高中物理选修3-1复习资料
物理选修3-1-知识点归纳(全)

物理选修3-1-知识点归纳(全) 第一章电学基础1.电荷、电场与库仑定律•电荷的本质和性质•电场的概念及特征•库仑定律的表述和应用2.电势、电势差和电势能•电势的概念、性质和单位•电势差的概念、性质和计算•电势能的概念、性质和计算3.电容与电容器•电容的概念、性质和计算•平行板电容器、球形电容器、电容的串、并联组合4.电流、电阻和欧姆定律•电流的概念、性质和单位•电阻的概念、性质、计算和分类•欧姆定律的表述和应用5.磁学基础•磁场的概念和特征•磁感应强度的概念和计算•洛伦兹力的概念、表述和应用第二章电磁感应1.电磁感应现象•感生电动势的概念和计算•导体在磁场中的运动规律2.电磁感应定律•法拉第电磁感应定律的表述和应用•楞次定律的表述和应用3.自感和互感•自感系数和互感系数的概念、性质和计算•互感器的应用4.交流电路•交变电压和交变电流的概念和表示方法•交流电路的基本元件和参数•交流电路的基本特性和计算方法第三章光学基础1.光的本质和性质•光的本质和特征•干涉、衍射、反射、折射的现象和解释2.光的传播•光速、光程、光程差的概念和计算•光的直线传播和折射定律•全反射和光的色散现象3.光的成像和光学仪器•光的成像公式和规律•球面镜的成像特点和应用•复合透镜的成像原理和计算方法第四章物质结构和性质1.物质的结构和组成•原子结构和基本粒子•周期表和元素的性质2.固体物质的结构和性质•晶体的结构和性质•固体材料的物理性质3.材料的热学性能•温度、热能和内能的关系•热力学定律和热学过程的基本属性•热传导、热辐射和热对流的计算和应用以上是对物理选修3-1的全面知识点归纳,希望能对大家的学习有所帮助。
(完整版)高中物理选修3-1知识点清单(非常详细)

(完整版)高中物理必修3-1知识点清单(非常详细)第一章 静电场一、电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷. 2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. 二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.公式:F =kq 1q 2r,式中的k =9.0×109 N ·m 2/C 2,叫做静电力常量. 3.适用条件:(1)点电荷;(2)真空. 三、电场强度1.意义:描述电场强弱和方向的物理量. 2.公式(1)定义式:E =F q,是矢量,单位:N/C 或V/m.(2)点电荷的场强:E =k Q r 2,Q 为场源电荷,r 为某点到Q 的距离.(3)匀强电场的场强:E =Ud.3.方向:规定为正电荷在电场中某点所受电场力的方向. 四、电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.2.电场线的特点(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处. (2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越大. (4)沿电场线方向电势降低.(5)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示)考点一 对库仑定律的理解和应用 1.对库仑定律的理解(1)F =kq 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大.2.电荷的分配规律(1)两个带同种电荷的相同金属球接触,则其电荷量平分.(2)两个带异种电荷的相同金属球接触,则其电荷量先中和再平分. 考点二 电场线与带电粒子的运动轨迹分析1.电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合:(1)电场线是直线.(2)电荷由静止释放或有初速度,且初速度方向与电场线方向平行. 2.由粒子运动轨迹判断粒子运动情况:(1)粒子受力方向指向曲线的内侧,且与电场线相切. (2)由电场线的疏密判断加速度大小.(3)由电场力做功的正负判断粒子动能的变化. 3.求解这类问题的方法: (1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情景.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.第二章 电势能和电势差一、电场力做功和电势能 1.电场力做功(1)特点:静电力做功与实际路径无关,只与初末位置有关. (2)计算方法①W =qEd ,只适用于匀强电场,其中d 为沿电场方向的距离. ②W AB =qU AB ,适用于任何电场. 2.电势能(1)定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时静电力所做的功.(2)静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量,即W AB =E p A-E p B =-ΔE p .(3)电势能具有相对性. 二、电势、等势面 1.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量的比值.(2)定义式:φ=E p q.(3)相对性:电势具有相对性,同一点的电势因零电势点的选取不同而不同. 2.等势面(1)定义:电场中电势相同的各点构成的面. (2)特点①在等势面上移动电荷,电场力不做功.②等势面一定与电场线垂直,即与场强方向垂直. ③电场线总是由电势高的等势面指向电势低的等势面.④等差等势面的疏密表示电场的强弱(等差等势面越密的地方,电场线越密). 三、电势差1.定义:电荷在电场中,由一点A 移到另一点B 时,电场力所做的功W AB 与移动的电荷的电量q 的比值.2.定义式:U AB =W ABq. 3.电势差与电势的关系:U AB =φA -φB ,U AB =-U BA . 4.电势差与电场强度的关系匀强电场中两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积,即U AB =Ed .特别提示:电势和电势差都是由电场本身决定的,与检验电荷无关,但电场中各点的电势与零电势点的选取有关,而电势差与零电势点的选取无关.考点一 电势高低及电势能大小的比较 1.比较电势高低的方法(1)根据电场线方向:沿电场线方向电势越来越低.(2)根据U AB =φA -φB :若U AB >0,则φA >φB ,若U AB <0,则φA <φB .(3)根据场源电荷:取无穷远处电势为零,则正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.2.电势能大小的比较方法 (1)做功判断法电场力做正功,电势能减小;电场力做负功,电势能增加(与其他力做功无关). (2)电荷电势法正电荷在电势高处电势能大,负电荷在电势低处电势能大. 考点二 等势面与粒子运动轨迹的分析 1电场等势面(实线)图样重要描述匀强电场垂直于电场线的一簇平面点电荷的电场以点电荷为球心的一簇球面等量异种点电荷的电场连线的中垂线上的电势为零等量同种正点电荷的电场连线上,中点电势最低,而在中垂线上,中点电势最高2.