初二数学上册全等三角形测试题及答案
2024年八年级数学上册《全等三角形》及答案解析

第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A. B.C. D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC的长是()A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.5m2 B.2m2 C.5m2 D.4m22二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°0<x<180,∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB= 50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个【答案】B【分析】根据全等形的定义,全等三角形的判定与性质,即可判断.【详解】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,故④说法正确;说法正确的有③④,共2个.故选:B.【点睛】本题考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.2.下列各组图形中,是全等形的是()A. B.C. D.【答案】B【分析】本题考查全等形,掌握能完全重合的两个图形是全等形是解题的关键.【详解】观察发现:A,C,D选项中两个图形不能完全重合,不是全等形;B选项中两个图形能完全重合,是全等形,故选B.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm【答案】C【分析】此题考查了全等三角形的性质,解题的关键熟练掌握性质的应用.根据全等三角形的对应边相等,再利用线段和差即可求解.【详解】∵△ABC≌△EBD,∴BE=AB=2cm,BC=BD=5cm,∴CE=BC-BE=3cm,故选:C.4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL【答案】B【分析】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.直接利用全等三角形的判定方法即可得出答案.【详解】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°,在△ABO和△DCO中,∠ABO=∠DCOBO=OC=CO∠BOA=∠COD,∴△ABO≌△DCO ASA∴证明△ABO≌△DCO的依据的是ASA,故选:B.5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D【答案】B【分析】本题考查三角形全等的判定,先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断即可,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL是解题的关键.【详解】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,A、添加BC=DE,不能判定△ABC≌△DEF;B、添加AE=DB,能判定△ABC≌△DEF;C、添加∠A=∠DEF,不能判定△ABC≌△DEF;D、添加∠ABC=∠D,不能判定△ABC≌△DEF;故选:B.6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对【答案】C【分析】本题主要考查三角形全等的判定定理,角平分线的性质,熟练掌握三角形全等的判定方程是解题的关键.根据全等三角形的判定分别证明△AOP≌△BOP(SAS),Rt△P AE≌Rt△PBF HL,△OEP≌△OFP (AAS),即可得到答案.【详解】解:∵OP平分∠MON,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS);∴AP=BP,∵OP平分∠MON,PE⊥OM,PF⊥ON∴PE=PF,∵PE⊥OM于点E,PF⊥ON于点F,∴Rt△P AE≌Rt△PBF HL;∵OP平分∠MON,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴△OEP≌△OFP(AAS).∴图中全等三角形有3对故选C.7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点【答案】B【分析】本题考查的是三角形的角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:要使洒水龙头到草坪三条边的距离相等,则洒水龙头的位置应选在三角形三条角平分线的交点,故选:B8.如图,在△ABC 中,CD 平分∠ACB ,DE ⊥BC 于点E ,S △ABC =30,DE =4,BC =10,则AC 的长是()A.5B.6C.7D.8【答案】A 【分析】本题主要考查了角平分线的性质定理.过点D 作DF ⊥AC 于点F ,根据角平分线的性质可得DE =DF =4,再由S △ABC =S △DBC +S △DAC ,即可求解.【详解】解:如图,过点D 作DF ⊥AC 于点F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,DE =4,∴DE =DF =4,∵S △ABC =S △DBC +S △DAC ,S △ABC =30,BC =10,∴30=12DE ×BC +12DF ×AC ,∴30=12×4×10+12×4×AC ,∴AC =5,故选:A .9.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF ,给出下列五个结论:①DE =DF ;②BC =2DB ;③AD ⊥BC ;④AB =3BF ;⑤S △ADB =2S △BDF ;其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A 【分析】本题考查了全等三角形判定和性质,角平分线的性质,等腰三角形的判定和性质,由角平分线的性质和平行线的性质可证∠ACB=∠ABC,可得AC=AB,由等腰三角形的性质可得AD⊥BC,CD= BD,由“ASA”可证△CDE≌△BDF,可得S△CDE=S△BDF,CE=BF,DE=DF,即可求解.【详解】解:∵BC恰好平分∠ABF,∴∠ABC=∠CBF,∵BF∥AC,∴∠ACB=∠CBF,∴∠ACB=∠ABC,∴AC=AB,且AD是△ABC的角平分线,∴AD⊥BC,BC=2DB,故②,③正确,符合题意;在△CDE和△BDF中,∠ACB=∠CBF CD=BD∠CDE=∠BDF,∴△CDE≌△BDF ASA,∴S△CDE=S△BDF,CE=BF,DE=DF,故①正确,符合题意;∵AE=2BF,∴AC=3BF=AB,故④正确,符合题意;∵BD=CD,∴S△ADB=S△ACD,∵AE=2BF,∴S△ADB=S△ACD=3S△CDE=3S△BDF,故⑤错误,不符合题意;故选:A.10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.52m2 B.2m2 C.5m2 D.4m2【答案】A【分析】本题主要考查平行线间的距离,全等三角形的判定与性质,过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,证明△CDA≌△AEB(AAS),得出AE=CD=2m,AD=BE=m,CF=DE=AD+AE=m+2m=3m,再根据=S四边形DEFE-S△ACD×2-S△BCF求解即可【详解】解:过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,则∠CDA=∠AEB=90°,如图,∵a∥b∥c,相邻两条平行线间的距离为m,∴BF⊥直线c,CD=2m,BE=BF=m,∵∠CAB=90°,∠CDA=90°∴∠DCA+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,∠DCA=∠EAB∠CDA=∠AEBAC=AB,∴△CDA≌△AEB(AAS),∴AE=CD=2m,AD=BE=m,∴CF=DE=AD+AE=m+2m=3m∴△ABC的面积=S四边形DEFE -S△ACD×2-S△BCF=3m×2m-12×2m×m×2-12×3m×m=52m2故选:A二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.