电极极化
电极的极化

电极上有(净)电流流过时,电极电势偏离其平衡值,此现象称作极化。根据电流的方向又可分为阳极化和阴极化。
极化是指腐蚀电池作用一经开始,其电子流动的速度大于电极反应的速度。在阳极,电子流走了,离子化反应赶不上补充;在阴极,电子流入快,取走子的阴极反应赶不上,这样阳极电位向正移,阴极电位向负移,从而缩小电位差,减缓了腐蚀。
阳极上析出电位(正值)要比理论析出电位更正;阴极上的析出电位要比理论析出电位更负,我们把实际电位偏离理论值的现象称为极化,把实际析出电位与理论析出电位间的差值称为超电位或过电位。
电极的去极化
凡是能减弱或消除极化过程的作用称为去极化作用。在溶液增加去极剂的浓度、升温、搅拌以及其它降低活化超电压的措施都将促进阴极去极化作用的增强;阳极去极化作用是指减少或消除阳极极化的作用,例如搅拌、升温等均会加快金属阳离子进入溶液的速度,从而减弱阳极极化。溶液中加入络合剂或沉淀剂,它们会与金属离子形成难溶解的络合物或沉淀物,不仅可以使金属表面附近溶液中金属离子浓度降低,并能一定程度地减弱阳极电化学极化。如果溶液中加入某些活性阴离子,就有可能使已经钝化了的金属重新处于活化状态。
显然,从控制腐蚀的角度,总是希望如何增强极化作用用以降低腐蚀速度。但是对于电解过程,腐蚀加工,为了减少能耗却常常力图强化去极化作用。用作牺牲阳极保护的材料也是要求极化性能越小越好。
在通常情况下,可以使用一些缓蚀剂、添加到水溶液中促使极化的产生。这类添加的物质,能促使阳极极化的叫阳极性缓蚀剂。能促使阴极极化的叫阴极性缓蚀剂。
电流通过电极时,电极电势偏离平衡电极电势的现象称为电极的极化。
极化导致电池在接入电路以后正负极间电压的降低,也导致电镀和电解槽在开始工作以后所需电压的升高。这二者都是不利的,所以我们要尽量减小极化现象。(从控制腐蚀的角度,应该设法增强极化)
电极极化曲线

电极极化曲线
电极极化曲线是研究电化学反应过程中电极表面现象的重要工具,它能直观地反映电极在充放电过程中的电势变化。
电极极化曲线主要包括两部分:伏安曲线和循环伏安曲线。
伏安曲线(Volt-Ampere curve)描述了电极在恒定电流条件下,电势与电流之间的关系。
当电极表面发生氧化还原反应时,电流会随之变化,从而形成伏安曲线。
伏安曲线可以分为三个区域:活性区、过渡区和线性区。
活性区位于曲线的左侧,此时电流与电势关系不稳定,电极表面反应活跃;过渡区位于活性区右侧,电流与电势关系逐渐变得稳定;线性区位于过渡区右侧,电流与电势呈线性关系。
循环伏安曲线(Cyclic Voltammetry curve)则是研究电极在循环充放电过程中,电势与电流的关系。
循环伏安曲线通常呈矩形,包括四个阶段:吸附、脱附、充电和放电。
吸附阶段表现为电流逐渐增大,电势上升;脱附阶段电流逐渐减小,电势下降;充电阶段电流迅速上升,电势迅速上升;放电阶段电流迅速下降,电势下降。
通过分析循环伏安曲线,可以了解电极材料的电化学性质、电极表面反应动力学参数以及电极寿命等信息。
电极极化曲线在电化学研究中的应用十分广泛,如锂电池、燃料电池、金属空气电池等领域。
通过对电极极化曲线的分析,可以优化电极设计、提高电池性能、延长电池寿命等。
此外,电
极极化曲线还可以应用于金属腐蚀研究,为防腐措施提供理论依据。
总之,电极极化曲线是研究电化学领域中不可或缺的重要工具。
电极极化名词解释

电极极化名词解释电极极化是指通过一些化学反应将电极表面上的电荷转换后得到的一种化学反应。
它是一种改变电极表面电荷结构的必要过程。
