二元一次方程组应用题经典题有标准答案(5)

合集下载

二元一次方程组精选(内附答案)

二元一次方程组精选(内附答案)

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)参考答案一、1,B ;2,B ;3,C ;4,D ;5,B ;6,C ;7,B ;8,C ;9,C ;10,D .二、11,ax 2+bx +c 、≠0、常数;12,x =1;13,y =2x 2+1;14,答案不唯一.如:y =x 2+2x ; 15,C >4的任何整数数;16,112;17,二;18,x =3、1<x <5. 三、19,43;20,(1)设这个抛物线的解析式为c bx ax y ++=2由已知,抛物线过)0,2(-A ,B (1,0),C (2,8)三点,得⎪⎩⎪⎨⎧=++=++=+-8240024c b a c b a c b a 解这个方程组,得4,2,2-===c b a ∴ 所求抛物线的解析式为y =2x 2+2x -4.(2)y =2x 2+2x -4=2(x 2+x -2)=2(x +12)2-92;∴ 该抛物线的顶点坐标为)29,21(--. 21,(1)y =-x 2+4x =-(x 2-4x +4-4)=-(x -2)2+4,所以对称轴为:x =2,顶点坐标:(2,4).(2)y =0,-x 2+4x =0,即x (x -4)=0,所以x 1=0,x 2=4,所以图象与x 轴的交点坐标为:(0,0)与(4,0).22,(1)因为AD =EF =BC =x m ,所以AB =18-3x .所以水池的总容积为1.5x (18-3x )=36,即x 2-6x +8=0,解得x 1=2,x 2=4,所以x 应为2或4.(2)由(1)可知V 与x 的函数关系式为V =1.5x (18-3x )=-4.5x 2+27x ,且x 的取值范围是:0<x <6.(3)V =-4.5x 2+27x =-92(x -3)2+812.所以当x =3时,V 有最大值812.即若使水池有总容积最大,x 应为3,最大容积为40.5m 3.23,答案:①由题意得y 与x 之间的函数关系式30y x =+(1160x ≤≤,且x 整数)②由题意得P 与x 之间的函数关系式二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题) 1.求适合的x ,y 的值.析:解:由题意得:,,∴2.解下列方程组 (1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为)原方程组可化为:,x=×.所以原方程组的解为3.解方程组::原方程组可化为所以方程组的解为4.解方程组:)原方程组化为y=.所以原方程组的解为5.解方程组::,解得所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?二元一次方程组)依题意得:,.y=x+y=y=x+7.解方程组:(1);(2).)原方程组可化为,∴方程组的解为;)原方程可化为即∴方程组的解为8.解方程组::原方程组可化为,则原方程组的解为9.解方程组::原方程变形为:,y=解之得10.解下列方程组:(1)(2))﹣代入﹣=所以原方程组的解为)原方程组整理为,所以原方程组的解为.11.解方程组:(1)(2)解得∴原方程组可化为解得∴∴原方程组的解为12.解二元一次方程组:(1);(2).则方程组的解是;)此方程组通过化简可得:则方程组的解是.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.代入方程组,解得:代入方程组,解得:∴方程组为,则原方程组的解是14.答:x=y=∴原方程组的解为15.解下列方程组:(1);(2).)化简整理为故原方程组的解为)化简整理为故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为,∴原方程组的解为。

二元一次方程组应用题经典题型

二元一次方程组应用题经典题型

二元一次方程组应用题经典题型1. 行程问题比如,甲、乙两人相距30千米,若两人同时相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙。

求甲、乙两人的速度。

设甲的速度是x千米/小时,乙的速度是y千米/小时。

相向而行时,根据路程 = 速度和×时间,可得到方程3(x + y)=30;同向而行时,根据路程差 = 速度差×时间,可得到方程6(x - y)=30。

这两个方程组成二元一次方程组,解这个方程组就能求出甲、乙的速度啦。

2. 工程问题有一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成,并且甲队做2天的工作量和乙队做3天的工作量相等。