【答案】130°/130度【分析】本题考查了全等三角形的性质与判定,邻补角的定义,掌握全等三角形的性质与判定是解题的关键.证明△ADC≌△ABE AAS得出∠ADC=∠ABE,根据邻补角即可求解.【详解】解:∵在△ADC和△ABE中,∠C=∠E∠A=∠AAD=AB,∴△ADC≌△ABE AAS,∴∠ADC=∠ABE,∵∠CDE=50°,∴∠ADC=180°-50°=130°,∴∠ABE=130°.故答案为:130°.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.【答案】105【分析】本题考查了全等图形的性质和四边形内角和公式,解题的关键在于熟练掌握全等图形的性质.根据全等的性质求出∠D=∠D ,利用四边形的内角和公式求出∠A的度数即可.【详解】解:∵四边形ABCD≌四边形A B C D .∴∠D=∠D ,∵∠D =105°,∴∠D=105°,∵∠B=90°,∠C=60°,∴∠A=360°-90°-60°-105°=105°,故答案为:105.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.【答案】∠BAD=∠CAE【分析】在△ABE与△ACD中,已知AE=AD,∠AED=∠ADE,即已知一角及角的一边对应相等,根据“AAS”的判定方法,可以添加已知边的对角对应相等即可.本题考查了全等三角形的判定定理:AAS:两角及其中一个角的对边对应相等的两个三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知结合图形及判定方法选择条件是正确解答本题的关键.【详解】解:可添加一个条件:∠BAD=∠CAE,使△ABD≌△ACE.理由:在△ABD与△ACE中,∠BAD=∠CAE∠AED=∠ADEBD=CE,∴△ABD≌△ACE(AAS).故答案为∠BAD=∠CAE14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.【答案】12【分析】根据平移的性质可得AC=A C ,BC=B C ,AC∥A C ,证明△ADC≌△C DA ,得到AD=C D,则S△C DC =12S△ACC,再推出S△ABC=S△ACC=24,则S△C DC=12S△ACC=12.【详解】解:由平移的性质可得AC=A C ,BC=B C ,AC∥A C ,∴∠DCA=∠DA C ,∠DAC=∠DC A ,∴△ADC≌△C DA ASA,∴AD=C D,∴S△C DC =12S△ACC,∵BC=CC ,△ABC的面积为24,∴S△ABC=S△ACC=24,∴S△C DC =12S△ACC=12.故答案为:12.【点睛】本题主要考查了平移的基本性质,全等三角形的性质与判定,三角形中线的性质,熟知平移的性质是解题的关键:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.【答案】52°/52度【分析】本题考查与角平分线有关的三角形的内角和定理.过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【详解】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵点M、N是∠ABC与∠ACB三等分线的交点,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=66°,∴∠ABC+∠ACB=180°-∠A=180°-66°=114°,∴∠MBC+∠MCB=23∠ABC+∠ACB=76°,在△BMC中,∠BMC=180°-∠MBC+∠MCB=180°-76°=104°∴∠BMN=12∠BMC=52°.故答案为:52°.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.【答案】3或7或10【分析】本题考查全等三角形的性质,关键是要分情况讨论.分情况,当E在线段AB上,或当E在线段AB延长线上,由HL即可求解.【详解】解:∵CA⊥AB,BM⊥AB,∠CAB=∠DBE=90°,∵ED=CB,当E在线段AB上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3tcm,∴BE=AB-AE=15-3tcm,∴15-3t=6,∴t=3;若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∴AE=0,∴t=0(舍去),当E在线段AB延长线上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3t=AB+BE=15+6=21(cm),∴t=7,若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∵AE=3t=AB+BE=15+15=30(cm),∴t=10,∴当t=3或7或10秒时,△DEB与△BCA全等.故答案为:3或7或10.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.【答案】见解析【分析】本题考查了全等三角形的判定与性质,由∠1=∠2可得∠EAD=∠BAC,再根据条件AB=AE,∠C=∠D,可利用AAS证明△ABC≌△AED AAS,再根据全等三角形对应边相等即可得出结论.【详解】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,∠C=∠D∠BAC=∠EADAB=AE,∴△ABC≌△AED AAS,∴BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.【答案】(1)见解析(2)BC∥AD,理由见解析【分析】本题考查了全等三角形的判定与性质,解决本题的关键是得到△ABC≌△CDA.(1)利用SAS证明△ABC≌△CDA即可;(2)由△ABC≌△CDA,得∠BCA=∠CAD,进而可以判断BC与AD的位置关系.【详解】(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,AB=CD∠BAC=∠ACDAC=CA,∴△ABC≌△CDA SAS;(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.【答案】(1)4;△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF(2)证明见解析【分析】本题主要考查了全等三角形的性质与判定,找出判定三角形全等的条件是解题的关键.(1)结合已知条件,再根据全等三角形的四个判定方法,即可找出所有的全等三角形;(2)先证明△AME≌△CNF SSS,即可证明∠MAE=∠NCF.【详解】(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,理由如下:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS;(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS,∴∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.【答案】(1)详见解析(2)125°【分析】本题考查了平行线性质和全等三角形的性质和判定的应用,证得△ABC≌△CDE是解题的关键.(1)根据平行线求出∠ACD=∠CDE,∠ACB=∠CED,再说明∠B=∠CDE,最后结合AC=CE运用AAS即可证明结论;(2)根据全等三角形性质得出∠A=∠E=55°,进而根据平角定义即可解答.【详解】(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE AAS.(2)解:∵∠A=55°,∵△ABC≌△CDE,∴∠A=∠ECD=55°,∴∠BCD=180°-∠ECD=180°-55°=125°.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.【答案】(1)∠ACE=37°(2)证明见解析(3)15【分析】本题主要考查了邻补角的性质、角平分线的性质与判定定理、三角形的面积等知识点,灵活运用相关知识点成为解答本题的关键.