它是为了使电极表面的电荷能够有效的协同作用而建立的一种新的电极电荷结构,从而把它们的内部电荷包围在一起,增强它们的稳定性。
电极极化的作用是改变原来电极表面上电荷结构。
通过电极极化,可以使原来电极表面上的电荷结构重新组合,以及添加一些少量的极性电荷来支撑极性电荷系统的稳定性,使得电极表面上的电荷结构更加稳定。
电极极化可以通过两种方式来实现:一种是电泳极化,一种是化学极化。
前者是在电极表面的电荷边界处加入一定的电荷,这些电荷是来自外部电压或电流源的有定向的,这些电荷可以促使原来电极表面上的电荷结构重新组合,从而实现电极极化效果。
后者是以电解液中存在的电荷结构为基础,改变原来电极表面上的电荷结构,使得电极表面的电荷重新组合,从而实现电极极化的效果。
电极极化可以改变电荷结构,增加电极表面的稳定性,提高电极的性能。
因此,电极极化在许多科学技术领域中都有广泛的应用。
电极极化在化学分析领域应用最为广泛,它可以用来检测电极表面上的各种电荷结构,从而更好地控制实验条件和实验结果。
此外,电极极化也可用于生物技术领域。
在生物技术领域,电极极化可以用来控制细胞增殖,调节细胞各种生理活动,改变细胞的结构和功能,从而改变细胞的表型。
最后,电极极化也可以用于电化学技术领域,尤其是太阳能电池的制备。
太阳能电池的本质是利用电极极化在某种电解液中留存的特定电荷分布,来产生可以自发的电流。
电极极化还可以用于燃料电池和磁性调控等电子技术领域。
总之,电极极化是一种重要的物理化学现象,它可以改变电极表面上的电荷结构,使电极表面上的电荷结构更加稳定,增强电极性能。
电极极化已经在许多不同领域中得到了实际应用,受到了越来越多的人的青睐。
未来,电极极化将会在各个领域得到更广泛的应用,并可能起到更重要的作用。
电导率电极极化

电导率电极极化电导率电极极化是指在电导率测量中,电极表面发生的一种现象。
电导率是指物质导电能力的度量,而电极极化则是指在电导率测量中,电极表面发生的电化学反应。
在电导率测量中,电极极化会对测量结果产生影响,因此需要对其进行修正。
电导率是衡量物质电导能力的指标,它是物质导电性的度量。
在电导率测量中,通常使用电导率电极来测量物质的电导率。
电导率电极由两个电极组成,它们之间的距离和面积可以影响电导率的测量结果。
在电导率测量中,电极极化是不可避免的现象。
电极极化是指电极表面发生的一种电化学反应。
在电导率测量中,电极极化会影响到电导率的测量结果。
电极极化主要有两种类型,即极化电流和极化电势。
极化电流是指在电极表面发生的电流。
当电流通过电解质溶液时,电极表面的离子会发生氧化还原反应,产生极化电流。
这种极化电流会对电导率的测量结果产生影响。
极化电势是指电极表面的电势变化。
当电流通过电解质溶液时,电极表面会出现电势变化,即极化电势。
极化电势会对电导率的测量结果产生影响。
为了准确测量电导率,需要对电极极化进行修正。
一种常用的修正方法是使用交流电导法。
在交流电导法中,通过改变电流方向和频率,可以抵消电极极化带来的影响,从而准确测量电导率。
除了交流电导法,还有其他一些方法可以修正电极极化。
例如,可以使用双电位极化法、差分电导法等。
这些方法可以减小电极极化带来的影响,提高电导率测量的准确性。
电导率电极极化是在电导率测量中不可避免的现象。
电极极化会对电导率测量结果产生影响,因此需要进行修正。
交流电导法是一种常用的修正方法,可以减小电极极化带来的影响,提高电导率测量的准确性。
除了交流电导法,还有其他一些方法可以修正电极极化,如双电位极化法、差分电导法等。
通过合理选择修正方法,可以准确测量物质的电导率。
极化作用详解