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负;(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等;(3)根据动能定理或能量守恒定律判断动能的变化情况. 考点三 公式U =Ed 的拓展应用1.在匀强电场中U =Ed ,即在沿电场线方向上,U ∝d .推论如下:(1)如图甲,C 点为线段AB 的中点,则有φC =φA +φB2.(2)如图乙,AB ∥CD ,且AB =CD ,则U AB =U CD .2.在非匀强电场中U =Ed 虽不能直接应用,但可以用作定性判断. 考点四 电场中的功能关系 1.求电场力做功的几种方法(1)由公式W =Fl cos α计算,此公式只适用于匀强电场,可变形为W =Eql cos α. (2)由W AB =qU AB 计算,此公式适用于任何电场. (3)由电势能的变化计算:W AB =E p A -E p B . (4)由动能定理计算:W 电场力+W 其他力=ΔE k . 注意:电荷沿等势面移动电场力不做功. 2.电场中的功能关系(1)若只有电场力做功,电势能与动能之和保持不变.(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变. (3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化. (4)所有外力对物体所做的功等于物体动能的变化.3.在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律和功能关系. (1)应用动能定理解决问题需研究合外力的功(或总功).(2)应用能量守恒定律解决问题需注意电势能和其他形式能之间的转化.(3)应用功能关系解决该类问题需明确电场力做功与电势能改变之间的对应关系. (4)有电场力做功的过程机械能不守恒,但机械能与电势能的总和可以守恒.四、电容器、电容 1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成. (2)带电量:一个极板所带电量的绝对值. (3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.电容(1)定义式:C =QU.(2)单位:法拉(F),1 F =106μF =1012pF. 3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两极板间距离成反比.(2)决定式:C =εr S4πkd,k 为静电力常量.特别提醒:C =Q U ⎝ ⎛⎭⎪⎫或C =ΔQ ΔU 适用于任何电容器,但C =εr S4πkd仅适用于平行板电容器.五、带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20;(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:利用运动的合成与分解. ①沿初速度方向:做匀速运动.②沿电场方向:做初速度为零的匀加速运动. 特别提示:带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.六、带电粒子在电场中的偏转 1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响),则有(1)加速度:a =F m =qE m =qUmd.(2)在电场中的运动时间:t =l v 0.(3)位移⎩⎪⎨⎪⎧v x t =v 0t =l 12at 2=y ,y =12at 2=qUl22mv 20d. (4)速度⎩⎪⎨⎪⎧v x =v 0v y =at ,v y =qUtmd, v =v 2x +v 2y ,tan θ=v y v x =qUl mv 20d. 2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的.证明:由qU 0=12mv 20及tan θ=qUl mdv 20得tan θ=Ul2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l2.3.带电粒子在匀强电场中偏转的功能关系:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.第三章 恒定电流 第四章 闭合电路的欧姆定律一、电流、欧姆定律1.电流(1)定义:自由电荷的定向移动形成电流. (2)方向:规定为正电荷定向移动的方向. (3)三个公式①定义式:I =q /t ;②微观式:I =nqvS ;③I =U R.2.欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比. (2)公式:I =U /R .(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路. 二、电阻、电阻率、电阻定律 1.电阻(1)定义式:R =U I.(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小,R 越大,阻碍作用越大. 2.电阻定律(1)内容:同种材料的导体,其电阻与它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关.(2)表达式:R =ρl S . 3.电阻率(1)计算式:ρ=R S l.(2)物理意义:反映导体的导电性能,是导体材料本身的属性. (3)电阻率与温度的关系①金属:电阻率随温度的升高而增大. ②半导体:电阻率随温度的升高而减小. ③超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小为零成为超导体. 三、电功、电功率、焦耳定律 1.电功 (1)实质:电流做功的实质是电场力对电荷做正功,电势能转化为其他形式的能的过程. (2)公式:W =qU =UIt ,这是计算电功普遍适用的公式. 2.电功率(1)定义:单位时间内电流做的功叫电功率.(2)公式:P =W t=UI ,这是计算电功率普遍适用的公式.3.焦耳定律电流通过电阻时产生的热量Q =I 2Rt ,这是计算电热普遍适用的公式. 4.热功率(1)定义:单位时间内的发热量. (2)表达式:P =Q t=I 2R .四、串、并联电路的特点 1.特点对比电阻 R =R 1+R 2+…+R n1R =1R 1+1R 2+…+1R n2.几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)无论电阻怎样连接,每一段电路的总耗电功率P 总是等于各个电阻耗电功率之和. (4)无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大. 五、电源的电动势和内阻 1.电动势(1)定义:电动势在数值上等于非静电力把1 C 的正电荷在电源内从负极移送到正极所做的功.(2)表达式:E =W q.(3)物理意义:反映电源把其他形式的能转化成电能的本领大小的物理量. 