∠=∠-∠=︒;2AD AE ∴=【小问2详解】解:①补全图形,如图.②结论:是等边三角形.DCF 证明:延长至点使,连接,,如图.BA H AH AB =CH FH,AB AC =. ∴AH AC =,18060HAC BAC ∠=︒-∠=︒是等边三角形.∴ACH ,.∴HC AC =60AHC ACH ∠=∠=︒,,AH AB =EF BE =,.∴2HF AE =HF AE ∥.∴60FHA HAC ∠=∠=︒.∴120FHC FHA AHC ∠=∠+∠=︒,∴FHC DAC ∠=∠,2AD AE =.∴HF AD =,HC AC =()∴FHC DAC ≌△△SAS ,.∴FC DC =HCF ACD ∠=∠.∴60FCD ACH ∠=∠=︒是等边三角形.∴DCF【点睛】此题考查了含角的直角三角形性质,等边三角形的判定和性质,全等三角形的30︒判定和性质,综合掌握相关知识点是解题关键.28. 在平面直角坐标系中,对于点和线段,若线段或的垂直平分线与线xOy P AB PA PB 段有公共点,则称点为线段的融合点.AB P AB(1)已知,, ()30A ,()50B ,①在点,,中,线段的融合点是______; ()160P ,()212P -,()332P ,AB ②若直线上存在线段的融合点,求的取值范围;y t =AB t (2)已知的半径为4,,,直线过点,记线段关于O (),0A a ()1,0B a +l ()0,1T -AB 的对称线段为.若对于实数,存在直线,使得上有的融合点,直接写出l A B ''a l O A B ''a 的取值范围.【答案】(1)①,;②当时,直线上存在线段的融合点 1P 3P 22t -≤≤y t =AB(2或1a -≤≤1a -≤≤【解析】【分析】(1)①画出对应线段的垂直平分线,再根据融合点的定义进行判断即可;②先确定线段融合点的轨迹为分别以点,为圆心,长为半径的圆及两圆内区域,则当直AB A B AB 线与两圆相切时是临界点,据此求解即可;y t =(2)先推理出的融合点的轨迹即为以T 为圆心,的长为半径的圆和以T 为圆A B ''()1TA -心,以的长为半径的圆的组成的圆环上(包括两个圆上),再求出两个圆分别与()1TB +O 内切,外切时a 的值即可得到答案. 【小问1详解】解:①如图所示,根据题意可知,是线段的融合点,1P 3P AB故答案为;,;1P 3P②如图1所示,设的垂直平分线与线段的交点为Q ,PA AB ∵点Q 在线段的垂直平分线上,PA ∴,PQ AQ =∴当点Q 固定时,则点P 在以Q 为圆心,的长为半径的圆上,AQ ∴当点Q 在上移动时,此时点P 的轨迹即线段的融合点的轨迹为分别以点,为AB AB A B 圆心,长为半径的圆及两圆内区域. AB当直线与两圆相切时,记为,,如图2所示.y t =1l 2l∵,, ()30A ,()50B ,∴,2AB =∴或.2t =2t =-∴当时,直线上存在线段的融合点.22t -≤≤y t =AB 【小问2详解】解:如图3-1所示,假设线段位置确定,AB 由轴对称的性质可知,TA TA TB TB ''==,∴点在以T 为圆心,的长为半径的圆上运动,点在以T 为圆心,以的长为半径A 'TA B 'TB 的圆上运动,∴的融合点的轨迹即为以T 为圆心,的长为半径的圆和以T 为圆心,以A B ''()1TA -的长为半径的圆的组成的圆环上(包括两个圆上);()1TB +当时,TA TB <如图3-2所示,当以T 为圆心,为半径的圆与外切时,()1TA -O ∴,141TA -=+, 6=∴,2136a +=∴(负值舍去); a =如图3-3所示,当以为圆心,为半径的圆与内切时,T ()1TB +O ∴,13TB +=, 2=∴,22114a a +++=∴(负值舍去);1a -时,存在直线,使得上有的融合点;1a ≤≤l O A B ''同理当时,TA TB >当以T 为圆心,为半径的圆与外切时,()1TB -O ∴,141TB -=+, 6=∴,221136a a +++=∴(正值舍去);1a =-当以为圆心,为半径的圆与内切时,T ()1TA +O ∴,13TA +=, 2=∴,214a +=∴;a =∴时,存在直线,使得上有的融合点;1a ≤≤l O A B ''或时存在直线,使得上有1a -≤≤1a -≤≤l O A B ''的融合点.【点睛】本题主要考查了坐标与图形,轴对称的性质,线段垂直平分线的性质,勾股定理,圆与圆的位置关系等等,正确推理出对应线段的融合点的轨迹是解题的关键.。