当电流通过电极时,Zn2+ 以一定的速度被还原,沉积到阴
极上,降低了阴极附近的溶液中的Zn2+ 浓度,而Zn2+ 的扩散速
பைடு நூலகம்
度有限,本体溶液中的Zn2+ 来不及补充,使阴极附近的Zn2+ 浓
度低于它在本体溶液中的浓度。此时阴极附近的Zn2+ 活度为a´,
则 a´ < a。
按电极的能斯特方程,此时该阴极的电极电位
但由于两种电化学装置中进行的过程相反,阴、阳极与正、负 极对应关系不同,结果使原电池与电解池的极化后果是不同的。
原电池以不可逆方式放电时,即有一定的放电速率时,两电 极产生极化,此时两电极的电位是极化电位,此时电池的端电压
(E不可)
E端 = E+ - E- = E(阴) - E(阳)
E端 E(阴,平) 阴 E(阳,平) 阳 E(阴,平) E(阳,平) (阴 阳)
向移动,即使 E(阳)
故电化学极化亦使 E(阳) > E(阳, 平)
这样看来,两种极化的结果都相同,电极极化的结果,使阴
极电位降低,阳极电位升高,即
E(阴) < E(阴,平) η阴= E(阴,平) - E(阴)
η阴>0
E(阳) > E(阳,平) η阳= E(阳) - E(阳,平)
η阳>0
二. 电极的极化曲
§7.10 极化作用
➢ 电极的极化 ➢ 电极的极化曲线 ➢ 原电池的极化情况 ➢ 电解池中的极化情况 ➢ 电解时的电极反应
(三)电极的极化与电解过程
前面我们讨论的原电池均为可逆电池,电池在 I → 0 的情况
下放电,两电极处于电化学平衡状态下进行氧化与还原反应,这
电极极化介绍-20110529

电极极化介绍中国科学院金属研究所金属腐蚀与防护国家重点实验室2011-05-29一、极化现象电流通过电极时,电极电位偏离平衡值的现象,称为电极的极化。
极化现象的出现,以及电池存在一定的欧姆内阻,是电池工作电压大于或小于可逆电动势的原因。
实际工作电压可表示为E(工作)=E(可逆)±ΔE(不可逆) ±IR式中,E(可逆)是指相应的原电池的电动势,即理论电压;IR由于电池内溶液、电极材料、隔膜、导线和接触等电阻所引起的电势降;ΔE(不可逆)则是由于电极极化所致。
当电极上无电流通过时,电极处于平衡状态,此时的电势为φ0(平衡电势),随着电极上电流密度(I/S)的增加,电极的不可逆程度愈来愈大,其电势值与φ0的偏差也越大。
常把某一电流密度下的φ与φ0之间的差值称为超电势,以此来明确地表示出电极极化的状况,二、极化的分类和产生的原因按照极化产生的不同原因,通常可简单地把极化分为两类:电化学极化(活化极化)和浓差极化。
将与之相应的超电势称为电化学超电势(或活化超电势)和浓差超电势。
一般说来,可将产生超电势的原因归纳为以下三点:1. 浓差超电势:在电化学过程中,由于电极表面附近的离子在电极上发生反应而消耗,结果使表面浓度与溶液体相浓度的不同所造成的反电动势叫做浓差超电势。
2. 电化学超电势(或活化超电势):由于参加电极反应的某些粒子缺少足够的能量来完成电子的转移,因此需要提高电极电势,这部分提高的电势叫做活化超电势。
它与电极反应中某一个最缓慢步骤的反应活化能有关,故此得名。
3. 电阻超电势:当电流通过电极时,在电极表面或电极与溶液的界面上往往形成一薄层的高电阻氧化膜或其它物质膜,从而产生表面电阻电位降,这个电位降称为电阻超电势。
这种情况不具有普遍意义,以下不做探讨。
三、影响极化大小的因素浓差超电势的大小是电极浓差极化程度的量度,其值取决于电极表面离子浓度与本体溶液中离子浓度差值之大小。
因此,凡能影响这一浓差大小的因素,都能影响浓差电势的数值。
第四讲 电极与极化的概念