(1)根据邻补角的定义和垂直的定义可得∠ACD=74°、∠CHE=90°,进而得到∠ECH=37°,然后根据∠ACE=∠ACD-∠ECH即可解答;(2)如图:过E点分别作EM⊥BF于M,EN⊥AC与N,根据角平分线的性质定理以及角平分线的定义可得EM=EH、CE平分∠ACD、EN=EH,最后根据角平分线的判定定理即可解答;(3)根据S△ACD=S△ACE+S△CED结合已知条件可得EM=3,最后运用三角形的面积公式即可解答.【详解】(1)解:∵∠ACB=106°,∴∠ACD=180°-106°=74°,∵EH⊥BD,∴∠CHE=90°,∵∠CEH=53°,∴∠ECH=90°-53°=37°,∴∠ACE=∠ACD-∠ECH=74°-37°=37°.(2)证明:如图:过E点分别作EM⊥BF于M,EN⊥AC与N,∵BE平分∠ABC,∴EM=EH,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD )⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴S △ABE =12AB ⋅EM =15.22.问题提出:如图1,在四边形ABCD 中,∠BAD 与∠BCD 互补,∠B 与∠D 互补,AB =AD ,∠BAD =x °0<x <180 ,∠ACB =y °,数学兴趣小组在探究y 与x 的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y 757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y 与x 之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB 到E ,使BE =DC ,连接AE ,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x +y =135,AC =10,求四边形ABCD 的面积.【答案】(1)60,100,15;(2)y =90-12x ,理由见详解;(3)S 四边形ABCD =50【分析】(1)观察表格发现:x 每增加10,y 减小5,由此即可得出α、β、θ的值.(2)根据表格猜想:y =90-12x .延长CB 到E ,使BE =DC ,连接AE ,则可得△ABE ≌△ADE ,进而可得AE =AC ,∠EAB =∠CAD ,则可得∠EAC =x °.在△AEC 中,根据三角形内角和定理即可得出y 于x 之间的关系式.(3)延长CB 到E ,使BE =DC ,连接AE .由(2)得△ABE ≌△ADE ,则S △ABE =S △ADE ,进而可得S 四边形ABCD =S △AEC .由x +y =135,y =90-12x 可得x =90,y =45.则可得∠EAC =90°,∠AEC =∠ACE =45°,进而可得AE =AC =10,可得S △AEC 的值,即可得S 四边形ABCD 的值.【详解】(1)观察表格发现:x每增加10,y减小5,∴α=65-5=60,β=80+2×10=100,θ=40-3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90-12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,y=90-1x.2(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,∴S四边形ABCD∵x+y=135,y=90-1x,2x=135,∴x+90-12解得x=90,y=45,∴∠EAC=90°,∠AEC=∠ACE=45°,∴AE=AC=10,×10×10=50,∴S△AEC=12∴S=50.四边形ABCD【点睛】本题考查了数字类探索规律问题,以及全等三角形的判定和性质,三角形内角和定理.熟练掌握以上知识,证明出y与x之间的关系式是解题的关键.23.(1)【问题解决】如图①,∠AOB =∠DFE =90°,OC 平分∠AOB ,点F 在OC 上,∠DFE 的两边分别与OA ,OB 交于点D ,E .当FE ⊥OB ,FD ⊥OA 时,则FD 与FE 的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F 作两条相互垂直的射线FM ,FN ,分别交OA ,OB 于点M ,N ,判断FM 与FN 的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD ,如图③所示,∠DAB =∠DCB =90°,AC 是∠DAB 的平分线,AB =50m ,AD =30m ,直接写出该空地的面积.【答案】(1)FD =FE ;(2)FM =FN ,理由见详解;(3)1600m 2【分析】(1)根据“角平分线上的点到角两边的距离相等”可得FD =FE ;(2)先根据四边形内角和等于360°可得∠DFE =90°,由∠DFE =∠FMN =90°可得∠DFM =∠EFN ,再根据ASA 证明△DFM ≌△EFN ,则可得FM =FN ;(3)过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点.由(2)得△CFD ≌△CEB ,则可得FD =EB ,S △CFD =S △CEB ,进而可得S 四边形ABCD =S 四边形AECF .证明△ACF ≌△ACE (,则可得AF =AE ,由AE =AB -BE 、AF =AD +DF 可求得BE 的长,进而可得AF 、AE 的长,由此可得S 四边形AECF 的值,即可得S 四边形ABCD 的值.【详解】(1)解:∵OC 平分∠AOB ,点F 在OC 上,且FE ⊥OB ,FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°-∠FDO -∠FEO -∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,∠FDM =∠FENFD =FE ∠DFM =∠EFN,∴△DFM ≌△EFN (ASA ),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB,∴FD=EB,S△CFD=S△CEB,∴S四边形ABCD =S四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB-BE,AF=AD+DF,∴AB-BE=AD+DF,∴50-BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质,熟练掌握以上知识,正确的作出辅助线是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.【答案】(1)见解析;(2)见解析;(3)补全图形见解析,∠PCO=∠PDO或∠PCO+∠PDO=180°【分析】本题是三角形综合题目,考查了全等三角形的判定与性质、角平分线的性质等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键,属于中考常考题型.(1)先证明△DOE≌△COF(SAS),得∠PEC=∠PFD,再证△CPE≌△DPF(AAS),得PE=PF,然后证△OPE≌△OPF(SSS),得∠POE=∠POF,即可得出结论;(2)先证明△OCF≌△ODE(ASA),可得OF=OE,由(1)可得OP平分∠AOB;(3)过点P分别作PM⊥OA于M,PN⊥OB于N,分两种情况进行求解即可.【详解】解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P分别作PM⊥OA于M,PN⊥OB于N,∵OP是∠AOB的平分线,∴PM=PN,∠PMC=∠PND=90°,当PC=PD1时,在Rt△PMC和Rt△PND1中,PC=PD1,PM=PN∴Rt△PMC≌Rt△PND1(HL),∴∠PCO=∠PD1O;当PC=PD2时,同理得Rt△PMC≌Rt△PND2HL,∴∠PCM=∠PD2N;∵∠PD2N+∠PD2O=180°,∴∠PCO+∠PD2O=180°,综上所述,∠PCO与∠PDO的数量关系为∠PCO=∠PDO或∠PCO+∠PDO=180°;25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.