2.内阻电源内部也是由导体组成的,也有电阻,叫做电源的内阻,它是电源的另一重要参数. 六、闭合电路欧姆定律1.内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比.2.公式⎩⎪⎨⎪⎧I =E R +r只适用于纯电阻电路E =U 外+U 内适用于任何电路3.路端电压U 与电流I 的关系(1)关系式:U =E -Ir . (2)U -I 图象如图所示.①当电路断路即I =0时,纵坐标的截距为电源电动势. ②当外电路电压为U =0时,横坐标的截距为短路电流. ③图线的斜率的绝对值为电源的内阻. 七、测量电路的选择对伏安法测电阻,应根据待测电阻的大小选择电流表不同的接法.1.阻值判断法:当R V ≫R x 时,采用电流表“外接法”; 当R x ≫R A 时,采用电流表“内接法”. 2.倍率比较法:(1)当R V R x =R x R A ,即R x =R V ·R A 时,既可选择电流表“内接法”,也可选择“外接法”;(2)当R V R x >R xR A 即R x <R V ·R A 时,采用电流表外接法;(3)当R V R x <R xR A即R x >R V ·R A 时,采用电流表内接法.3.试触法:ΔU U 与ΔII 比较大小:(1)若ΔU U >ΔII ,则选择电压表分流的外接法;(2)若ΔI I>ΔUU,则选择电流表的内接法.八、实验器材的选择 1.安全因素通过电源、电表、电阻的电流不能超过允许的最大电流. 2.误差因素选择电表时,保证电流和电压均不超过其量程.使指针有较大偏转(一般取满偏度的13~23);使用欧姆表选挡时让指针尽可能在中值刻度附近. 3.便于操作选滑动变阻器时,在满足其他要求的前提下,可选阻值较小的. 4.关注实验的实际要求.第五章 磁场一、磁场、磁感应强度 1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用. (2)方向:小磁针的N 极所受磁场力的方向. 2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B =F IL(通电导线垂直于磁场).(3)方向:小磁针静止时N 极的指向. (4)单位:特斯拉,符号T. 二、磁感线及特点 1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致. 2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.(3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N 极指向S 极;在磁体内部,由S 极指向N 极.(4)同一磁场的磁感线不中断、不相交、不相切. (5)磁感线是假想的曲线,客观上不存在. 3.电流周围的磁场非匀强磁场三、安培力的大小和方向1.安培力的大小(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)四、洛伦兹力1.定义:运动电荷在磁场中所受的力.2.大小(1) v∥B时,F=0.(2) v⊥B时,F=qvB.(3) v与B夹角为θ时,F=qvB sin_θ.3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).由于F始终垂直于v的方向,故洛伦兹力永不做功.五、洛伦兹力和电场力的比较1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)左手判断洛伦兹力方向,但一定分正、负电荷.六、带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心(如图甲所示,图中P 为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT⎝⎛⎭⎪⎫或t=θRv.4.求解粒子在匀强磁场中运动问题的步骤:(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.。
高中三年级物理选修3-1恒定电流知识点复习

高三物理选修3—1《恒定电流》考点复习资料第1讲 电路的基本定律 串、并联电路考点一 基本概念与定律1.电流:电荷的形成电流。
tqI =,适用于任何电荷的定向移动形成的电流。
在电解液导电时,是正、负离子向相反方向定向移动形成电流,在用公式I =q/t 计算电流强度时q 为正、负电荷电量的代数和 。
电流的微观表达式:I=nqvS 2.欧姆定律:导体中的电流I 跟成正比,跟成反比。
RUI =(适用于金属导体和电解液,不适用于气体导电) 3. 电阻定律:在温度不变时,导体的电阻跟它的成正比,跟它的成反比。
表达式:R=ρSL考点二 电功和电热的区别1、电功:在导体两端加上,导体就建立了,导体中的自由电荷在的作用下发生定向移动而形成电流,此过程中电场力对自由电荷做功,我们说电流做了功,简称电功。
表达式:。
2、电功率:电流所做的功跟完成这些功的比值。
表达式:。
3、焦耳定律:电流通过导体产生的热量,跟、和成正比。
表达式:纯电阻用电器:电流通过用电器以发热为目的,例如电炉、电熨斗、电饭锅、电烙铁、白炽灯泡等。
非纯电阻用电器:电流通过用电器是以转化为热能以外的形式的能为目的,发热不是目的,而是不可避免的热能损失,例如电动机、电解槽、给蓄电池充电、日光灯等。
☞特别提醒:在纯电阻电路中,电能全部转化为热能,电功等于电热,即W=UIt=I2Rt=R U 2t 是通用的,没有区别,同理P=UI=I2R=R U 2也无区别,在非纯电阻电路中,电路消耗的电能,即W=UIt 分为两部分,一大部分转化为其它形式的能;另一小部分不 可避免地转化为电热Q=I2Rt ,这里W=UIt 不再等于Q=I2Rt ,应该是W=E 其它+Q ,电 功就只能用W=UIt 计算,电热就只能用Q=I2Rt 计算。
考点三 串、并联电路1 、串联电路:用导线将、、逐个依次连接起来的电路。
串联电路的特征如下:①I=I 1=I 2=I 3=… ②U=U 1+U 2+U 3+… ③R=R 1+R 2+R 3+… ④11R U =22R U =33R U =…=R U =I⑤11R P =22R P =33R P =…=R P=I 22 、把几个导体连接起来,就构成了并联电路。
高中物理选修3-1总复习提纲

单位:特斯拉(T)
⑶矢量:方向为该点的磁场方向,即通过该点的 磁感线的切线方向
6.安培力
磁场对电流的作用力 ⑴方向:左手定则
安培力
四指:指向电流方向。 方向: 掌心:让磁感线垂直穿入掌
心。 拇指:指向安培力方向。
F、B、I关系: F B F I
F=0 大小: F=BIL
I //B
IB B为匀强磁场
4、电阻率:反映材料的导电性能物理量
5、电功: W = UIt
6、电功率: P = UI
7、欧姆定律:I= U/R
适用范围: 金属导体,电解液溶液
8、电阻定律: R= L/ S
9、焦耳定律: Q=I 2 Rt
10、电功与电热的关系: 在纯电阻电路中 电功等于电热, 在非纯电阻电路中 电功大于电热。
关系。
U
R R
E r
2、分析判断路端电压随外电阻变化而变化的四部