求x和y的值。

把这项工程的工作量看成单位“1”,根据工作效率 = 工作量÷工作时间,甲队的工作效率就是1/x,乙队的工作效率就是1/y。

两队合作的工作效率就是1/6,可得到方程1/x+1/y = 1/6。

又因为甲队做2天的工作量和乙队做3天的工作量相等,即2/x = 3/y。

这样就组成了二元一次方程组,通过解方程组就能得到x和y的值啦。

3. 销售问题某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元。

求甲、乙两种商品各购进多少件?设购进甲种商品x件,购进乙种商品y件。

因为总共购进50件商品,所以x + y = 50。

甲种商品每件获利35×20% = 7元,乙种商品每件获利20×15% = 3元,总共获利278元,可得到方程7x+3y = 278。

这两个方程组成二元一次方程组,解方程组就可以求出x和y的值啦。

4. 调配问题有两个仓库,甲仓库有粮食x吨,乙仓库有粮食y吨。

如果从甲仓库调出10吨到乙仓库,那么乙仓库的粮食就是甲仓库的2倍;如果从乙仓库调出5吨到甲仓库,那么两仓库的粮食就相等。

求x和y的值。

根据题意可得到方程组:y + 10 = 2(x - 10)和x + 5 = y - 5。

5道二元一次方程组的例题以及答案

5道二元一次方程组的例题以及答案

5道二元一次方程组的例题以及答案:1. 2x + 3y = 7,x - y = 1解:将第二个方程变形为x = y + 1,代入第一个方程中得到2(y+1) + 3y = 7,化简得到5y = 4,解得y = 0.8,代入x = y + 1中得到x = 1.8。

答案:(x,y) = (1.8, 0.8)2. 3x + 4y = 7,2x - y = -1解:将第二个方程变形为x = y + 1,代入第一个方程中得到3(y+1) + 4y = 7,化简得到5y = 3,解得y = 0.6,代入x = y + 1中得到x = 1.6。

答案:(x,y) = (1.6, 0.6)3. 4x + 3y = 5,2x + y = 4解:将第二个方程变形为y = 2x - 4,代入第一个方程中得到4(2x - 4) + 3y = 5,化简得到10x - 12 + 3y = 5,代入y = 2x - 4中得到10x - 12 = 5,解得x = 3,代入y = 2x - 4中得到y = -1。

答案:(x,y) = (3, -1)4. 2x + 3y = 8,x - y = 1解:将第二个方程变形为x = y + 1,代入第一个方程中得到2(y+1) + 3y = 8,化简得到5y = 3,解得y = 0.6,代入x = y + 1中得到x = 1.6。

答案:(x,y) = (1.6, 0.6)5. 3x + 4y = 9,x + y = 5解:将第二个方程变形为y = x - 5,代入第一个方程中得到3(x-5) + 4y = 9,化简得到8x - 20 + 4y = 9,代入y = x - 5中得到8x - 20 = 9,解得x = 4.33,代入y = x - 5中得到y = 0.67。

答案:(x,y) = (4.33, 0.67)。

二元一次方程组应用题经典题有答案(5)

二元一次方程组应用题经典题有答案(5)

实际问题与二元一次方程组题型归纳(5)知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

二元一次方程应用题应用精题(附答案)

二元一次方程应用题应用精题(附答案)

