七年级数学线段计算题
初一数学线段计算题

线段问题1.如图,已知线段AB=10cm,AC=4cm,点D是BC中点,求CD的长。
B2.已知线段AD上两点B,C,其中AD=16cm,BC=7cm, E,F分别是线段AB,CD的中点,求线段EF的长度。
3.如图,D为AB的中点,E为BC的中点,AC=10,EC=3,求AD的长4.如图,AF=10cm,AC=DF=4cm,B,E分别是AC,DF的中点,求BE.A5.如图,AB=4cm,BC=3cm,如果O是线段AC中点,求线段OB的长度。
6.在一条直线上顺次取A,B,C三点,AB=5cm,点O是线段AC中点,且OB=1.5cm,求线段BC的长。
7、已知:如图,C是线段AB上一点,M、N分别是线段AC、BC的中点,AB=11,求MN。
8、已知:C是线段AB的中点,D是CB上一点,E是DB的中点,若CE=4,,求线段AB的长。
9、如图,线段AB 上有C、D两点,点C将AB分成两部分,点D将线段AB分成两部分,若,求AB。
10、已知:如图线段MN,P为MN中点,Q为PN中点,R是MQ中点,则。
11、已知:B是线段AC上一点,且,又D是线段AC延长线上一点,且,若,求AB、BC的长。
12、如图:,F是BC的中点,,求EF。
13、如图:E、F是线段AC、AB的中点,且,求线段EF的长。
14、已知A、B、C、D为直线上四点且满足,M、N分别为AB 和CD的中点,,求AB、AC、AD。
15、如图,已知,CD的长为10cm,求AB的长。
16、如图,B、C两点,把AD分成三部分,E是线段AD中点,,求:(1)EC的长;(2)的值。
17、如图,M是AC中点,N是BC中点,O为AB中点,求证:MC=ON。
18、一条直线上顺次有A、B、C、D四点,且C为AD中点,,求的值。
19、已知线段AB、CD的公共部分,线段AB、CD的中点E、F的距离是6cm,求AB、CD的长。
20、已知线段,点C在直线AB上,点M、N分别是AC、BC 的中点,求MN的长度。
七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
(2021年整理)七年级数学线段计算题

七年级数学线段计算题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学线段计算题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学线段计算题的全部内容。
[例1]已知:如图,C是线段AB上一点,M、N分别是线段AC、BC 的中点,AB=11,求MN.[例2]已知:C是线段AB的中点,D是CB上一点,E是DB的中点,若CE=4,,求线段AB的长。
[例3]如图,线段AB 上有C、D两点,点C将AB分成两部分,点D将线段AB分成两部分,若,求AB。
[例4] 已知:如图线段MN,P为MN中点,Q为PN中点,R是MQ中点,则。
[例5] 已知:B是线段AC上一点,且,又D是线段AC延长线上一点,且,若,求AB、BC的长。
[例6] 如图:,F是BC的中点,,求EF。
[例7]如图:E、F是线段AC、AB的中点,且,求线段EF的长。
[例8]已知A、B、C、D为直线上四点且满足,M、N 分别为AB和CD的中点,,求AB、AC、AD。
【模拟试题】(答题时间:30分钟)2。
如图,已知,CD的长为10cm,求AB的长.3。
如图,B、C两点,把AD分成三部分,E是线段AD中点,,求:(1)EC的长;(2)的值。
4。
如图,M是AC中点,N是BC中点,O为AB中点,求证:MC=ON。
5。
一条直线上顺次有A、B、C、D四点,且C为AD中点,,求的值。
6. 已知线段AB、CD的公共部分,线段AB、CD的中点E、F的距离是6cm,求AB、CD的长。
7. 已知线段,点C在直线AB上,点M、N分别是AC、BC 的中点,求MN的长度.8. 同一直线上A、B、C、D四点,已知,且,求AB的长。
七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算
七年级数学上册 第四章 线段和差计算习题练习 试题

欠风丹州匀乌凤市新城学校线段的和差计算知识要求:1会从图形中找出线段的和差关系2会利用中点的定义3会书写简单的推理过程一例题1. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。
2.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。
3.如图,线段AB 和CD 的公共局部BD=31AB=41CD,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长 二稳固1.如下列图,AB=12厘米,25AM AB =,13BN BM =,求MN 的长. 2.如图,C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。
3.如图,AB=20cm,C 是AB 上一点,且AC=12cm,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.4.如图,AB=8cm,O 为线段AB 上的任意一点, C 为AO 的中点,D 为OB 的中点,你能求出线段CD 的长吗?并说明理由。
5. 线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,假设CD =3cm ,求AB 的长. 6. 线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.7.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。
〔1〕求线段MN 的长;〔2〕假设C 为线段AB 上任一点,满足acm =+BC AC ,其它条件不变,你能猜想MN 的长度吗?并说明理由。
〔3〕假设C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析微探究小专题3与线段有关的计算

点 C 在线段 AB 上两种情况.