(1)明确外电阻的变化情况;(2)由I RE得 r 出电
路中的总电流的变化;(3)由 U分 析Ir 出内电压的
变化;(4)由 得U 出E 路 Ir端电压的变化
3、路端电压U随电流I变化的图象.U=E-Ir
图象的物理意义
S 4k d
2.稳恒电流
电流定律:I=q/t
(1)部分电路
欧姆定律
电阻定律:R=ρl/S
(2)闭合电 路欧姆定律
(3)串、并联 电路
欧姆定律:I=U/R 电动势:数值上等于电路中通过一库仑电荷量时电源所提供 的能量 路端电压:U=ε-Ir
闭合电路欧姆定律:I
Rr
串联电路特点: I、U、R、P
(3)电势
(能的属性) 电势差:Uab a b
高中物理选修3-1重点考点复习资料

班别: 姓名: 学号:【考点1】电荷守恒定律与库仑定律的结合例1.(多)如图所示,将用绝缘支柱支持的不带电金属导体A 和B 接触,再将带负电的导体C 移近导体A ,然后把导体A 、B 分开,再移去C ,则 ( )A .导体A 带负电,B 带正电B .导体A 带正电,B 带负电C .导体A 失去部分负电荷,导体C 得到负电荷D .导体A 带正电是由于导体A 的部分电子转移到B 上,故A 、B 带等量异种电荷例2.(多)关于物体的带电荷量,以下说法中正确的是( )A .物体所带的电荷量可以为任意实数B .物体所带的电荷量应该是某些特定值C .物体带电+1.60×10-9C ,这是因为该物体失去了1.0×1010个电子D .物体带电荷量的最小值为1.6×10-19C例3.(多)两个相同的金属小球,带电量之比为1/7 ,相距为r ,两者相互接触后再放回原来的位置上,则它们的静电力可能为原来的( )A .4/7B .3/7C .9/7D .16/7例4.如图所示,半径相同的两个金属小球A 、B 带有电荷量大小相等的电荷,相隔一定的距离,两球之间的相互吸引力大小为F ,今用第三个半径相同的不带电的金属小球C 先后与A 、B 两个球接触后移开,这时A 、B 两个球之间的相互作用力大小是( )A.18FB.14FC.38FD.34F 【考点2】电场的叠加(求E )例1.如图:在一匀强电场中,取O 点为圆心,r 为半径作一圆周,在O点固定一电荷量为+Q 的点电荷,a 、b 、c 、d 为相互垂直的两条直线和圆周的交点,则:a 、b 、c 、d 场强最大的是( )A .a 点B .b 点C .c 点D .d 点例2. 如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 点为半圆弧的圆心,∠MOP =60°。
电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O点电场强度的大小为E 1;若将N 点处的点电荷移至P 点,则O 点的电场强度大小变为E 2。
高中物理选修3-1知识点汇总(详细)

物理选修3-1知识点总结一、静电力1.电荷电荷守恒定律点电荷Ⅰ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。
电荷的多少叫电量。
基本电荷_________________。
带电体电荷量等于元电荷的整数倍(Q=ne)⑵使物体带电也叫起电。
使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。
⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。
带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。
2.库仑定律Ⅱ在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为______________________,其中比例常数K叫静电力常量,______________________。
(F:点电荷间的作用力(N),Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)库仑定律的适用条件是(a)真空,(b)点电荷。
点电荷是物理中的理想模型。
当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。
3.静电场电场线Ⅰ为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。
电场线的特点:(a)始于正电荷(或无穷远),终止负电荷(或无穷远);(b)任意两条电场线都不相交。
电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。
带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。
4.电场强度点电荷的电场Ⅱ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。
高中物理选修3-1复习总结(物有所值 )

Q
S C 4kd
E不变
十、带电粒子在电场中的运动 :
1、匀变速直线运动:
① 牛顿运动定律
Eq ma
② 动能定理
1 1 mVt 2 mV02 qU 2 2
Qq V2 2、辐射电场中的匀速圆周运动: k 2 m r r
3、匀强电场中的圆周运动(考虑重力)
◆例:单摆(带电小球与绝缘绳)
③场强相等,电势不一定相等; 电势相等,场强不一定相等
5、场强与电势差关系:
-----适用于匀强电场
U Ed
八、电场力的功
1、电场力做功特点:(同重力)
①只决定于起点、终点的电势差,与路径无关 ②正功→电势能减少,负功→电势能增加
W电 Ep
③静止的电荷在电场力作用下(或电场力做正功情况) 正电荷:从电势高→电势低;负电荷:从电势低→电势高
B
电场力与重力垂直——竖直面变速圆周运动 等效“重力”: G
o
A
Eq
m 2 g 2 E 2q 2
“最低点”:V最大,动能最大,绳子最易 断 “最高点”:V最小,临界点,绳子最易弯 曲
mg
4、匀强电场中的类平抛运动
——F合与V0垂直 ① 粒子落在极板上 (不计重力或重力与电场力共线)
Eq ma
有用机械功 机 UIt I 2 Rt W
UIt I 2 Rt
U IR
◆对于非纯电阻电路(电动机),欧姆定律不适用
◆当通电电动机被卡不运转时,等同于纯电阻电路
六、 闭合电路欧姆定律 1、表达式: I(R r) U Ir
④导体是个等势体,表面及任何截面是个等势面
导体中没有电流通过,导体两端没有电压
物理选修3-1全书专题复习精品版