第四讲电极与极化的概念1. 引言电镀既是一门实用性很强的应用技术,又是一门涉及电化学高深理论的学科。
对电化学一无所知,就无法理解电镀生产中发生的许多现象、故障原因,也就无法应用好相应的工艺技术设备,无法将返工量降至最低,无法不断提高电镀质量。
因而搞电镀并不难(例如过去一些外行私人老板搞几个盆盆罐罐、一台破旧整流器也在镀锌),但要搞好电镀、要一步一步上档次很难。
要使中国由电镀大国转变为电镀强国,需要一大批既具理论基础又有丰富实践经验的技术工人与工艺管理人才。
例如,我们总希望镀层细致光亮、整平性好,整个镀层又要厚度均匀,薄且有良好性能,加工成本低。
那么,哪些因素影响最终效果?如何将这些因素控制在最佳状态?不少都涉及电化学知识。
而电化学理论又很高深,未受过高等专业教育的人很难搞得比较透彻。
对于一般生产一线的电镀工作者,的确“冰冻三尺非一日之寒”,需要长期刻苦学习;对初学者,则只能“千里之行始于足下”,先对一些基本概念、必备知识有所定性了解,为进一步深造打下基础,也能依此解决部分实际问题。
本讲不涉及电化学方面的许多公式、复杂方程式,也不能深入致电极过程动力学方面。
但力图较全面介绍相关概念,并就此结合部分实际问题加以分析。
2. 电极与电极电位的产生2.1. 电极以较简单情况为例:将金属锌置于pH值为中性的含氯化锌的水溶液和将金属铜置于含硫酸铜的水溶液中,并不通电时在两相界面上,会有什么现象发生呢?化学知识告诉我们,物质由分子组成,分子由原子组成,原子又由原子核和在不同轨道上不停绕着原子核旋转运动的电子组成。
原子核主要由带一个正电荷的质子和不带电荷的中子组成。
元素周期表中的第一号元素氢,结构最为简单,由一个质子和一个电子组成。
当失去该电子时成为正一价的H+,H+实际上就是质子。
纯净的金属为一种“单质”,则直接由金属原子组成。
在金属中,有一些“不守规矩”的电子,它们不受原子核的束缚,而在金属中自由移动,故称为“自由电子”。
电极极化

η 不可逆 可逆
电极极化的结果:
阴极电势降低 阳极电势升高
不可逆 可逆
不可逆 可逆
电极极化的原因:浓差极化和电化学极化
二、电极的极化与超电势
1. 浓差极化 电流通过电极时,若电极反应速率较快,而离子的扩散速率 较慢,则电极表面附近离子的浓度m’和本体溶液的m不同。 如:
3. 影响 的因素:
电极材料 电极表面状态 溶液的pH 温度 电流的大小
Tafel公式
η a bln( j/[ j])
j:电流密度 [j]:电流密度单位 a:与电极材料有关 b:与反应机理有关
二、电极的极化与超电势
(二)超电势的测定
实验: 测定有电流通过电极时的电极电势
方法:
R
KOH
CuSO4 NiSO4 AgNO3 ZnSO4
1.69
H2O2
1.23
1.67
H2O2
1.23
1.69
H2O2
1.23
1.67
H2O2
1.23
1.49
CuO20.51来自2.09NiO21.10
0.70
AgO2
0.04
2.55
ZnO2
1.60
二、电极的极化与超电势
(一)电极的极化与超电势
可逆
Cu2 /Cu
RT F
ln
1 mCu2
/m
不可逆
Cu 2 /Cu
RT F
1
ln
m' Cu 2
/m
不可逆, 阴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pt , H 2 ( PH ) | H C I (1 M ) | C I 2 ( PC I ), Pt
2 2
上一内容
下一内容
回主目录
返回
2012-6-27
(三)、电解与极化作用
(三)、电解与极化作用
四、 氢过电势
