核辐射式检测元件_检测技术
核辐射的检测方法,指标,仪器,原理和相关的环境标准

核辐射的检测方法,指标,仪器,原理和相关的环境标准Nuclear radiation detection methods, indicators, instruments, principles and relevant environmental standardsThe interaction between nuclear radiation and matter is the physical basis of nuclear radiation detection. The interaction between nuclear radiation and matter, including ionization, scattering and absorption of nuclear radiation, the use of ionizing radiation of the substance decays, absorption and reflection effect in combination with α, β, and γ-ray features a variety of detectioncan be completed.Nuclear radiation detection instrument principles and methodsTo indicate the recording and measurement of nuclear radiation materials or devices. Radiation and nuclear radiation detector material interactions and some kind of information (such as electrical, optical pulse or material changes in the structure), the zoom after record analysis, to determine the number of particles, location, energy, momentum, flight time, speed, quality and other physical quantities. Nuclear radiation detectors is nuclear physics, particle physics and radiation applications an indispensable tool and means. In accordance with the recording, nuclear radiation detectors are generally dividedinto two major categories of counters and track room.Counter to the electrical impulses in the form of records, analysisof the radiation produced by certain types of information. The type ofthe counter gas ionization detectors, multi-wire chamber and drift chamber, semiconductor detectors, scintillation counters and Cerenkov counters.The gas ionization detector ionization charge generated in the gas through the collection of rays to measure nuclear radiation. The main types of ionization chamber, proportional counter and Geiger counter. Their structure, usually cylindrical container with two electrodesfilled with a gas, the voltage between the electrodes, the difference is that the operating voltage range. The low operating voltage of the ionization chamber, direct collection of the ray in the original gas produce ion pairs. The output pulse amplitude is smaller, faster rise time, and can be used for the measurement of radiation dose measurement and spectroscopy. The higher the operating voltage of the proportional counter, make more ion pairs in high-speed movement in the electricfield in the original ion collection electrode to the much larger ion than the original ion (ie, the gas amplification), resulting in higher output pulse. Pulse amplitude is proportional to the energy of the incident particle loss, suitable for spectroscopy measurements. Geiger counter, also known as Geiger - Muller counter or GM counter, it's a higher operating voltage, multiple ionization process, therefore the magnitude of the output pulse is high, is no longer proportional to the original ionization of the ion number, you can not amplificationdirectly be recorded. It can only measure the number of particles can not measure the energy to complete the one-pulse count a long time.Multi-wire chamber and drift chamber which is a variant of the proportional counter. Counting function, and also can