目录第一讲:电场的力的性质---------------------------------------2 第二讲:电荷平衡的基本模型-----------------------------------9 第三讲:电场的能的性质---------------------------------------17 第四讲:带电粒子在电场中的运动-------------------------------29 第五讲:电容器和电容、静电问题------------------------------34 第六讲:电路的基本概念和规律----------------------------------41 第七讲:电学实验一:描绘小灯泡的伏安特性曲线.---------------56二:测金属丝的电阻率--------------------------61 第八讲:闭合电路欧姆定律---------------------------------------70 第九讲:电学实验三:测量电源的电动势和内阻------------------------77 四:练习使用多用电表----------------------------82第十讲:电路中的功率及能量转化问题--------------------------------90 第十一讲:磁场及其对电流的作用--------------------------------------99 第十二讲:磁感应强度和磁通量问题-----------------------------------109 第十三讲:磁场对运动电荷的作用-------------------------------------114 第十四讲:带电粒子在复合场中的运动---------------------------------127 第十五讲:电磁感应-------------------------------------------------136 第十六讲:法拉第电磁感应定律、楞次定律-----------------------------144 第十七讲:电磁感应中的能量转化问题--------------------------------155 第十八讲:自感-----------------------------------------------------161第一讲:电场的力的性质一、两种电荷摩擦起电及解释1.自然界只存在种电荷,和.丝绸摩擦过的玻璃棒所带的电荷叫做电荷,毛皮摩擦过的硬橡胶棒所带的电荷叫做电荷.同种电荷相互,异种电荷相互.2.电荷量:的多少.在国际单位制中,电荷量的单位是,用字母表示,1 μC=C,1 nC= C.3.元电荷:一个电子所带电荷量的绝对值为 C,它是电荷的最小单位.记作e= C.(1)任何带电体所带电荷量都是元电荷的倍.(2)质子和电子所带电荷量与元电荷,但不能说电子和质子是元电荷.4.摩擦起电及解释(1)摩擦起电:通过使物体带电的方法.(2)电中性:原子核是由带正电的和不带电的组成;核外有带负电的,正常状态下,原子内的总数等于原子核内的总数,因而通常物体或者物体的任何一部分都不显电性,称之为电中性.(3)摩擦起电的解释当两个物体相互摩擦时,一些束缚不紧的电子会从一个物体转移到另一个物体,于是得到电子的物体带电,失去电子的物体则带电.深度思考有人说:一个带电体所带的电荷量为4×10-19 C,你认为他这种说法正确吗?为什么?例1关于摩擦起电现象,下列说法正确的是( )A.摩擦起电现象使本来没有电子和质子的物体中产生了电子和质子B.两种不同材料的绝缘体相互摩擦后,同时带上等量异种电荷C.摩擦起电,可能是因为摩擦导致质子从一个物体转移到了另一个物体而形成的D.丝绸摩擦玻璃棒时,电子从玻璃棒上转移到丝绸上,玻璃棒因质子数多于电子数而显正电二、电荷守恒定律内容:电荷既不能,也不能,它们只能从一个物体转移到物体,或者从物体的一部分转移到部分,也就是说,在任何自然过程中,电荷的是守恒的.深度思考带等量异种电荷的两小球接触后都不带电了,是电荷消失了吗?此过程中电荷还守恒吗?例2完全相同的两金属小球A、B带有相同的电荷量,相隔一定的距离,今让第三个完全相同的不带电金属小球C,先后与A、B接触后移开.(1)若A、B两球带同种电荷,接触后两球的电荷量大小之比为多大?(2)若A、B两球带异种电荷,接触后两球的电荷量大小之比为多大?(1)接触起电:带电体接触导体时,电荷转移到导体上,使导体带上与带电体相同性质的电荷.(2)导体接触带电时电荷量的分配与导体的形状、大小有关,当两个完全相同的导体接触后,电荷将平均分配,即最后两个导体一定带等量的同种电荷.(3)若两个相同的金属球带同种电荷,接触后电荷量先相加后均分;若带异种电荷,接触后电荷先中和再均分.三、静电感应、感应起电和验电器(或静电计)1.静电感应:当一个带电体靠近不带电的导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或带电体,使导体靠近带电体的一端带电荷,远离带电体的一端带电荷,这种现象叫做感应.2.感应起电:利用静电感应使导体带电的方法.3.验电器(或静电计)(1)验电器(或静电计)(如图1)的金属球、金属杆和下面的两个金属箔片连成同一导体.图1(2)当带电的物体与验电器上面的金属球接触时,有一部分电荷转移到验电器上,与金属球相连的两个金属箔片带上同种电荷,因相互排斥而张开,物体所带电荷量越多,电荷转移的越多,斥力越,张开的角度也越(3)当带电体靠近验电器的金属球时,金属箔片也会张开.因为带电体会使验电器的上端感应出异种电荷,而金属箔片上会感应出同种电荷(感应起电),两箔片在斥力作用下张开.深度思考(1)带正电的物体A与不带电的物体B接触,使物体B带上了什么电荷?在这个过程中电荷是如何转移的?(2)如图2所示,当将带正电荷的球C移近不带电的枕形金属导体时,由于电荷间的吸引,枕形金属导体中的自由电子向A端移动,而正电荷不移动,所以A端(近端)带______电,B端带______电.(填“正”或“负”)图2例3如图3所示,A、B为相互接触的用绝缘支柱支撑的金属导体,起初它们不带电,在它们的下部贴有金属箔片,C是带正电的小球,下列说法正确的是( )图3A.把C移近导体A时,A、B上的金属箔片都张开B.把C移近导体A,先把A、B分开,然后移去C,A、B上的金属箔片仍张开C.先把C移走,再把A、B分开,A、B上的金属箔片仍张开D.先把A、B分开,再把C移走,然后重新让A、B接触,A上的金属箔片张开,而B上的金属箔片闭合(1)静电感应中,电中性导体在两侧同时感应等量异种电荷,感应的过程,就是导体内电荷重新分布的过程.(2)接触起电是由于电荷间作用使导体间的电荷发生转移.例4使带电的金属球靠近不带电的验电器,验电器的箔片张开.下列各图表示验电器上感应电荷的分布情况,正确的是( )1.(摩擦起电及解释)(多选)如图4所示,如果天气干燥,晚上脱毛衣时,会听到“噼啪”的响声,还会看到电火花,关于这种现象产生的原因,下列说法错误的是( )图4A.人身体上产生电流 B.接触带电造成的C.摩擦起电造成的 D.感应起电造成的2.(电荷守恒定律的理解和应用)有两个完全相同的带电绝缘金属小球A、B,分别带有电荷量Q=6.4×10-9C,Q B=-3.2×10-9C,让两绝缘金属小球接触,在接触过程中,电子如何转移A并转移了多少?3.(对三种起电的理解)如图5是伏打起电盘示意图,其起电原理是( )图5A.摩擦起电 B.感应起电C.接触起电 D.以上三种方式都不是4. (验电器及其原理)如图6所示,用丝绸摩擦过的玻璃棒和验电器的金属球接触,使验电器的金属箔片张开,关于这一现象下列说法正确的是( )图6A.两片金属箔片上带异种电荷B.两片金属箔片上均带负电荷C.箔片上有电子转移到玻璃棒上D.将玻璃棒移走,则金属箔片立即合在一起四、探究影响点电荷之间相互作用的因素1.