2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。

人教版九年级上学期数学《期末检测试卷》含答案

14.如图, 是⊙O上的点,若 ,则 ___________度.
15.已知 ,且 ,且 与 周长和为175,则 的周长为_________.
16.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.
17.已知 , 是方程 的两个实根,则 ______.
23.如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.
24.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
∵188>187, > ,
∴平均数变小,方差变小,
故选A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1- )2+(x2- )2+…+(xn- )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.方程x(x﹣5)=x的解是()
[详解]解:∵∠A=22.5°,
∴∠BOC=2∠A=45°,
∵⊙O的直径AB垂直于弦CD,
∴CE=DE, 为等腰直角三角形,
∴CE=
∴CD=2CE= .
故选:C.
[点睛]本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理,掌握以上知识是解题的关键.
C. 平均数变大,方差变小D. 平均数变大,方差变大
[答案]A
[解析]

人教版九年级上学期数学《期末考试试卷》含答案

当 时, 随 的增大而增大,
对称轴与直线 重合或者位于直线 的左侧.
即:
故答案为
点睛:本题考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.
当 时, 随 的增大而增大,可知对称轴与直线 重合或者位于直线 的左侧.根据对称轴为 ,即可求出 的取值范围.
10.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
答案与解析
一、选择题
1.下列所给图形是中心对称图形但不是轴对称图形的是()
A. B. C. D.
[答案]D
[解析]
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
[答案]50°
[解析]
由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.
解:∵CC/∥AB,
∴∠C/CA=∠CAB=65°,
∵由旋转的性质可知:AC=AC/,
∴∠ACC/=∠AC/C=65°.
二、填空题
8.已知关于x的方程x2+x+m=0的一个根是2,则m=_____,另一根为_____.
9.已知二次函数y=2(x-h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是______.
10.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′ 位置,使得CC′∥AB,则∠B′AB等于_____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东城区2010-2011学年第一学期期末统一检测
初三数学试卷 2011.01
1. 一元二次方程122=-bx x 的常数项为( )
A. 1-
B. 1
C. 0
D. 1±
2. 下列图形中,是中心对称的图形是( )
3. 若DEF ABC ∆∆~,1:2:=DE AD 且ABC ∆的周长为16,则DEF ∆的周长为( )
A. 4
B. 16
C. 8
D. 32
4. 如图,在⊙O 中,CD 是直径,AB 是弦,CD AB ⊥于M ,8=AB ,5=OC ,则MD 的长为( )
A. 4
B. 2
C. 2
D. 1
5. 若关于x 的方程0222=--ax x 有两个不相等的实数根,则a 的值是( )
A. 2
B. 4
C. 6
D. 8 6. 抛物线2)1(32-+-=x y 经过平移得到抛物线23x y -=,平移的方法是( )
A. 向左平移1个单位,再向下平移2个单位
B. 向右平移1个单位,再向下平移2个单位
C. 向左平移1个单位,再向上平移2个单位
D. 向右平移1个单位,再向上平移2个单位
7. 某圆与半径为2的圆相切,若两圆的圆心距为5,则此圆的半径为( )
A. 3
B. 7
C. 3或7
D. 5或7 8. 小明从二次函数c bx ax y ++=2的图象(如图)中观察得到了下面五条信息:
①0<c ; ②0>abc ;③0>+-c b a ;④032=-b a ;⑤04>-b c ;你认为正确的信息是( )
A. ①②③⑤
B. ①②③④
C. ①③④⑤
D. ②③④⑤
9. 抛物线152--=x x y 与y 轴的交点坐标是__________
10. 若将分别写有“生活”、“城市”的2张卡片,随机放入“让生活更美好”中的两个内(每个只放1张卡片),则其中文字恰好组成“城市
让生活更美好”的概率______ 11. 如图,AB ,AC 是⊙O 的两条弦,︒=∠30A ,经过点C 的切线与OB 的延M
O
D C
B A -11x=13y x O O C
B
A
长线交于点D ,则D ∠的度数为_________
12. 在等腰梯形ABCD 中,BC AD //,AD BC 4=,2=AD ,︒=∠45B 。