distinguish between charged particles through the area. Multiwire chamber with parallel wire electrode in the working status of the proportional counter. Each root of wire and its surrounding space is equivalent to a detector, the latter connected to a recording instrument. Therefore, only when the particles to be detected into the adjacent space of the wire associated with this record instruments to record an incident. In order to reduce the number of electrode wire, from the measurement of ion drift time of the wire to determine the site of the ions, which have another detector gives a start signal and the same article, the site of the incident, according to this principle of the system into the counting device is called a drift chamber, it has a better position resolution (50 micron), but allowed count rate than the multi-wire chamber.Semiconductor detector radiation generated in the semiconductor, charge carriers (electrons andholes) in the reverse bias electric field is collected by theelectric pulse signal to measure nuclear radiation. Commonly used in silicon, germanium a semiconductor material, there are three main types: ? spraying a layer of gold film in the n-type single crystal surface barrier; ? highresistivity p-type silicon diffusion into the layer to provide electronic impurities diffused junction; ? in the p-type germanium (orsilicon) surface coating a thin layer of lithium metal and lithium-drift-type drift. HPGe detector with high energy resolution, high detection efficiency of γ radiation, can be stored at room temperature, wide range of applications. Gallium arsenide, cadmium telluride,mercuric iodide and other materials.Scintillation counter by the charged particles hit the scintillator, so that the ionization of atoms (molecules), excited in the process ofde-excitation light-emitting optoelectronic devices (such as PMT)optical signals into electrical signals that can be measured to measure nuclear radiation . Scintillation counter to distinguish between a short time, high efficiency, but also according to the size of the electrical signal determination of the energy of the particles. Scintillator can be divided into three categories: ? The inorganic scintillator, the usefulness of thallium (Tl)-activated sodium iodide NaI (Tl) and CsI CsI (Tl) crystal, electronics, γ radiation sensitive, high luminous efficiency better energy resolution, but the light decay time longer; BGO crystal density, high luminous efficiency, and thus very effectivein high-energy electrons, gamma radiation detection. Such as silver (Ag)-activated zinc sulfide ZnS (Ag) is mainly used to detect alpha particles; glass scintillator to measure alpha particles, low energy X-radiation, measurable neutron to join the carrier; barium fluoride (BaF2) density fluorescent composition, both for energy measurement, but alsofor time measurement. ? organic scintillator, including plastics,liquids and crystals (eg anthracene, stilbene, etc.), the first twouniversal. Due to their light decay time is short (2 to 3 ns, fastplastic scintillator can be less than 1 ns), commonly used in time measurement. They charged particle detection