1
2
3
4
5
6
7
8
9
10
11
微探究小专题3
与线段有关的计算
4. 已知线段 AB =20 cm, C 为直线 AB 上一点,且 AC =4 cm, M , N
分别是线段 AC , BC 的中点,则线段 MN 的长为(
因为 E 是线段 BD 的中点,所以 DE = BE = BD =2
cm.
所以 CE = CD + DE =4+2=6(cm).
1
2
3
4
5
6
7
8
9
10
11
微探究小专题3
与线段有关的计算
3. 已知线段 AB ,点 C 在直线 AB 上, AB =9, BC =5,若 M 是线段
AC 的中点,则线段 AM 的长为(
1
2
3
4
5
6
7
8
9
10
11
微探究小专题3
B
)
C. 4 cm
D. 5 cm
cm, M 是 AB 的中点,所以 MB = AB =5
所以线段 MN = MB - NB =5-2=3(cm).
1
2
3
4
5
6
7
8
9
10
11
cm.
微探究小专题3
2.
与线段有关的计算
如图, C , D 为线段 AB 上的两点, AC = CD = DB , E 是线段
北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

北师大版七年级数学上第4章基本平面图形 -- 线段计算题(含答案)AB=6C AB D AC BD1. 已知:线段厘米,点是的中点,点在的中点,求线段的长.AB=6AB C BC=2AB D AC2. 如图,已知线段,延长线段到,使,点是的中点.求:AC(1)的长;BD(2)的长.B C AD2:3:4M AD CD=8MC3. 如图、两点把线段分成三部分,是的中点,,求的长.C ABD BC AD=7BD=5CD4. 已知:为线段的中点,在线段上,且,,求:线段的长度.AB=20cm C AB D AC E BC DE 5. 如图,,是上任意一点,是的中点,是的中点,求线段的长.AC=6cm BC=15cm M AC CB N6. 如图,线段,线段,点是的中点,在上取一点,使得CN:NB=1:2MN,求的长.7. 如图,,两点把线段分成三部分,其比为,是的中点,B C MN MB:BC:CN =2:3:4P MN ,求的长.PC =2cm MN8. 已知,如图,点在线段上,且,,点、分别是、的中C AB AC =6cm BC =14cm M N AC BC 点.(1)求线段的长度;MN(2)在(1)中,如果,,其它条件不变,你能猜测出的长度吗?AC =acm BC =bcm MN 请说出你发现的结论,并说明理由.9. 已知、两点在数轴上表示的数为和,、均为数轴上的点,且. A B a b M N OA <OB (1)若、的位置如图所示,试化简:.A B |a|−|b|+|a +b|+|a−b|(2)如图,若,,求图中以、、、、这个点为端点的所|a|+|b|=8.9MN =3A N O M B 5有线段长度的和;(3)如图,为中点,为中点,且,,若点为数轴上一点,M AB N OA MN =2AB−15a =−3P 且,试求点所对应的数为多少?PA =23ABP10. 阅读材料:我们知道:点、在数轴上分别表示有理数、,、两点之间的距A B a b A B 离表示为,在数轴上、两点之间的距离.所以式子的几何意义是AB A B AB =|a−b||x−3|数轴上表示有理数的点与表示有理数的点之间的距离.3x 根据上述材料,解答下列问题:(1)若,则________;|x−3|=|x +1|x =(2)式子的最小值为________;|x−3|+|x +1|(3)若,求的值.|x−3|+|x +1|=7x11. 如图,是定长线段上一点,、两点分别从、出发以、的速度沿P AB C D P B 1cm/s 2cm/s 直线向左运动(在线段上,在线段上)AB C AP D BP (1)若、运动到任一时刻时,总有,请说明点在线段上的位置:C D PD =2AC P AB(2)在(1)的条件下,是直线上一点,且,求的值.Q AB AQ−BQ =PQ PQAB(3)在(1)的条件下,若、运动秒后,恰好有,此时点停止运动,点C D 5CD =12ABC D 继续运动(点在线段上),、分别是、的中点,下列结论:①的值D PB M N CD PD PM−PN 不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求MNAB 值.12. 