点电荷(1)定义:当一个带电体本身的比它到其他带电体的距离很多,以至在研究它与其他带电体的相互作用时,该带电体的以及均无关紧要,该带电体可以看做一个带电的点,这样的电荷称为点电荷.(2)点电荷是的物理模型,只有电荷量,没有大小、形状,类似于力学中的质点,实际.(填“存在”或“不存在”)2.电荷之间的相互作用随电荷量的增大而,随它们之间距离的增大而.深度思考(1)只有体积很小或电荷量很小的带电体才可以看做点电荷吗?(2)点电荷就是元电荷吗?例1关于点电荷,下列说法中正确的是( )A.点电荷就是体积小的带电体B.球形带电体一定可以视为点电荷C.带电少的带电体一定可以视为点电荷D.大小和形状对作用力的影响可忽略的带电体可以视为点电荷(1)一个带电体能否看做点电荷,是相对于具体问题而言的,不能单凭其大小和形状确定.(2)点电荷的电荷量可能较大也可能较小,但一定是元电荷的整数倍.五、库仑定律1.内容:真空中两个静止的点电荷之间的作用力(斥力或引力)与这两个电荷所带电荷量的乘积成,与它们之间距离的成反比,作用力的方向沿着.2.公式:F=k Q1Q2r2,其中k= N·m2/C2,叫做静电力常量.3.适用条件:(1) ;(2) .4.静电力的确定(1)大小计算:利用库仑定律计算静电力时不必将表示电性的正、负号代入公式,只代入Q1和Q2的绝对值即可.(2)方向判断:利用同种电荷相互,异种电荷相互来判断.深度思考当电荷Q1、Q2间的距离r→0时,由公式F=k Q1Q2r2可知,两电荷间的相互作用力F→∞.这种说法正确吗?为什么?例2两个完全相同的金属小球A、B(均可视为点电荷)带有相等的电荷量,相隔一定距离,两小球之间相互吸引力的大小是F.今让第三个不带电的相同金属小球先后与A、B两小球接触后移开.这时,A、B两小球之间的相互作用力的大小是( )A.F8B.F4C.3F8D.3F4(1)库仑定律只适用于真空中点电荷之间的相互作用,一般没有特殊说明的情况下,都可按真空来处理.(2)两个点电荷之间的库仑力遵守牛顿第三定律,即不论电荷量大小如何,两点电荷间的库仑力大小总是相等的.例3如图1所示,两个半径均为r的金属球放在绝缘支架上,两球面最近距离为r,带等量异种电荷,电荷量为Q,两球之间的静电力为下列选项中的哪一个( )图1A.等于k Q29r2 B.大于kQ29r2C.小于k Q29r2 D.等于kQ2r2两个形状规则的均匀球体相距较远时可以看做点电荷;相距较近时不能看做点电荷,此时球体间的作用力会随着电荷的分布而变化.第二讲:电荷平衡的基本模型一.静电力的叠加1.两个点电荷间的作用力 (选填“会”或“不会”)因为第三个点电荷的存在而有所改变.2.两个或者两个以上点电荷对某一个点电荷的作用力等于各点电荷单独对这个点电荷的作用力的.例4如图2所示,在A、B两点分别放置点电荷Q1=+2×10-14 C和Q2=-2×10-14 C,在AB的垂直平分线上有一点C,且AB=AC=BC=6×10-2 m.如果有一个电子在C点,它所受到的库仑力的大小和方向如何?图2(1)库仑力也称为静电力,它具有力的共性.它与学过的重力、弹力、摩擦力是并列的.它具有力的一切性质.(2)当多个带电体同时存在时,每两个带电体间的库仑力都遵守库仑定律.某一带电体同时受到多个库仑力作用时可利用力的平行四边形定则求出其合力.二、静电力作用下的平衡问题分析静电力平衡的基本方法:(1)明确研究对象;(2)画出研究对象的受力分析图;(3)根据平衡条件列方程;(4)代入数据计算或讨论.例5如图3所示,用两根长度相同的绝缘细线把一个质量为0.1 kg的小球A悬挂到水平板的M、N两点,A上带有Q=3.0×10-6 C的正电荷.两线夹角为120°,两线上的拉力大小分别为F1和F2.A的正下方0.3 m处放有一带等量异种电荷的小球B,B与绝缘支架的总质量为0.2 kg(重力加速度取g=10 m/s2;静电力常量k=9.0×109N·m2/C2,A、B球可视为点电荷).求:图3(1)两线上的拉力F1和F2的大小;(2)支架对地面的压力F N的大小.1.(对点电荷的理解)(多选)下列说法中正确的是( )A.点电荷是一种理想化模型,真正的点电荷是不存在的B.点电荷就是体积和电荷量都很小的带电体C.根据F=k Q1Q2r2可知,当r→0时,F→∞D.一个带电体能否看成点电荷,不是看它的尺寸大小,而是看它的形状和大小对所研究的问题的影响是否可以忽略不计2.(库仑定律的理解和应用)两个分别带有电荷量-Q和+3Q的相同金属小球(均可视为点电荷),固定在相距为r的两处,它们间库仑力的大小为F.两小球相互接触后将其固定距离变为r2,则两球间库仑力的大小为( )A.112F B.43F C.34F D.12F3.(静电力的叠加)如图4,电荷量为q1和q2的两个点电荷分别位于P点和Q点.已知放在P、Q连线上某点R处的点电荷q受力为零,且PR=2RQ.则( )图4A.q1=2q2 B.q1=4q2C.q1=-2q2 D.q1=-4q24.(库仑力作用下的平衡)如图5所示,把质量为3 g的带电小球B用绝缘细绳悬挂,若将带电荷量为Q=-4.0×10-6 C的带电小球A靠近B,当两个带电小球在同一高度相距r=20 cm 时,绳与竖直方向成α=30°角,A、B两球均静止.求B球带的电荷量q.(取g=10 m/s2)图5三、电场和电场强度1.电场(1)概念:存在于电荷周围的一种特殊的,由电荷产生.是物质存在的两种不同形式.(2)基本性质:对放入其中的电荷有.电荷之间通过相互作用.(3)静电场:电荷周围产生的电场.2.电场强度(1)检验电荷用来检验电场是否存在及其分布情况的电荷.要求:①电荷量要充分;②体积要充分.(2)电场强度①定义:放入电场中某点的检验电荷所受与它的的比值叫做该点的电场强度,简称场强.②物理意义:表示电场的和.③定义式:,单位为牛(顿)每库(仑),符号为.④方向:电场强度的方向与所受静电力的方向相同,与负电荷所受静电力方向.深度思考(1)由于E=Fq,所以有人说电场强度的大小与放入的试探电荷受到的力F成正比,与电荷量q的大小成反比,你认为这种说法正确吗?为什么?(2)这里定义电场强度的方法叫比值定义法,你还学过哪些用比值定义的物理量?它们都有什么共同点?例1A为已知电场中的一固定点,在A点放一电荷量为q的试探电荷,所受电场力为F,A 点的场强为E,则( )A.若在A点换上电荷量为-q的试探电荷,A点场强方向发生变化B.若在A点换上电荷量为2q的试探电荷,A点的场强将变为2EC.若在A点移去电荷q,A点的场强变为零D.A点场强的大小、方向与q的大小、正负、有无均无关例2真空中O点放一个点电荷Q=+1.0×10-9C,直线MN通过O点,OM的距离r=30 cm,M点放一个点电荷q=-1.0×10-10 C,如图1所示.求:图1(1)q在M点受到的作用力;(2)M点的场强;(3)拿走q后M点的场强.(1)公式E=Fq是电场强度的定义式,不是决定式.其中q是试探电荷的电荷量.(2)电场强度E的大小和方向只由电场本身决定,与是否放入试探电荷以及放入试探电荷的正负、电荷量的大小无关.四、点电荷的电场电场强度的叠加1.真空中点电荷周围的场强(1)大小:E=kQr2.(2)方向:Q为正电荷时,E的方向由点电荷指向;Q为负电荷时,E的方向由无穷远指向.2.电场强度的叠加:电场强度是矢量.