efficiency of nearly 100%. ? gas scintillator, including xenon, helium and otherinert gases, luminous efficiency is not high, but the light decaytime is shorter (<10 ns).Cerenkov counter the movement of high-speed charged particles in the transparent medium faster than light in the medium velocity, it will produce Cerenkov radiation, the radiation angle and particle velocity, thus providing a measurement of charged particle velocity detectors. Such detectors often and photomultiplier tubes used in conjunction; can be divided into a threshold-type (records only particles larger than a certain speed) and the differential equation (select only a certain speed of the particles) two.Commonly used in several counters, gas proportional scintillation cell, self-quenching streamer counter, the recent gas detector, the output pulse amplitude and time characteristics. Electromagnetic calorimeter (or the shower counter) and hadron calorimeter to measurethe high-energy electrons, gamma radiation or hadrons (see elementary particles) of energy. Provides a way for the very high identification of charged particles through a radiation counter.Tracks room to record, analyze and track radiation image measurement of nuclear radiation. The main types of nuclear emulsion cloud chamberand bubble chamber, spark chamber and the streamer chamber, solid state nuclear track detectors.The nuclear emulsion photographic emulsion can record chargedparticles to a single track. Incident particles in the latex to form a latent image center, after a chemical treatment to record the particle track can be observed under the microscope. It has an excellent position resolution skills (1 micron), large stopping power, the function is continuous and sensitive.The cloud chamber and bubble chamber so that ions generated by the incident particle groups tothe formation of condensation centers in supersaturated vapor toform droplets (cloud chamber), gasification center formation in the superheated liquid into the bubble (bubble chamber), the photographic method records, so that the charged particle tracks visible. Bubble chamber, good position resolution (good up to 10 microns), is the target, often bubble chamber vertex detector with counter used together.Spark chamber and streamer chamber devices require high voltage,when the particles enter the device to produce ionization, ion movement in the strong electric field, the formation of multiple ionization, proliferating rapidly, many times the ionization process streamer spark , so that the charged particle tracks become visible. The streamer chamber has a good time characteristics. They have good spatial resolution (about 200 microns). In addition to the available photographic records particle track, but also recording pulse signal, as the counter use.Solid state nuclear track detectors heavy charged particles hit, such as mica, a class of plastic material damage along the path, after chemical treatment (etching), the injury to expand into the voids can be observed under the microscope, suitable for detection of heavy nuclei.Obtained by the composition of the many types of detectors, magnets, electronic equipment, computers and other radiation spectrometer, a variety of physical, is the development trend of modern nuclear physics and particle detection.。