二元一次方程组的应用板块一:二元一次方程组解的讨论☞二元一次方程组解的三种情况二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ⑴若1122a b a b ≠,则该方程组有唯一解 ⑵若111222a b c a b c =≠,则该方程组无解 ⑶若111222a b c a b c ==,则该方程组有无数组解 1.如果方程组有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠1【解答】解:根据题意得:,∴1﹣x=,∴(a ﹣b )x=c ﹣b ,∴x=, 要使方程有唯一解,则a ≠b ,故选B .2.已知关于x ,y 的方程组,分别求出k ,b 为何值时,方程组:(1)有唯一解;(2)有无数多个解;(3)无解.【解答】解:把y=kx+b 代入y=(3k ﹣1)x+2中,可得:(2k ﹣1)x=b ﹣2,(1)当(2k ﹣1)≠0,即k ≠0.5,方程有唯一解x=,将此x 的值代入y=kx+b 中,得:y=,因而原方程组有唯一一组解; (2)当(2k ﹣1)=0且b ﹣2=0时,即k=0.5,b=2时,方程有无穷多个解,因此原方程组有无穷多组解;(3)当(2k ﹣1)=0且(b ﹣2)≠0时,即k=0.5,b ≠2时,方程无解,因此原方程组无解.板块二、二元一次方程的简单应用☞倍分问题1.(2015•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.2.(2015•泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y千克,则可列方程组为()A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.3.(2015•盘锦)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.【解答】解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.4.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A .x+y+3B .x+y+1C .x+y ﹣1D .x+y ﹣3【解答】解:设乙的长度为a 公尺,∵乙的长度最长且甲、乙的长度相差x 公尺,乙、丙的长度相差y 公尺, ∴甲的长度为:(a ﹣x )公尺;丙的长度为:(a ﹣y )公尺, ∴甲与乙重叠的部分长度为:(a ﹣x ﹣1)公尺;乙与丙重叠的部分长度为:(a ﹣y ﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a ﹣x ﹣1)+(a ﹣y ﹣2)=a ,a ﹣x ﹣1+a ﹣y ﹣2=a ,a+a ﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A .5. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是多少?【解答】解:设驴子原来所驮货物的袋数是x ,骡子原来所驮货物的袋数是y . 由题意得,解得.答:驴子原来所驮货物的袋数是5.☞年龄问题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x 岁,小明今年y 岁,根据题意,列方程组正确的是( )A .B .C .D .【解答】解:王老师今年x 岁,刘俊今年y 岁,可得:, 故选D☞数字问题1. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组题型归纳(5)ﻫ
知识点一:列方程组解应用题的基本思想
列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.ﻫ知识点二:列方程组解应用题中常用的基本等量关系
1.行程问题:ﻫ(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;
;;
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;ﻫ②船在静水中的速度-水速=船的逆水速度;ﻫ③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.
3.商品销售利润问题:ﻫ(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;
(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;
注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)ﻫ4.储蓄问题:
(1)基本概念ﻫ①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

(2)基本关系式
①利息=本金×利率×期数
②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)
③利息税=利息×利息税率=本金×利率×期数×利息税率。

ﻫ④税后利息=利息×(1-利息税
率)⑤年利率=月利率×12⑥。

ﻫ注意:免税利息=利息ﻫ5.配套问题:ﻫ解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。

6.增长率问题:
解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;ﻫ原量×(1-减少率)=减少后的量.ﻫ7.和差倍分问题:ﻫ解这类问题的基本等量关系是:较大量=较小量
+多余量,总量=倍数×倍量.
8.数字问题:
解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。

如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字
10.几何问题:解决这类问题的基本关系式有关几何图形
9.浓度问题:溶液质量×浓度=溶质质量.ﻫ
的性质、周长、面积等计算公式ﻫ11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的
12.优化方案问题:
在解决问题时,常常需合理安排。

需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。

ﻫ注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。

ﻫ知识点三:列二元一次方程组解应用题的一般步骤ﻫ利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:ﻫ1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;ﻫ 3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.
要点诠释:ﻫ(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;
(2)“设”、“答”两步,都要写清单位名称;
(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.ﻫ(4)列方程组解应用题应注意的问题ﻫ①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆; ⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。

类型一:列二元一次方程组解决——行程问题ﻫ1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?
思路点拨:画直线型示意图理解题意:
ﻫ(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.。

相关文档
最新文档