电解质溶液通常用水作溶剂,在电解过程中, + 在阴极会与金属离子竞争还原。 H 利用氢在电极上的过电势,可以使比氢活泼 的金属先在阴极析出,这在电镀工业上是很重要 的。 例如,只有控制溶液的pH,利用氢气的析出 有超电势,才使得镀Zn,Sn,Ni,Cr等工艺成为 现实。
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
金属在电极上析 出时过电势很小,通 常可忽略不计。而气 体,特别是氢气和氧 气,过电势值较大。 氢气在几种电极 上的过电势如图所示。 可见在石墨和汞等材 料上,过电势很大, 而在金属Pt,特别是 镀了铂黑的铂电极上, 过电势很小,所以标 准氢电极中的铂电极 要镀上铂黑。 回主目录 上一内容 下一内容
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
E ( 分 解 ) E ( 可 逆 ) E ( 不 可 逆 ) IR E ( 不 可 逆 ) (阳 ) (阴 )
显然分解电压的数值会随着通入电流强度的 增加而增加。 电解过程中,将原电池的可逆电动势称为理 论分解电压
§7.13 电解时电极上的反应
一、阴极上的反应
电解时阴极上发生还原反应。发生还原的 物质通常有(1)金属离子,(2)氢离子(中性水 溶液中 a 1 0 ) 判断在阴极上首先析出何种物质,应把可 能发生还原物质的电极电势计算出来,同时考 虑它的过电势。电极电势最大的首先在阴极析 出。
7 H
+
(M
返回
2012-6-27
(三)、电解与极化作用
二、实际分解电压 从理论上讲: 分解电压(E分解)= 可逆电池的电动势
(又称为理论分解电压E理论)
实际上 : E分解 > E理 原因: 电解过程中需要克服: 论 原电池所产生的可逆电动势 由于极化在阴、阳极上产生的超电势 (阴 )和 (阳 ) 电池电阻所产生的电位降 IR
返回
2012-6-27
(三)、电解与极化作用
影响过电势 的因素很多,如
电极材料、电极
表面状态、电流 密度、温度、电 解质的性质、浓 度及溶液中的杂
质等。
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
五
Tafel 公式
早在1905年,Tafel 发现,氢过电势与电 流密度之间在一定范围内存在如下的定量关系:
(三)、电解与极化作用
当外压增至2-3段,H2 和CI2的压力等于大气压 力,呈气泡逸出,反电动 势达到极大值 Eb,max。
再增加电压,I 迅速增
加。将直线外延至I =0处, 得E值,这是使电解质溶液
能连续不断发生电解时所必
需的最小外加电压,称为分 解电压--E分解。
上一内容 下一内容 回主目录
上一内容
下一内容
回主目录
返回
2012-6-27
(三)极化大致 分为两类:浓差极化和电化学极化。
1、浓差极化
在电解过程中,电极附近某离子浓度由于电 极反应而发生变化,本体溶液中离子扩散的速度 又赶不上弥补这个变化,就导致电极附近溶液的 浓度与本体溶液间有一个浓度梯度,这种浓度差 别引起的电极电势的改变称为浓差极化。 用搅拌和升温的方法可以减少浓差极化,但 也可以利用滴汞电极上的浓差极化进行极谱分析。
上一内容
下一内容
回主目录
返回
2012-6-27
(三)、电解与极化作用
四 金属离子的分离
如果溶液中含有多个析出电势不同的金属离 子,可以控制外加电压的大小,使金属离子分步 析出而达到分离的目的。 例如:电解质溶液中含有浓度为1.0M的 Ag+,Cu2+ ,Cd2+,当铜析出时,溶液中Ag+的浓度 为多少?