如图,、是线段上两点,已知,、分别为、的中点,C D AB AC:CD:DB =1:2:3M N AC DB且,求线段的长.AB =18cm MN13. (应用题)如图所示,,,是一条公路上的三个村庄,,间路程为,A B C A B 100km ,间路程为,现在,之间建一个车站,设,之间的路程为. A C 40km A B P P C xkm (1)用含的代数式表示车站到三个村庄的路程之和;x(2)若路程之和为,则车站应设在何处?102km(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?最小值是多少?14. 已知线段,,线段在直线上运动(在左侧,在左侧). AB =12CD =6CD AB A B C D (1)、分别是线段、的中点,若,求;M N AC BD BC =4MN(2)当运动到点与点重合时,是线段延长线上一点,下列两个结论:①CD D B P AB 是定值;②是定值,请作出正确的选择,并求出其定值.PA +PB PCPA−PBPC15. 如图甲,点是线段上一点,、两点分别从、同时出发,以、的O AB C D O B 2cm/s 4cm/s 速度在直线上运动,点在线段之间,点在线段之间.AB C OA D OB(1)设、两点同时沿直线向左运动秒时,,求的值;C D AB t AC:OD =1:2OAOB(2)在(1)的条件下,若、运动秒后都停止运动,此时恰有,求C D 52OD−AC =12BD的长;CD (3)在(2)的条件下,将线段在线段上左右滑动如图乙(点在之间,点在CD AB C OA D 之间),若、分别为、的中点,试说明线段的长度总不发生变化.OB M N AC BD MN16. 线段,点是线段中点,点是线段上一点,且,是线段AB =12cm O AB C AB AC =12BCP 的中点.AC(1)求线段的长.(如图所示)OP(2)若将题目中:点是线段上一点,改为点是直线上一点,线段还可以是C AB C AB OP 多长?(画出示意图)17. 已知:如图,是定长线段上一定点,、两点分别从、出发以、1M AB C D M B 1cm/s 的速度沿直线向左运动,运动方向如箭头所示(在线段上,在线段上)3cm/s BA C AM D BM(1)若,当点、运动了,求的值.AB =10cm C D 2s AC +MD(2)若点、运动时,总有,直接填空:________.C D MD =3AC AM =AB(3)在(2)的条件下,是直线上一点,且,求的值.N AB AN−BN =MN MNAB参考答案与试题解析北师大版七上线段计算题一、 解答题 (本题共计 17 小题 ,每题 10 分 ,共计170分 ) 1.【答案】解:∵ 厘米,是的中点,AB =6C AB ∴ 厘米,AC =3∵ 点在的中点,D AC ∴ 厘米,DC =1.5∴ 厘米.BD =BC +CD =4.52.【答案】、.1833.【答案】解:设,,,AB =2x BC =3x CD =4x ∴ ,,AD =9x MD =92x则,,CD =4x =8x =2.MC =MD−CD =92x−4x =12x =12×2=14.【答案】解:∵ ,AD =7BD =5∴ AB =AD +BD =12∵ 是的中点C AB ∴AC =12AB =6∴ .CD =AD−AC =7−6=15.【答案】.10cm6.【答案】解:∵ 是的中点,M AC ∴,MC =AM =12AC =12×6=3cm又∵ CN:NB =1:2∴,CN =13BC =13×15=5cm∴ .MN =MC +NC =3cm +5cm =8cm 7.【答案】.MN =36cm 8.【答案】解:(1)∵ ,,AC =6cm BC =14cm 点、分别是、的中点,M N AC BC ∴ ,,MC =3cm NC =7cm ∴ ;MN =MC +NC =10cm(2).理由是:MN =12(a +b)cm∵ ,,AC =acm BC =bcm 点、分别是、的中点,M N AC BC ∴ ,,MC =12acmNC =12bcm ∴ .MN =MC +NC =12(a +b)cm9.【答案】所有线段长度的和为41.6(3)∵ a =−3∴ OA =3∵ 为的中点,为的中点M AB N OA ∴ ,AM =12ABAN =12OA∴ MN =AM−AN =12AB−12OA =12AB−32又MN =2AB−15∴2AB−15=12AB−32解得:AB =9∴PA =23AB =6若点在点的左边时,点在原点的左边(图略)P A P OP =9故点所对应的数为P −9若点在点的右边时,点在原点的右边(图略)P A P OP =3故点所对应的数为P 3答:所对应的数为或.P −9310.