如果场源是多个点电荷,则电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的.深度思考公式E=Fq与E=kQr2有什么区别?例3真空中距点电荷(电荷量为Q)为r的A点处,放一个带电荷量为q(q≪Q)的点电荷,q 受到的电场力大小为F,则A点的场强为( )A.FQB.FqC.kqr2D.kQr2例4如图2所示,真空中带电荷量分别为+Q和-Q的点电荷A、B相距为r,则:图2(1)两点电荷连线的中点O的场强多大?(2)在两点电荷连线的中垂线上,距A、B两点都为r的O′点的场强如何?电场强度是矢量,合成时遵循矢量运算法则(平行四边形定则或三角形定则),常用的方法有图解法、解析法、正交分解法等;对于同一直线上电场强度的合成,可先规定正方向,进而把矢量运算转化成代数运算.五、电场线和匀强电场1.电场线的特点(1)电场线是为了形象描述而假想的一条条有方向的,曲线上每点的方向表示该点的电场强度方向.(2)电场线从或无限远出发,终止于或负电荷.(3)电场线在电场中不.(4)在同一电场中,电场强度较大的地方电场线.2.画出几种特殊的电场线(自己画出电场线)3.匀强电场(1)定义:电场中各点电场强度的大小、方向的电场.(2)特点:①场强方向处处相同,电场线是.②场强大小处处相等,要求电场线疏密程度相同,即电场线.深度思考(1)在相邻的两条电场线之间没画电场线的地方有电场吗?(2)电场线是物体的运动轨迹吗?例5如图3所示是某静电场的一部分电场线分布情况,下列说法中正确的是( )图3A.这个电场可能是负点电荷的电场B.点电荷q在A点处受到的电场力比在B点处受到的电场力大C.正电荷可以沿电场线由B点运动到C点D.点电荷q在A点处的瞬时加速度比在B点处的瞬时加速度小(1)电场线并不是粒子运动的轨迹.带电粒子在电场中的运动轨迹由带电粒子所受合外力与初速度共同决定.电场线上各点的切线方向是场强方向,决定着粒子所受电场力的方向.轨迹上每一点的切线方向为粒子在该点的速度方向.(2)电场线与带电粒子运动轨迹重合必须同时满足以下三个条件①电场线是直线.②带电粒子只受电场力作用,或受其他力,但其他力的方向沿电场线所在直线.③带电粒子初速度的大小为零或初速度的方向沿电场线所在的直线.1.(对电场强度的理解)电场中有一点P,下列说法中正确的有( )A.若放在P点的试探电荷的电荷量减半,则P点的场强减半B.若P点没有试探电荷,则P点场强为零C.P点的场强越大,则同一试探电荷在P点受到的电场力越大D.P点的场强方向就是放在该点的试探电荷所受电场力的方向2.(对电场强度的理解)如图4所示,在一带负电的导体A附近有一点B,如在B处放置一个q=-2.0×10-8C的电荷,测出其受到的静电力F1大小为4.0×10-6N,方向如图,则B处场1强多大?如果换用一个q2=+4.0×10-7C 的电荷放在B点,其受力多大?此时B处场强多大?图43.(点电荷的电场电场强度的叠加)如图5所示,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,∠MOP=60°.电荷量相等、符号相反的两个点电荷分别置于M、N两点,这时O点电场强度的大小为E1;若将N点处的点电荷移到P点,则O点的场强大小变为E,E1与E2之比为( )2图5A.1∶2 B.2∶1 C.2∶ 3 D.4∶ 34.(电场线的特点及应用)下列各电场中,A、B两点电场强度相同的是( )第三讲:电场的能的性质一、静电力做功、电势能及其关系 1.静电力做功的特点如图1所示,在匀强电场中不论q 经由什么路径从A 点移动到B 点,静电力做的功都 .说明静电力做的功与电荷的 位置和 位置有关,与电荷经过的路径 (填“有关”或“无关”).可以证明,对于非匀强电场也是 的.图12.电势能(1)概念:电荷在 中具有的势能.用E p 表示.(2)静电力做功与电势能变化的关系:电场力做的功等于电势能的 .表达式:W AB = .⎩⎨⎧静电力做正功,电势能减少;静电力做负功,电势能增加W.(3)电势能的大小:电荷在某点的电势能,等于把它从这点移动到 时电场力做的功. 深度思考(1)在电场中确定的两点移动等量的正、负电荷时,静电力做功和电势能的变化有何差异? (2)电势能是标量还是矢量?它有正负之分吗?若有,其正负号表示什么?例1 将带电荷量为6×10-6 C 的负电荷从电场中的A 点移到B 点,克服电场力做了3× 10-5 J 的功,再从B 移到C ,电场力做了1.2×10-5 J 的功,则: (1)电荷从A 移到B ,再从B 移到C 的过程中电势能共改变了多少?(2)如果规定A 点的电势能为零,则该电荷在B 点和C 点的电势能分别为多少? (3)如果规定B 点的电势能为零,则该电荷在A 点和C 点的电势能分别为多少?(1)电势能的系统性:电势能由电场和电荷共同决定,但我们习惯说成电场中的电荷所具有的势能.(2)电势能的相对性:电势能是一个相对量,其数值与零势能点的选取有关.例2在电场强度大小为E的匀强电场中,一质量为m、带电荷量为+q的物体从A点开始以某一初速度沿电场反方向做匀减速直线运动,其加速度的大小为0.8qEm,物体运动距离l到B时速度变为零.下列说法正确的是( )A.物体克服电场力做功qElB.物体的电势能减少了qElC.物体的电势能增加了qElD.若选A点的电势能为零,则物体在B点的电势能为qEl(1)在匀强电场中,电场力做的功为W=qEd,其中d为沿电场线方向的位移.(2)功是能量转化的量度,但要理解并区别电场力做功与电势能变化的关系、合外力做功与动能变化的关系(动能定理),即搞清功与能的变化的对应关系.二、电势与电势差1.电势(1)概念:电荷在电场中某一点的与它的的比值.(2)定义式和单位:φ=Epq,单位是,符号是.(3)相对性:电势也是相对的,常取离场源电荷的电势为零,或的电势为零,电势可以是正值,也可以是值,没有方向,因此是标量.2.电势差(1)定义:电场中两点间的电势之差.也叫.(2)电场中两点间的电势差与零电势点的选择 (填“有关”或“无关”).(3)公式:电场中A点的电势为φA,B点的电势为φB,则U AB=,U BA=,可见UAB=.(4)若选取某点电势为零,比如φB=0,则A点的电势φA等于A点与B点的电势U AB,即φA=UAB.(5)电势差是,U AB为正值,说明A点的电势比B点的电势;U AB为负值,说明A点的电势比B点的电势.(6)电势差的单位和电势的单位相同,均为,符号是.深度思考选取不同的零电势点,电场中某点的电势会改变吗?两点之间的电势差会改变吗?答案该点的电势会改变;两点之间的电势差不变.例3如果分别将q1=1.0×10-8 C和q2=-2.0×10-8 C的两电荷从无限远移到电场中的A 点和B点,静电力做功分别为W1=-1.2×10-4 J和W2=1.6×10-4 J,那么(1)q1在A点的电势能和q2在B点的电势能分别是多少?(2)A点和B点的电势分别是多少?A、B间的电势差U AB为多少?(3)在q1、q2未移入电场前,A点和B点的电势分别是多少?(1)电势和电势能具有相对性,与零电势点的选取有关,电势差与零电势点的选取无关.(2)φ=E pq 是电势的定义式.电场中某点处φ的大小是由电场本身决定的,与在该点处是否放入试探电荷、电荷的电性、电荷量均无关.(3)由φ=E pq求电势时,可将各物理量的“+”、“-”直接代入计算,这样更方便. 