【答案】(1)见解析;(2)50;(3)①见解析;63【分析】(1)证明△ABC≌△DAE AAS,即可得证;(2)同(1)法得到△AEP≌△BAG,△CBG≌△DCH,分割法求出图形面积即可;(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,易证△AFB≌△DP A,△AFC ≌△EQA,得到DP=AF,EQ=AF,再证明△DPG≌△EQG AAS,即可得出结论;②根据全等三角形的性质,求出AG的长,进而利用面积公式进行求解即可.【详解】解:(1)证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥CA,DE⊥AE,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ACB=∠DEA∠ABC=∠DAEBA=AD∴△ABC≌△DAE AAS,∴BC=AE.(2)由模型呈现可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CH=BG=3,则S实线围成的图形=12×4+6×3+6+4+3-12×3×6-12×3×6-12×3×4-12×3×4=50.(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q.图3由【模型呈现】可知,△AFB≌△DP A,△AFC≌△EQA,∴DP=AF,EQ=AF∴DP=EQ,∵DP⊥AG,EQ⊥AG∴∠DPG=∠EQG=90°,在△DPG和△EQG中,∠DPG=∠EQG∠DGP=∠EGQDP=EQ∴△DPG≌△EQG AAS,∴DG=GE.②由①可知,BF=AP,FC=AQ,∴BC=BF+FC=AP+AQ,∵BC=21,∴AP+AQ=21,∴AP+AP+PG+GQ=21,由①△DPG≌△EQG得∴PG=GQ,∴AP+AP+PG+PG=21,∴AP+PG=10.5,∴AG=10.5,∴S△ADG=1×10.5×12=63.2。
八年级数学上册第十二章《全等三角形》单元试卷含答案

八年级数学上册第十二章《全等三角形》单元试卷一、选择题(每小题只有一个正确答案)1.小林同学一不小心将厨房里的一块三角形玻璃摔成了如图所示的三部分,他想到玻璃店配一块完全相同的玻璃,那么他应该选择带哪个部分去玻璃店才能最快配得需要的玻璃()A.B.C.D.选择哪块都行2.如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是()A.AB△CDB. △ABC=△CDAC. △A=△CD.AD△BC3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:54.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC△△DEF,还需的条件是()A. △A=△DB. △B=△EC. △C=△FD.以上三个均可以5.如图,△BAD=△BCD=90°,AB=CB,可以证明△BAD△△BCD的理由是()A. HLB. ASAC. SASD. AAS6.如图,在△ABC中,△ABC=50°,△ACB=60°,点E在BC的延长线上,△ABC的平分线BD与△ACE 的平分线CD相交于点D,连接AD,则下列结论中,正确的是()A. △BAC=60°B. △DOC=85°C.BC=CDD.AC=AB7.如图,△ABC△△DEF,则下列判断错误的是()A.AB=DEB.BE=CFC.AC△DFD. △ACB=△DEF8.如图,△ABC中,AB△BC,BE△AC,△1=△2,AD=AB,则下列结论不正确的是()A.BF=DFB. △1=△EFDC.BF>EFD.FD△BC9.如图,△ABC△△DCB,若△A=80°,△ACB=40°,则△BCD等于()A. 80°B. 60°C. 40°D. 20°10.如图,小牛利用全等三角形的知识测量池塘两端A、B的距离,如图△CDO△△BAO,则只需测出其长度的线段是()A.AOB.CBC.BOD.CD11.如图,已知AD是△ABC的BC边上的高,下列能使△ABD△△ACD的条件是()A.AB=ACB. △BAC=90°C.BD=ACD. △B=45°12.已知如图,△GBC,△BAC的平分线相交于点F,BE△CF于H,若△AFB=40°,△BCF的度数为()A. 40°B. 50°C. 55°D. 60°二、填空题13.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有__________对.14.已知:如图,AE△BC,DF△BC,垂足分别为E,F,AE=DF,AB=DC,则△_________△△_________.15.如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证△B=△D,可先用等式的性质证明AF=________,再用“SSS”证明______△_______得到结论.16.如图,在平面直角坐标系中,△AOB△△COD,则点D的坐标是____________.17.如图,已知AB=AD,△BAE=△DAC,要用SAS判定△ABC△△ADE,可补充的条件是.三、解答题18.如图,CA=CD,CE=CB,求证:AB=DE.19.如图,已知BD为△ABC的平分线,AB=BC,点P在BD上,PM△AD于M,PN△CD于N,求证:PM=PN.20.如图,AD△BC于D,AD=BD,AC=BE.(1)请说明△1=△C;(2)猜想并说明DE和DC有何特殊关系.21.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE△BC,DF△BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的是Rt△ABE△Rt△DCF,△AEC△△DFB.说明理由.答案解析1.【答案】C【解析】A块和B块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;C块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.则应带C去.故选C.2.【答案】D【解析】题中已有条件AD=BC,隐含公共边相等,那么就缺少这两边所夹的角相等,即△ADC=△BDC,选项中没有此条件,要想得到这个条件,需添加AD△BC.3.【答案】C【解析】利用同高不同底的三角形的面积之比就是底之比可知选C.4.【答案】B【解析】要使两三角形全等,且根据SAS已知AB=DE,BC=EF,还差夹角,即△B=△E;A、C都不满足要求,D也就不能选取.故选B.5.【答案】A【解析】△△BAD=△BCD=90°,AB=CB,DB=DB,△△BAD△△BCD(HL).故选A.6.【答案】B【解析】△△ABC=50°,△ACB=60°,△△BAC=180°-△ABC-△ACB=180°-50°-60°=70°,故A选项错误,△BD平分△ABC,△△ABO=△ABC=×50°=25°,在△ABO中,△AOB=180°-△BAC-△ABO=180°-70°-25°=85°,△△DOC=△AOB=85°,故B选项正确;△CD平分△ACE,△△CBD=△ABC=×50°=25°,△CD平分△ACE,△△ACD=(180°-60°)=60°,△△BDC=180°-85°-60°=35°,△BC≠CD,故C选项错误;△△ABC=50°,△ACB=60°,△AC≠AB,故D选项错误.故选B.7.【答案】D【解析】△△ABC△△DEF,△AB=DE,A正确;BE=CF,B正确;AC△DF,C正确,△ACB=△DFE,D 判断错误,故选D.8.【答案】B【解析】△AB△BC,BE△AC,△△C+△BAC=△ABE+△BAC=90°,△△C=△ABE,在△ABF与△ADF中,,△△ABF△△ADF,△BF=DF,故A正确,△△ABE=△ADF,△△ADF=△C,△DF△BC,故D正确;△△FED=90°,△DF>EF,△BF>EF;故C正确;△△EFD=△DBC=△BAC=2△1,故B错误.故选B.9.【答案】B【解析】△△ABC△△DCB,△△ACB=△DBC,△ABC=△DCB,△ABC中,△A=80°,△ACB=40°,△△ABC=180°-80°-40°=60°,△△BCD=△ABC=60°,故选B.10.【答案】D【解析】要想利用△CDO△△BAO求得AB的长,只需求得线段DC的长,故选D.11.【答案】A【解析】添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加△B=△C,符合判定定理AAS;添加△BAD=△CAD,符合判定定理ASA;选其中任何一个均可.故选A.12.