辐射探测器与检测技术

气体探测器
四、电离室(ionization chamber) 脉冲电离室:记录单个辐射粒 子,主要用于测量重带电粒子 的能量和强度。(计数电离室) V=eNi/C 电流电离室:记录大量粒子 平均效应,主要用于测量X, g, b 和中子的强度或通量。 (累积电离室) I=neNi +阳极
++++++++ - - - - - - - 阴极
5.G-M计数管的主要特性
1)坪特性 坪长:V1-V2
坪斜:
(N2-N1) 1/2 (V2-V1) (N2+N1) 有机管坪长150-300V 卤素管坪长100V左右
气体探测器
六、盖革-米勒计数管(Geiger-Muller counter)
5.G-M计数管的主要特性
2)死时间、恢复时间和分辨时间
探测器由下列三部分构成 1.灵敏区 2.结构部分 3数据输出机构 按材料分类 1.气体探测器
核辐射 探测器
2.闪烁探测器
3.半导体探测器
核辐射探测器
气体探测器 闪烁探测器
半导体探测器
径迹探测器
一、气体的电离
带电粒子使气体原子电离而形成负电子和正离子对的现 象称为气体的电离。电离出来的电子称为次级电子,其 中一些能量较大的电子还可以使气体分子电离。通常, 我们把由带电粒子直接产生的电离叫做原电离,而把由 次级电子所产生的电离叫做次电离。原电离和次电离之 和称为总电离。
半导体探测器 Semiconductor detector
半导体探测器是60年代以后迅速发展起来的一种核辐射探 测器,其探测介质是半导体材料。随着半导体材料和低噪 声电子学的发展以及各种应用的要求,先后研制出了P-N结 型探测器、锂漂移型探测器、高纯锗探测器、化合物半导 体探测器以及位置灵敏探测器,内放大半导体探测器等特 殊类型半导体探测器。
核辐射检测仪 常见技术

核辐射检测仪常见技术核辐射检测仪是一种用于检测和测量环境中核辐射水平的仪器。
它主要用于核电厂、医院、科研机构等场所,以确保人员和环境的安全。
核辐射检测仪常见技术包括闪烁探测器、电离室、半导体探测器和荧光体探测器等。
一、闪烁探测器闪烁探测器是核辐射检测仪中常用的一种技术。
它利用某些物质在受到核辐射激发后产生闪光的特性来测量辐射水平。
这种探测器通常由闪烁晶体和光电倍增管组成。
当核辐射进入闪烁晶体时,晶体中的原子被激发并产生光子,光子经过光电倍增管放大后被检测。
通过测量闪烁光子的数量和能量,可以确定核辐射的类型和强度。
二、电离室电离室是一种常见的核辐射检测技术。
它利用核辐射与气体分子的相互作用产生离子对来测量辐射水平。
电离室通常由一个带电电极和一个接地电极组成。
核辐射进入电离室后,与气体分子相互作用产生离子对,离子对被电场吸引到电极上,产生电流。
通过测量电离室中的电流大小,可以确定核辐射的强度。
三、半导体探测器半导体探测器是一种利用半导体材料的电导率变化来测量核辐射的技术。
半导体探测器通常由P型和N型半导体材料组成。
当核辐射进入半导体材料时,会激发半导体中的电子和空穴,导致电导率的变化。
通过测量电导率的变化,可以确定核辐射的强度和能量。
四、荧光体探测器荧光体探测器是利用某些物质在受到核辐射激发后产生荧光的特性来测量辐射水平的技术。
荧光体探测器通常由荧光体和光电倍增管组成。
当核辐射进入荧光体时,荧光体中的原子被激发并产生荧光,荧光经过光电倍增管放大后被检测。
通过测量荧光的强度和能量,可以确定核辐射的类型和强度。
以上所述的闪烁探测器、电离室、半导体探测器和荧光体探测器是核辐射检测仪中常见的技术。
它们各自利用不同的物理原理来测量核辐射的强度和能量。
在实际应用中,根据不同的需求和场景,可以选择合适的技术来进行核辐射检测。
这些技术的不断发展和改进,使得核辐射检测仪在核安全和环境保护方面发挥了重要作用。
通过准确测量和监测核辐射水平,可以及时采取相应的防护措施,保障人员和环境的安全。
核辐射的检测方法

核辐射的检测方法,指标,仪器,原理和相关的环境标准核辐射与物质间的相互作用是核辐射检测方法的物理基础。
核辐射与物质间的相互作用包括电离作用、核辐射的散射与吸收,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。
核辐射检测仪器核辐射监测原理及方法能够指示、记录和测量核辐射的材料或装置。
辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。
核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。
按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。
计数器以电脉冲的形式记录、分析辐射产生的某种信息。
计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。
气体电离探测器通过收集射线在气体中产生的电离电荷来测量核辐射。
主要类型有电离室、正比计数器和盖革计数器。
它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。
电离室工作电压较低,直接收集射线在气体中原始产生的离子对。
其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。
正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。
脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。
盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。
它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。
多丝室和漂移室这是正比计数器的变型。
既有计数功能,还可以分辨带电粒子经过的区域。
多丝室有许多平行的电极丝,处于正比计数器的工作状态。
核辐射检测技术的研究与应用

核辐射检测技术的研究与应用核辐射是一种具有强大能量的电磁波或粒子辐射,它具有对人类和环境的严重危害。
因此,在核能领域和辐射环境中,核辐射检测技术起着至关重要的作用。
本文将介绍核辐射检测技术的研究与应用。
检测技术核辐射检测技术主要分为辐射剂量测量、放射性核素分析和核辐射图像化技术三个方面。
辐射剂量测量是辐射保护和核安全领域中的基础,而放射性核素分析和核辐射图像化技术则是核辐射鉴别和环境监测的重要手段。
辐射剂量测量辐射剂量测量包括计量剂量学、剂量率仪和个人剂量测量等。
计量剂量学包含放射性测量单位系统和剂量等效计算方法。
剂量率仪则可用于实时监测环境辐射水平,并得到与人体接触辐射的剂量率。
个人剂量测量是监测散射源身体剂量的方法,通常对核工人、医学从业者和航空人员等职业人群使用。
放射性核素分析放射性核素分析是核辐射检测技术的重要方面,该技术对环境放射性核素浓度进行分析,并对环境中的自然和人工放射性来源进行核鉴别。