【答案】,,或.14x =92x =−5211.【答案】解:(1)根据、的运动速度知:C D BD =2PC ∵ ,PD =2AC ∴ ,即,BD +PD =2(PC +AC)PB =2AP ∴ 点在线段上的处;P AB 13(2)如图:∵ ,AQ−BQ =PQ ∴ ;AQ =PQ +BQ 又,AQ =AP +PQ ∴ ,AP =BQ ∴ ,PQ =13AB∴ .PQAB =13当点在的延长线上时Q ′AB AQ ′−AP =PQ′所以AQ ′−B Q ′=PQ =AB所以;PQAB=1(3)②.MNAB 的值不变理由:当时,点停止运动,此时,CD =12ABC CP =5AB =30①如图,当,在点的同侧时M N PMN =PN−PM =12PD−(PD−MD)=MD−12PD =12CD−12PD =12(CD−PD)=12CP =52②如图,当,在点的异侧时M N PMN =PM +PN =MD−PD +12PD =MD−12PD =12CD−12PD =12(CD−PD)=12CP =52∴ MNAB=5230=112当点停止运动,点继续运动时,的值不变,所以,.C D MN MNAB =11212.【答案】的长为.MN 12cm13.【答案】解:(1)路程之和为;PA +PC +PB =40+x +100−(40+x)+x =(100+x)km (2),,车站在两侧处;100+x =102x =2C 2km (3)当时,,车站建在处路程和最小,路程和为.x =0x +100=100C 100km 14.【答案】解:(1)如图,∵ 、分别为线段、的中点,1M N AC BD ∴,AM =12AC =12(AB +BC)=8,DN =12BD =12(CD +BC)=5∴ ;MN =AD−AM−DN =9如图,∵ 、分别为线段、的中点,2M N AC BD ∴,AM =12AC =12(AB−BC)=4,DN =12BD =12(CD−BC)=1∴ ;MN =AD−AM−DN =12+6−4−4−1=9(2)①正确.证明:.PA +PBPC=2∵,PA +PBPC=(PC +AC)+(PC−CB)PC=2PC PC=2∴ ①是定值.PA +PBPC215.【答案】解:(1)设,则,AC =x OD =2x 又∵ ,OC =2t DB =4t ∴ ,,OA =x +2t OB =2x +4t∴ ;OA OB =12(2)设,,又,,由,得AC =x OD =2x OC =52×2=5(cm)BD =52×4=10(cm)OD−AC =12BD ,,2x−x =12×10x =5,OD =2x =2×5=10(cm);CD =OD +OC =10+5=15(cm)(3)在(2)中有,,,,AC =5(cm)BD =10(cm)CD =15AB =AC +BD +CD =30(cm)设,,AM =CM =x BN =DN =y ∵ ,,2x +15+2y =30x +y =7.5∴ .MN =CM +CD +DN =x +15+y =22.516.【答案】解:(1)OP =AO−AP =12AB−AP=12AB−12AC =12AB−12×13AB.=13AB =4(2)如下图所示:此时,.OP =AO +AP =12AB +AP =12AB +12AC =12AB +12AB =AB =1217.【答案】解:(1)当点、运动了时,,C D 2s CM =2cm BD =6cm∵ ,,AB =10cm CM =2cm BD =6cm∴ AC +MD =AB−CM−BD =10−2−6=2cm(2)14(3)当点在线段上时,如图N AB∵ ,又∵ AN−BN =MN AN−AM =MN ∴ ,∴ ,即.BN =AM =14AB MN =12AB MN AB =12当点在线段的延长线上时,如图N AB∵ ,又∵ AN−BN =MN AN−BN =AB ∴ ,即.综上所述MN =AB MN AB =1MN AB =12或1。
人教版七年级数学上册作业课件 第四章 几何图形初步 专题训练(七) 线段的计算

6.A,B两点在数轴上的位置如图所示,现A,B两点分别以1个单位/秒、4个 单位/秒的速度同时向左运动.