【答案】B【解析】作FZ△AE于Z,FY△CB于Y,FW△AB于W,△AF平分△BAC,FZ△AE,FW△AB,△FZ=FW,同理FW=FY,△FZ=FY,FZ△AE,FY△CB,△△FCZ=△FCY,△△AFB=40°,△△ACB=80°,△△ZCY=100°,△△BCF=50°.故选B.13.【答案】(1)和(6),(2)(3)(5).【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案14.【答案】ABE;DCF【解析】证明:△在△ABE和△DCF中,AE△BC,DF△BC,AE=DF,AB=DC,符合直角三角形全等条件HL,所以△ABE△△DCF,故填ABE;DCF.15.【答案】CE;△ABF;△CDE【解析】先运用等式的性质证明AF=CE,再用“SSS”证明△ABF△△CDE得到结论.故答案为CE,△ABF,△CDE.16.【答案】(-2,0)【解析】△△AOB△△COD,△OD=OB,△点D的坐标是(-2,0).故答案为(-2,0).17.【答案】AC=AE【解析】可补充的条件是:当AC=AE,△ABC△△ADE(SAS).18.【答案】证明:在△ACB和△DCE中,,△△ACB△△DCE(SAS),△AB=DE.【解析】直接利用SAS判定△ACB△△DCE,再根据全等三角形的性质可得AB=DE.19.【答案】证明:△BD为△ABC的平分线,△△ABD=△CBD,在△ABD和△CBD中,,△△ABD△△CBD(SAS),△△ADB=△CDB,△点P在BD上,PM△AD,PN△CD,△PM=PN.【解析】根据角平分线的定义可得△ABD=△CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得△ADB=△CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.20.【答案】解:(1)△AD△BC于D,△△BDE=△ADC=90°.△AD=BD,AC=BE,△△BDE△△ADC (HL).△△1=△C.(2)由(1)知△BDE△△ADC.△DE=DC.【解析】欲证△1=△C;DE和DC的关系,只需证明△DBE△△DAC即可.21.【答案】证明:△AE△BC,DF△BC,垂足分别为E、F,△△AEB=△DFC=90°,而AB=DC,AE=DF,△Rt△ABE△Rt△DCF,△BE=CF,△EC=BF,而AE=DF,△△AEC△△DFB.【解析】需先根据HL判定Rt△ABE△Rt△DCF,从而得出BE=CF,则推出EC=BF,再根据SAS判定△AEC△△DFB,求出AC=BD.。
八年级数学:全等三角形测试题(含答案)

八年级数学:全等三角形测试题(含答案)一、选择题1.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【答案】D.【解析】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选D.2.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30° B.50° C.60° D.100°【答案】D.【解析】∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠D=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【答案】D.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°【答案】D.【解析】如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选D.5.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等【答案】C.【解析】A.如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B.图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;C.全等图形的面积相等,但是面积相等的两个图形不一定是全等图形,故此选项错误,符合题意;D.全等三角形的对应边相等,对应角相等,正确,不合题意;故选C.6.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°【答案】B.【解析】∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,△ABC中,∠A=80°,∠ACB=40°,∴∠ABC=180°﹣80°﹣40°=60°,∴∠BCD=∠ABC=60°,故选B.7.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°【答案】B.【解析】∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=12(∠BAE﹣∠DAC)=12(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.二、填空题8.如图,△AEB≌△ACD,AB=10cm,∠A=60°,∠ADC=90°,则AD= .【答案】5cm.【解析】∵∠A=60°,∠ADC=90°,∴∠C=30°,∵△AEB≌△ACD,∴AC=AB=10cm,∴AD=12AC=5cm.9.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=度,A′B′=cm.【答案】70;15.【解析】∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∴∠C′与∠C是对应角,A′B′与边AB是对应边,故填∠C′=70°,A′B′=15cm.10.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=°.【答案】110.【解析】∵△ABC≌△DEF,∴∠E=∠B=40°,∴∠F=180°﹣∠E﹣∠D=180°﹣40°﹣30°=110°.11.如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.【答案】30°.【解析】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.12.如图,△ABC≌△D CB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是 cm.【答案】7.【解析】由题意得:AB=DC,∠A=∠D,∠AOB=∠DOC,∴△AOB≌△DOC,∴OC=BO=BD﹣DO=AC﹣OD=7.13.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为【答案】125°或15°.【解析】∵BE⊥AD于E,∠EBD=20°,∴∠BDA=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD=55°,∵△ABD≌△CDB,∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况:①如图1所示:∠CDE=70°+55°=125°;②如图2所示:∠CDE=70°﹣55°=15°;综上所述:∠CDE的度数为125°或15°.三、解答题14.,如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.【答案】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,【解析】(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.【答案】(1)∠D=50°,∠E=40°,∠EBD=90°;(2)3. 【解析】(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=12(AD﹣BC)=3.16.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM, ∴FH=GM,∠EGM=∠NHF;(2)2.1cm.2.2cm.【解析】(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.。