下一内容
C A g 1 .5 5 1 0
回主目录
8
M
2012-6-27
返回
(三)、电解与极化作用
为了使分离效果较好,后一种离子反应时, 前一种离子的活度应减少到 10 7 以下,这样要求 两种离子的析出电势相差一定的数值。
E RT zF ln 1 0
7
当
z 1 z 2 z 3
原电池中,负极
是阳极,正极是阴极。
随着电流密度的增加,
阳极析出电势变大, 阴极析出电势变小。 由于极化,使原电池 的作功能力下降。
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
但可以利用这种极化降低金属的电化腐蚀速度。
上一内容 下一内容 回主目录
返回
2012-6-27
使用Pt电极电解 1.0 M HCI溶液,实验 装置如图所示。
逐渐增加外加电压, 由安培计G和伏特计V 分别测定线路中的电流 强度I 和电压E,画出 I-E曲线。
上一内容 下一内容 回主目录
HCI
返回
2012-6-27
(三)、电解与极化作用
外加电压很小时, 几乎无电流通过,阴、 阳极上无H2和CI2放出。
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
2、电化学极化
电极反应总是分若干步进行,若其中一步反 应速率较慢,需要较高的活化能,为了使电极反 应顺利进行所额外施加的电压称为电化学超电势 (亦称为活化超电势),这种极化现象称为电化
学极化。
上一内容
下一内容
回主目录
a b lg j
这就称为Tafel 公式。式中 j 是电流密度, a 是单位电流密度时的过电势值,它与电极 材料、表面状态、溶液组成和温度等因素有关, 是过电势值的决定因素。 在常温下一般等于 b 。 0 .1 2 V
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
Pt , H 2 ( PH ) | H C I (1 M ) | C I 2 ( PC I ), Pt
2 2
该电池的电动势 与外加电压相反,阻 碍了电解的进行,理 论上讲电流应等于零, 然而由于电极上产物 的扩散,造成有微小 的电流通过。如图中 1-2段。
上一内容 下一内容 回主目录
返回
2012-6-27
E 0 .4 1V E 0 .2 1V E 0 .1 4 V
上一内容
下一内容
回主目录
返回
2012-6-27
(三)、电解与极化作用
例如:25C时,用铜电极电解0.1M的CuSO4和 0.1M ZnSO4水溶液,在一定电流密度下,氢气在 铜电极上的过电势为0.584V,电解时阳极上析出 氧气。阴极上析出物的先后次序如何? 解 阴极可能析出产物的析出电势:
(阴 ) (阴 , 平 ) (阴 , 不 可 逆 ) (阳 ) (阳 , 不 可 逆 ) (阳 , 平 )
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
三、 极化曲线
过电势或电极电势与电流密度之间的关系曲 线称为极化曲线,极化曲线的形状和变化规律反 映了电化学过程的动力学特征。
(1)电解池中两电极的极化曲线
上一内容
下一内容
回主目录
返回
2012-6-27
(三)、电解与极化作用
随着电流密度的增大,两电极上的过电势也 增大,阳极析出电势变大,阴极析出电势变小, 使外加的电压增加,额外消耗了电能。
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用 (2)、原电池中两电极的极化曲线
z+
|M ) ( M
$
z+
,M) 1
RT zF
ln
1 a M z+
( H |H )
+
RT
ln
上一内容
下一内容
F 回主目录
aH+
H
2
返回
2012-6-27
(三)、电解与极化作用
二
阳极上的反应
电解时阳极上发生氧化反应。发生氧化的物 质通常有:(1)阴离子,如 C l , O H 等, (2)阳极本身发生氧化。
E (理 论 分 解 ) E (可 逆 )
上一内容 下一内容 回主目录
返回
2012-6-27
(三)、电解与极化作用
一 、电极的极化
§7.12
极化作用
当电极上无电流通过时,电极处于平衡状态, (阳和 ) ,平 这时的电极电势分别称为阳极平衡电势 阴极平衡电势 (阴 , 平 ) 。 在有电流通过时,随着电极上电流密度的增 加,电极实际分解电势值对平衡值的偏离也愈来 愈大,这种对平衡电势的偏离称为电极的极化。
Ag
|Ag
0 .7 9 9V , C u 2 |C u 0 .3 3 7 V , C d 2 |C d 0 .4 0 3V
Ag
|Ag
A g | A g 0 .0 5 9 1 6 lg C A g 0 .3 3 7 V
上一内容
返回
2012-6-27
(三)、电解与极化作用 3、 过电势