(1)几秒钟后,原点O恰好在两点正中间? (2)几秒钟后,恰好有OA∶OB=1∶2?
解:(1)由图可知 OA=3,OB=12,设 x 秒钟后,原点 O 恰好在两点正中间, 则有 3+x=12-4x,解得 x=95 (2)设 y 秒钟后,恰好有 OA∶OB=1∶2, 则 OB=2OA,分两种情况:①当点 B 在点 O 的右边时,有 12-4y=2(3+y), 解得 y=1;②当点 B 运动到点 O 的左边时,有 4y-12=2(3+y),解得 y=9
5.如图,线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点 Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm,求AP,QB,AB的长.
解:设AP=2x cm,则PB=3x cm,所以AB=AP+PB=5x cm,因为AQ∶QB =4∶1,所以AQ=4x cm,QB=x cm,因为AQ-AP=PQ,所以4x-2x=3,解 得x=1.5,所以AP=3 cm,QB=1.5 cm,AB=7.5 cm
9.已知点A,B在数轴上的位置如图:
(1)若点P在数轴上,且PA+PB=6,求P点对应的数; (2)若点M在数轴上,MA∶MB=1∶3,求点M对应的数. 解:(1)①当点P在A,B之间时,不符合题意舍去;②当点P在点A右边时,点P 对应的数为2;③当点P在点B左边时,点P对应的数为-4 (2)①点M在线段AB上时,点M对应的数为0;②M在BA的延长线上时,点M对 应的数为3;③点M在AB的延长线上时,不合题意舍去
二、利用方程思想求线段的长 3.如图,已知线段 AB 上有两点 C,D,AD=35,BC=44,AC=23 BD, 求线段 AB 的长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例1] 已知:如图,C是线段AB上一点,M、N分别是线段AC、BC的中点,AB=11,求MN。
[例2] 已知:C是线段AB的中点,D是CB上一点,E是DB的中点,若CE=4,,求线段AB的长。
[例3] 如图,线段AB 上有C、D两点,点C将AB分成两部分,点D将线段AB 分成两部分,若,求AB。
[例4] 已知:如图线段MN,P为MN中点,Q为PN中点,R是MQ中点,则。
[例5] 已知:B是线段AC上一点,且,又D是线段AC延长线上一点,且,若,求AB、BC的长。
[例6] 如图:,F是BC的中点,,求EF。
[例7] 如图:E、F是线段AC、AB的中点,且,求线段EF的长。
[例8] 已知A、B、C、D为直线上四点且满足,M、N分别为AB
和CD的中点,,求AB、AC、AD。
【模拟试题】(答题时间:30分钟)
2. 如图,已知,CD的长为10cm,求AB的长。
3. 如图,B、C两点,把AD分成三部分,E是线段AD中点,,求:(1)EC的长;(2)的值。
4. 如图,M是AC中点,N是BC中点,O为AB中点,求证:MC=ON。
5. 一条直线上顺次有A、B、C、D四点,且C为AD中点,,求
的值。
6. 已知线段AB、CD的公共部分,线段AB、CD的中点E、F的距离是6cm,求AB、CD的长。
7. 已知线段,点C在直线AB上,点M、N分别是AC、BC的中点,求MN的长度。
8. 同一直线上A、B、C、D四点,已知,且,求AB的长。