八年级数学上册《全等三角形》单元测试题(含答案解析)

八年级数学上册《全等三角形》单元测试题(含答案解析)一、选择题(每题4分,共40分)1. 在三角形ABC中,AB=AC,点D是边BC上的一个点,且BD=DC。
以下结论正确的是()A. AD平分∠BACB. AD垂直平分BCC. AD平分∠BD. AD平分∠C【答案】B【解析】因为AB=AC,所以三角形ABC是等腰三角形,∠B=∠C。
又因为BD=DC,所以AD垂直平分BC。
2. 如果两个三角形的两边和它们夹角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】B【解析】根据SAS全等定理,如果两个三角形的两边和它们夹角分别相等,那么这两个三角形全等。
3. 在全等三角形ABC和DEF中,如果∠A=40°,∠B=50°,那么∠E的度数是()A. 40°B. 50°C. 60°D. 90°【答案】C【解析】因为三角形ABC和DEF全等,所以∠A=∠D,∠B=∠E。
所以∠E=∠B=50°。
又因为三角形内角和为180°,所以∠E=180°-∠A-∠D=60°。
4. 如果两个三角形的两边及其中一边的对角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】这种情况不能确定两个三角形全等,因为可能存在两种情况:一种是两个三角形全等,另一种是两个三角形不全等但相似。
5. 在全等三角形ABC和DEF中,如果AB=5cm,BC=8cm,AC=10cm,那么DE的长度是()A. 5cmB. 8cmC. 10cmD. 13cm【答案】C【解析】因为三角形ABC和DEF全等,所以对应边相等,即AB=DE,所以DE=5cm。
6. 如果两个三角形的三个角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】如果两个三角形的三个角分别相等,那么这两个三角形不一定全等,但一定相似。
初二上数学《全等三角形》测试题及答案

初二上数学《全等三角形》测试题及答案一、选择题1.如图1, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个2.如图2,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°3.已知:如图3,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对 4.将一张长方形纸片按如图4所示的方式折叠,BC BD , 为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 5.依照下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 6.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等7.如图5,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( ) A .1:2 B .1:3 C .2:3 D .1:48. 如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰59.如图7,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多能够构成正确的结论的个数是( ) A .1个 B .2个C .3个D .4个10.如图8所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则AD CB图1EF A D OC B图2AD ECB图3FGAEC 图4B A ′E ′D∠α的度数为()A.80°B.100°C.60°D.45°.二、填空题11.如图9,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______________________________。
初二数学上册全等三角形测试题(有答案)

初二数学上册全等三角形测试题(有答案)22.如图17,中,∠B=∠C,D,E,F分别在,,上,且,。
求证:.证明:∵∠DEC=∠B+∠BDE(),又∵∠DEF=∠B(已知),∴∠______=∠______(等式性质).在△EBD与△FCE中,∠______=∠______(已证),______=______(已知),∠B=∠C(已知),∴ ().∴ED=EF( ).23.如图18,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由。
24.如图19,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设的度数为x,∠ 的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律。
25.如图20,公园有一条“ ”字形道路,其中∥ ,在处各有一个小石凳,且,为的中点,请问三个小石凳是否在一条直线上?说出你推断的理由。
26.如图21,给出五个等量关系:① ② ③ ④⑤ .请你以其中两个为条件,另三个中的一个为结论,推出一个准确的结论(只需写出一种情况),并加以证明。
已知:求证:证明:27.如图22,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM 相交于点C.求证:点C在∠AOB的平分线上。
28. (1)如图23(1),以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由。
(2)园林小路,曲径通幽,如图23(2)所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是平方米,内圈的所有三角形的面积之和是平方米,这条小路一共占地多少平方米?《全等三角形》测试题答案一、耐心填一填题号 1 2 3 4 5 6 7 8 9 10答案 D C A C C D D C B A二、耐心填一填11.略(答案不惟一) 12.略(答案不惟一) 13.5 14.8 15.1.5cm16.4 17.略 18.互补或相等 19.15 20.35三、用心想一想21.略. 22.三角形的一个外角等于与它不相邻两个内角的和,BDE,CEF,BDE,CEF,BD,CE,ASA,全等三角形对应边相等.23.此时轮船没有偏离航线.画图及说理略.24.(1)△EAD≌△ ,其中∠EAD=∠ ,;(2);(3)规律为:∠1+∠2=2∠A.25.在一条直线上.连结并延长交于证.26.情况一:已知:求证:(或或)证明:在△和△ 中△ △即情况二:已知:求证:(或或)证明:在△ 和△ 中,△ △27.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴点C在∠AOB的平分线上.28. (1)解:与面积相等过点作于,过点作交延长线于,则四边形和四边形都是正方形(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和这条小路的面积为平方米.。
(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒D解析:D【分析】 先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D .【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.3.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > A解析:A【分析】 当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.4.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = D解析:D【分析】 根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4B解析:B【分析】 先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒C解析:C【分析】 先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C解析:C【分析】 利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.