直角三角
板含︒45角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD
交于点F ,若ABE ∆是以AB 为腰的等腰三角形,则CF 的等于_______
13. 解方程:0222=--x x .
14. 如图,⊙O 是ABC ∆外接圆,︒=∠45A ,BD 为⊙O 的直径,2=BD ,连
结CD ,求BC 的长。

15. 如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点。

ACB ∆和
DCE ∆的顶点都在格点上。

求证:ACB ∆DCE ∆~。

16. 如图,在平面直角坐标系中,AOB ∆的顶点A (2-,0)、B (1-,1)。

将AOB ∆绕
点O 顺时针旋转︒90后,点A 、B 分别落在'A 、 'B 。

(1)在图中画出旋转后的''OB A ∆;
(2)求点A 旋转到点'A 所经过的弧形路线长。

17. 已知二次函数的解析式为122++-=x x y .
(1)写这个二次函数图象的对称轴和顶点坐标,并求图象与x 轴的交点坐标; F E D C B A
E D C
B
A
(2)在给定的坐标系中画出这个二次函数大致图象,并求出抛物线与坐标轴的交点所组成的三角形的面积。

18. 小红用下面的方法来测量学校教学大楼AB 的高度:如图,在水平地面点E 处放一面平
面镜,镜子与教学大楼的距离20=AE 米。

当她与镜子的距离5.2=CE 米时,她刚好能从镜子中看到教学大楼的顶端B 。

已知她的眼睛距地面高度6.1=DC 米,请你帮助小红测量出大楼AB 的高度(注:入射角=反射角)。

19. 2009年4月7日国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》。

某市政府决定2009年用于改善医疗卫生服务的经费为6000万元,并计划2011年提高到7260万元。

若从2009年到2011年每年的资金投入按相同的增长率递增,求2009年到2011年的平均增长率。

20. 如图,AB 为⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为
DE 延长线上一点,且CB CE =。

(1)求证:BC 为⊙O 的切线; O y x
(2)若52=AB ,2=AD ,求线段BC 的长。

21. 某校团委发起了“传箴言”活动,初三(2)班团支部对该班全体团员在一个月内所发
箴言条的情况进行了统计。

结果显示发3条箴言的团员占全体团员的25%,并制成了如下不完整的统计图:
所发箴言条数条形统计图
(1)求该班团员中发4条箴言的有多少人?
(2)如果发了3条箴言的同学中有两位男同学,发了4箴言的同学中有三位女同学。

现从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会。

你用列表法或者树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率。

C
22. 某公司推出一款新型手机,投放市场以来前3个月的利润情况如图所示,该图可以近似
看作抛物线的一部分。

请结合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式;
(2)该公司在经营此款手机过程中,第几月的利润能达到24万元?
(3)若照此经营下去,请你结合所学的知识,对公司在此款手机的经营状况....
(是否亏损?何时亏损?)作预测分析。

23. 已知关于x 的一元二次方程0)12(22=-+--m m x m x .
(1)证明不论m 取何值时 ,方程总有两个不相等的实数根;
(2)若0≠m ,设方程的两个实数根分别为1x ,2x (其中21x x >),若y 是关于m 的函数,且121x x y -
=,结合函数图象回答:当自变量m 满足什么条件时,2≤y ?
24. 在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连结AD ,将线段AD 绕点
A 逆时针旋转︒90得到AE ,连结EC 。

(1)如果AC AB =,︒=∠90BAC
①当点D 在线段BC 上时(不与点B 重合),如图1,请你判断线段CE ,BD 之间的位置关系和数量关系(直接写出结论);
②当点D 在线段BC 的延长线上时,请你在图2中画出图形,并判断①中的结论是否仍然成立,并证明你的判断。

图1
E
D
C B A
图2C B A
(2)如图3,若点D 在线段BC 上运动,AD DF ⊥交线段CE 于点F ,
且︒=∠45ACB ,23=AC ,试求线段CF 长的最大值。

25. 抛物线a bx ax y 32-+=经过A (1-,0)、C (0,3-)两点,与x 轴交于另一点B 。

(1)求此抛物线的解析式;
(2)已知点D (m ,1--m )在第四象限的抛物线上,求点D 关于直线BC 对称的点'D ,的坐标。

(3)在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使CBD PCB ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由。

图3F E D C B A。

相关文档
最新文档