该技术目前主要应用于环境监测、检测水和口服食品中的放射性核素浓度。
核辐射图像化技术核辐射图像化技术是通过检测和表示核辐射场分布的技术,主要包括交叉探测法、成像检测法和放射性同位素成像法。
通过这些技术,可以在辐射场中更加准确地定位源点,并通过图像来进一步分析辐射场的特性,为核其他相关领域提供支持。
应用核辐射检测技术的应用范围非常广泛。
在核电站运行和停堆期间,辐射测量技术可以检测环境中的放射性物质和核反应中的气体以及核燃料元件中的痕量放射性核素。
在核废料储存和处理过程中,该技术可用于测量放射性废料的活度、体积和厚度等。
在医学领域中,核辐射技术可以用于放射性药物制备、定量研究和治疗。
而在环境监测中,该技术也可用于对地球物理、地球化学和大气科学的研究以及对环境监测和辐射保护的相关法规进行评估。
总结核辐射检测技术在现代科技中拥有重要地位,它不仅可以帮助人们更加理解和掌握核能领域的知识,还可以帮助我们更好地保护环境和身体的健康。
核辐射检测技术

若引入质量吸收系数μm=μ/ρ(其中ρ为密度),则上 式可改写为:
I
I em h 0
当厚度h一定后,上式即成为核辐射式密度计的理论基础。
研究结果表明,当γ射线能量E小于0.3MeV时,质量吸
收系数将取决于吸收体的化学成份。成份复杂的物质对γ射
0.8
5.48,0.027
常用的放射性同位素及其基本参数
X 射线能量 (MeV) 5.9 6.4
12~21
2.核辐射探测器 常用的核辐射探测器有:电离室、正比计数器、盖革-弥
勒计数器和半导体探测器等。 电离室
正比计数器
三、透射式γ射线测厚仪
1.工作原理 由于物质的吸收作用,使得射入核辐射探测器
的射线强度降低,射到探测器的透射射线强度I和物质厚
度h 的关系为:
I I0emh
h 1 Ln I0
m I
2. γ射线测厚仪的结构
3.透射式γ射线测厚仪的应用----输煤量的测量
检测器安装位置示意图
为了使煤层保持一定形状以保证测量的准确性,输煤皮 带前方应安装一些刮板。测量用的三套放射源-核辐射探测 器输出的信号,经单片机的计算处理,可以求出煤层的截面 积,再测出传送皮带的速度,即可由单片机计算出煤的质量 流量并予以显示。如果把这个信号进行积分处理,还可以得 到总的耗煤量的信息。
N N0et
式中 N0 —— 原有的物质原子数; N —— 物质在 t 时尚未衰变的原子数; λ—— 物质的衰变常数。
放射性元素从N0个原子衰变至N0/2个原子所经历的时 间,称为半衰期。不同放射性元素的半衰期T是不同的。
原子系数在83以下的每一种元素都有一个或几个稳定 的同位素,原子序数在83以上的同位素则只有放射性同位 素。放射性同位素又分天然的和人工的两种。目前知道的 可以利用的放射性同位素有二百多种,这些放射性同位素 是用原子能反应堆和回旋加速器等办法制造出来的。
核与辐射检测

核与辐射检测
核与辐射检测是一种检测和测量核能和辐射水平的过程。
这种检测主要用于核能设施、辐射工作场所、核事故后的环境监测以及医学领域等。
核与辐射检测的方法包括以下几种:
1. 用于检测辐射水平的仪器:例如Geiger-Muller计数器、电离室、闪烁体探测器等。
这些仪器可以测量辐射源的剂量率,即单位时间内受到的辐射剂量。
2. 用于测量射线的类型的仪器:例如谱仪,可以分析射线的能量和频率分布,从而确定射线的类型。
3. 用于测量放射性物质的仪器:例如放射性计、质谱仪等。
这些仪器可以测量样品中放射性物质的含量和性质。
4. 用于环境辐射检测的方法:通过监测周围环境中的气体、水和土壤样品,可以了解环境中放射性物质的分布和浓度。
5. 用于个人辐射监测的设备:例如个人剂量计,可以测量个人接受的辐射剂量以保护其安全。
通过核与辐射检测,可以确保工作场所和环境中的辐射水平处于安全范围内,保护人们的健康和安全。
在核能设施和核事故中,这些检测方法也可以及时发现和监测辐射泄漏,采取相应的措施来减少辐射对人体和环境的危害。
怎么检测核辐射

怎么检测核辐射
检测核辐射通常使用放射性探测仪器。
以下是几种常见的核辐射检测方法:
1. 闪烁探测器(Scintillation Detectors):这种探测器使用闪烁晶体来测量核辐射。
当辐射粒子进入晶体时,晶体会发出光子,而探测器会记录下这些光子的数量和能量。
通过分析记录的光子信息,可以确定核辐射的类型和能量。
2. 电离室(Ionization Chambers):电离室通过测量核辐射在
气体中产生的电离来检测辐射水平。
当辐射粒子进入电离室时,它们会与气体中的原子或分子碰撞,产生离子和自由电子。
电离室会测量这些电子和离子的电量,并根据电量来确定核辐射剂量率。
3. GM计数器(Geiger-Muller Counters):GM计数器是一种
常见的手持式核辐射探测仪器。
它通过测量核辐射粒子进入计数管中产生的电离数目来检测辐射水平。
当辐射粒子进入计数管时,它们会与气体中的原子或分子碰撞,产生离子和自由电子。
计数器会记录下这些电离事件的数量,并根据数量来确定辐射剂量率。
4. 核磁共振(Nuclear Magnetic Resonance,NMR):核磁共
振技术可以通过检测样品中核自旋的行为来间接检测核辐射。
核磁共振仪器使用强磁场和射频脉冲来激发和测量样品中核自旋的行为。
通过分析核自旋的行为,可以得到有关样品中核辐射的信息。
需要注意的是,核辐射的检测需要专业的设备和培训,以确保准确测量和安全操作。
如果怀疑某个区域受到核辐射污染,应该寻求专业机构或有经验的人士的帮助进行详细的核辐射检测和评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核辐射式检测元件是利用被测物质对射线 的吸收、散射、反射或射线对被测物质的 电离作用而工作的,可用来检测厚度、物 位、密度、成分等各种参数,还可用于金 属探伤等 核辐射式检测元件主要由放射源、检测器 及转换电路组成
第十节 核辐射式检测元件
一、放射源
在检测仪表中,采用的放射源是放射性同 位素,放射性同位素的原子核是不稳定的 原子核,在无任何外因作用下,它会自动 衰变,同时会放出粒子或射线而变为另外 的同位素,这种现象称为核衰变
第十节 核辐射式检测元件
带电粒子和物质的作用
电离和激发 散射 吸收
γ射线和物质的作用
光电效应 康普顿效应 电子对的生成
第十节 核辐射式检测元件
核辐射检测器 核辐射检测器又称核辐射接收器,它的主 要用途是将核辐射信号转换成电信号,以 检测出射线强度的变化
电流电离室 闪烁计数器
第十节 核辐射式检测元件
放射源的强度随时间按指数定律而衰减, 即 t
I I 0e
式中 I 0 为开始时的放射源强度; I 为经过时 间t后放射源强度; 为放射性衰变常数,与 外界条件和时间无关
第十节 核辐射式检测元件
二、探测器
射线和物质的作用是探测射线存在和强弱 的基础,探测器就是以射线和物质的相互 作用为基础而设计的 射线与物质的作用
f为射入检 n 式中 t为测量时间; m 测元件的粒子的平均频率;为
检测元件的效率
1 r t m f n
第十节 核辐射式检测元件
三、核辐射式检测元件的误差来自辐射源强度误差 I 在时间t内,强度衰减为 I I 0 ,所以由辐 射源本身核衰变引起的相对误差为
I t r 1 e I
第十节 核辐射式检测元件
核衰变的统计特性引起的误差 由于核衰变产生的粒子数是随机的,它服 从于统计规律,检测器测量到的粒子数的 相对误差可按下式计算