二、填空题11.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角 解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.12.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15【分析】如图过点D 作DE ⊥AB 于E 首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D 作DE ⊥AB 于E 由作图可知AD 平分∠CAB ∵CD ⊥ACDE ⊥AB ∴DE=CD=3∴S △ 解析:15【分析】如图,过点D 作DE ⊥AB 于E .首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D 作DE ⊥AB 于E .由作图可知,AD 平分∠CAB ,∵CD ⊥AC ,DE ⊥AB ,∴DE=CD=3,∴S △ABD =12•AB•DE=12×10×3=15, 故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.13.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D,若∠D=20°,则∠A=_____.40°【分析】利用角平分线的性质可知∠ABC=2∠DBC∠ACE=2∠DCE再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE∠A=∠ACE﹣∠ABC即得出∠A=2∠D即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC=2∠DBC,∠ACE=2∠DCE.再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE,∠A=∠ACE﹣∠ABC.即得出∠A=2∠D,即得出答案.【详解】∵∠ABC的平分线交∠ACE的外角平分线∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBE=2(∠DCE﹣∠DBE),∴∠A=2∠D=40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.≅,延长BC,分别交AD,ED于点F,G,若14.如图,ABC ADE∠=________︒.∠=︒,10B∠=︒,30EAB120CAD∠=︒,则CFD95【分析】根据全等三角形的性质得∠BAC=∠DAE 结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE ,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE ≅,∴()12010255BAC DAE ∠=∠=-÷=,∴85ACF BAC B ∠=∠+∠=,∴18085CFA ACF CAD ∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.【点睛】本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键.15.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.3【分析】由AD ⊥CEBE ⊥CE 可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD 从而求得△CEB ≌△ADC 然后利用全等三角形的性质可以求得BE 的长【详解】解:∵∠A解析:3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB 和△ADC 中,BCE CAD BEC CDA AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△ADC (AAS );∴BE=CD ,CE=AD=9.∵DC=CE-DE ,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC =AC ,∴若添加条件AB =AD ,则△ABC ≌△ADC (SAS );若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,AB=8cm,AC=5cm,∠A=∠B,点P在线段AB上以2cm/s的速度由点A向B 运动,同时,点Q以x cm/s的速度从点B出发在射线BD上运动,则△ACP与△BPQ全等时,x的值为_____________2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.19.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP 交BC 于T 利用全等三角形的性质证明AP=PT 即可解决问题【详解】解:如图延长AP 交BC 于T ∵BP ⊥AT ∴∠BPA=∠BPT=90°∵BP=BP ∠PBA=∠PBT ∴△BPA ≌ 解析:12 cm 2 【分析】如图,延长AP 交BC 于T .利用全等三角形的性质证明AP=PT 即可解决问题.【详解】解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==,1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.或【分析】对点P 和点Q 是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.(1)如图,∠MAB=30°,AB=2cm,点C在射线AM上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .解析:(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可; (2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.解析:(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE ,再证明∠ABC=∠DBE ,根据AAS 可证明△ABC ≌△DBE ;(2)根据∠ABE 和∠DBC 的度数可以算出∠CBE 和∠ABD 的度数,从而得到∠CDE .【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.23.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.24.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.解析:(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ;(2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90°∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.25.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .解析:见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.26.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.27.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 28.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.解析:(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形综合能力测试题
一、填空题(每题3分,共30分)
1.如图1所示,两个三角形全等,其中已知某些边的长度和某些角的度数,•则x=_______.
(1) (2)
2.如图2所示,在△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,•需要补充的一个条件是____________.
3.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_______________.4.在△ABC和△A′B′C中,∠A=∠A′,CD与C′D′分别为AB边和A′B•′边上的中线,再从以下三个条件:①AB=A′B′;②AC=A′C′;③CD=C′D•′中任取两个为题设,另一个作为结论,请写出一个正确的命题:________(用题序号写).
5.如图3所示,△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=•5cm,则D点到直线AB 的距离是______cm.
(3) (4)
6.如图4所示,将一副七巧板拼成一只小动物,则∠AOB=•_______.
7.如图5所示,P、Q是△ABC的边BC上的两点,且BP=PQ=QC=•AP=AQ,则∠BAC的大小等于__________.
(5) (6) (7)
8.已知等腰△ABC中,AB=AC,D为BC边上一点,连结AD,若△ACD•和△ABD都是等腰三角形,则∠C的度数是________.
9.如图6所示,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,•连结BD,过A点作BD的垂线,交BC于E,如果EC=3cm,CD=4cm,则梯形ABCD•的面积是_______cm.
10.如图7所示,△ABC、△ADE与△EFG都是等边三角形,D•和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是________.
二、选择题(每题3分,共30分)
11.如图8所示,在∠AOB的两边截取AO=BO,CO=DO,连结AD、BC交于点P,考察下列结论,其中正确的是()
①△AOD≌△BOC ②△APC≌△BPD ③点P在∠AOB的平分线上
A.只有① B.只有②
C.只有①② D.①②③
12.下列判断正确的是()
A.有两边和其中一边的对角对应相等的两个三角形全等
B.有两边对应相等且有一角为30°的两个等腰三角形全等 (8)
C.有一角和一边相等的两个直角三角形全等
D.有两角和一边对应相等的两个三角形全等
13.如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是()
A.相等 B.互余 C.互补或相等 D.不相等
14.如图9所示,在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()
(9)
15.将五边形纸片ABCDE按如图10所示方式折叠,折痕为AF,点E、D分别落在E′,D′,已知∠AFC=76°,则∠CFD′等于()
A.31° B.28° C.24° D.22°
(10) (11) (12)
16.如图11所示,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么ABCD的周长是()
A.4 B.8 C.12 D.16
17.如图12所示,在锐角△ABC中,点D、E分别是边AC、BC的中点,且DA=DE,那么下列结论错误的是()
A.∠1=∠2 B.∠1=∠3 C.∠B=∠C D.∠3=∠B
18.如图13所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()
A.2 B.2
C.2 D2-1
(13) (14) (15)
19.如图14所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+•∠7=()
A.245° B.300° C.315° D.330°
20.已知:如图15所示,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD•相交于点O,∠1=∠2,图中全等的三角形共有()
A.1对 B.2对 C.3对 D.4对
三、解答题(共60分)
21.(9分)如图所示,有一池塘,要测量池塘两端A、B的距离,请用构造全等三角形的方法,设计一个测量方案(画出图形),并说明测量步骤和依据.
22.(9分)如图所示,已知∠1=∠2,∠C=∠D,求证:AC=BD.
23.(9分)如图所示,D、E分别为△ABC的边AB、AC上点,•BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.
(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号)
(2)证明你写的命题.
24.(10分)如图所示,△ABC为等边三角形,BD为中线,延长BC至E,•使DE=BD.
求证:CE=1
2 BC.
25.(11分)如图①所示,把一张矩形纸片ABCD沿对角线BD折叠,将重合部分△BFD剪去,得到△ABF和△EDF.
①
(1)判断△ABF与△EDF是否全等?并加以证明;
(2)把△ABF与△EDF不重合地拼在一起,可拼成特殊三角形和特殊四边形,将下列拼图(图②)按要求补充完整.
②
26.(12分))如图(1)所示,OP是∠MON的平分线,•请你利用该图形画一对以OP所在直线为对称轴的全等三角形.
请你参考这个作全等三角形方法,解答下列问题:
(1)如图(2),在△ABC中,∠ACB=90°,∠B=60°,AC、CE分别是∠BAC,∠BCA 的平分线交于F,试判断FE与FD之间的数量关系.
(2)如图(3),在△ABC中,若∠ACB≠90°,而(1)中其他条件不变,请问(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,说明理由.
答案:
1.60° 2.BC=EF或∠D=∠A或∠C=∠F
3.如果作两个邻补角的角平分线,那么这两条角平分线互相垂直
4.如果①②,那么③ 5.3
6.135° 7.120° 8.36°或45°
9.26 10.15 11.D 12.D 13.C 14.D
15.B 16.D 17.D 18.B 19.C 20.D
21.在平地任找一点O,连OA、OB,延长AO至C使CO=AO,延BO至D,使DO=•BO,•则CD=AB,依据是△AOB≌△COD(SAS),图形略.
22.证△ACB≌△BDA即可.
23.(1)条件①、③结论②、④,(2)证明略
24.略
25.(1)△ABF≌△EDF,证明略
(2)如图:
26.(1)FE=FD
(2)(1)中的结论FE=FD仍然成立.
在AC上截取AG=AE,连结FG.
证△AEF≌△AGF得∠AFE=∠AFG,FE=FG.
由∠B=60°,AD、CE分别是∠BAC,∠BCA的平分线
得∠DAC+∠ECA=60°.
所以∠AFE=∠CFD=∠AFG=60°,所以∠CFG=60°.
由∠BCE=∠ACE及FC为公共边.
可证△CFG≌△CFD,
所以FG=FD,所以FE=FD.。