三、电场力做功与电势差的关系 1.关系:W AB = ,U AB = . 2.适用范围: 电场.例4 在电场中把一个电荷量为-6×10-8 C 的点电荷从A 点移到B 点,电场力做功为-3×10-5 J ,将此电荷从B 点移到C 点,电场力做功4.5×10-5 J ,求A 点与C 点间的电势差.(1)电场力做功与路径无关,只与始、末两点的位置有关,故W AC =W AB +W BC . (2)在利用公式U AB =W ABq进行有关计算时,有两种处理方案,方案一:各物理量均带正、负号运算,但代表的意义不同.W AB 的正、负号表示正、负功;q 的正、负号表示电性;U AB 的正、负号反映φA 、φB 的高低.计算时W 与U 的角标要对应,即W AB =qU AB ,W BA =qU BA .方案二:绝对值代入法.W AB 、q 、U AB 均代入绝对值,然后再结合题意判断电势的高低. 四、等势面1.定义:电场中 的各点构成的面. 2.等势面的特点(1)等势面一定跟电场线 ,即跟电场强度的方向垂直. (2)在同一等势面内任意两点间移动电荷时,电场力 功.(3)电场线总是由 的等势面指向 的等势面,两个不同的等势面 .3.几种常见电场等势面(如图2所示)图2深度思考分析上面几种常见电场等势面的特点,我们是否可以根据等势面的分布情况比较各点场强的大小?例5位于A、B处的两个带有不等量负电的点电荷在平面内电势分布如图3所示,图中实线表示等势线,则( )图3A.a点和b点的电场强度相同B.正电荷从c点移到d点,电场力做正功C.负电荷从a点移到c点,电场力做正功D.正电荷在e点的电势能大于在f点的电势能等势面的应用(1)利用等势面和电场线垂直以及沿电场线电势降低的特点可判断电场线的方向.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
θ
O
③ 粒子先经过加速电场再进入偏转电场
qU 0
1 2
m
V0
2
Y
L2 U y
4d U0
LU tan
2d U0
④ 粒子穿出电场后匀速运动打在屏幕上
Y y L tan
第二章 恒定电流
1、电流 2、串并联电路 3、电阻 4、电功与电功率 5、电热 6、闭合电阻的欧姆定律(实验) 7、综合应用(含容电路,动态分析,电路故障) 8、伏安法测电阻(实验) 9、实物图与电路图的连接 10、多用电表(实验)
若d↘,E↗
d↘,C↗,Q↗ ② 充电后电源切断 Q不变
若d↘, C↗ ,U↘
Q
E U C Q
dd
C S 4k d
Cd E 4kQ S
E不变
九、带电粒子在电场中的运动
1、匀变速直线运动:
① 牛顿运动定律 Eq ma
②
动能定理
1 2
m Vt2
1 2
m V02
qU
2、点电荷电场中的匀速圆周运动:k
②正功→电势能减少,负功→电势能增加 W电 Ep
③静止的电荷在电场力作用下(或电场力做正功情况) 正电荷:从电势高→电势低;负电荷:从电势低→电势高 不论正负电荷:均从电势能大→电势能小
2、电场力做功的计算: ①W=Fd=Eqd--------匀强 ②W=qu---------------通用
WAB q UAB ◆可通过功的正负来确定电势的
Eq ma U Ed y 1 at2 飞行时间由y决定
2
② 粒子穿出极板
Eq ma U Ed
L V0t 飞行时间由L决定
侧 移 :y
1 at2 2
L2qU 2dmV02
电场力做功:W Eq y
速度偏角: tan Vy at Vx V0
位移偏角:tan y at x 2V0
E E1 E2
▲例:一对等量异(同)种点电荷Q、-Q连线、中垂线上的场强(相距2L)
E
y y
B
E
+Q
A -Q
O
X
2L
BLeabharlann +QA -QO
X
2L
四、电场线
1、应用: ①定性判断场强大小、方向:一条电场线不能看出疏密 ②定性判断电势高低
2、特点: ①从正电荷出发,终止于负电荷 ②不闭合、不相交、不中断 ③电场线存在于正负电荷及无穷远(大地)三者之间 ④电场线条数与电荷量成正比 ⑤电场线与电荷运动轨迹一般不重合
4、场强与电势无必然联系: ①场强为0,电势不一定为0; 电势为0,场强不一定为0 ②场强大,电势不一定高; 电势高,场强不一定大 ③场强相等,电势不一定相等; 电势相等,场强不一定相等
5、场强与电势差关系: U Ed
-----适用于匀强电场 d-----沿场强方向的距离
七、电场力的功
1、电场力做功特点:(同重力) ①只决定于起点、终点的电势差,与路径无关
②电压:U=U1+U2+U3+ ③电阻:R=R1+R2+R3+ ④电压分配:与电阻成正比 ⑤功率分配:与电阻成正比
2、并联: ①各支路电压相等
②电流:I I1 I2 I3
1
③电阻:R
=
1 R1
1 R2
1 R3
④电流分配:与电阻反比
⑤功率分配:与电阻反比
R R1 R2 R1 R2 111
5、电势高低的判断:沿着电场线方向电势越来越低
AB
AB
φA>φB>O
φA<φB<O
正电荷周围空间电势恒为正。 负电荷周围空间电势恒为负。
六、电势差:(电压)
1、定义:
W Uab q
2、决定式:uab=φa-φb
◆单下标或无下标时取绝对值
3、绝对性:与零势点无关 有下脚标时应注意正负号 uab=-uba
一、电流
1、电流的形成:电荷的定向移动
2、电流(强度)定义: I q
t
3、电流(微观)决定式: I neSV定
4、电流(宏观)决定式: I U R
V定数量级 10-5m/S
------部分电路欧姆定律
------适用于金属导体、电解质溶液,不适 用气体导电
二、串并联电路基本特点:
1、串联: ①电流处处相等
θ1 θ2
③带电摆球的平衡:
整体法:三力共点(c为两球重心) m↗,θ↘ 摆角θ与带电量无关
c m1 G总
m2
三、电场强度(场强)
1、场强E: ①定义式:E F
q 矢量方向:规定正电荷受力方向
②单位: N/C V/m
③决定式:
E
k
Q r2
------适用真空点电荷
2、场强的叠加:------平行四边形定则
第一章 电 场
1、电荷 2、库仑定律 3、电场强度 4、电场线 5、电势 6、电势差 7、电场力做功 8、电容器 9、带电粒子在电场中的运动
一、电荷 1、基本电荷(元电荷):1e 1.61019C
1C 6.251018 e
2、物体起电方式: 本质:电荷转移
①摩擦起电;(绝缘体) ②接触起电:(导体) ③感应起电:(导体)
3、常见电场的电场线:
①正、负点电荷电场
②匀强电场
③一对等量异种电荷的电场
④一对等量同种电荷的电场
五、电势φ
1、定义:
Ep q
(标量)三个量都有正负号
◆正电荷电势能与电势同号
负电荷电势能与电势反号
2、单位:伏 1V=1J/C
3、决定因素:场源电荷、位置
4、相对性:零电势的选取,理论上取无穷远,实际上常取大地。
高低及电势差
八、电容器
1、定义式: C Q Q
U U
——普适通用
2、决定式: C S
4k d
——平行板
ε≥1,→介电常数
S→正对面积; d→极板间距
3、单位:
法拉(F) 微法(μF) 皮法(pF)
1F = 106μF = 1012pF
4、平行板电容器两种充电方式:
① 电源保持连接状态 U不变
二、库仑定律
1、公式:
F
k
Q1 Q2 r2
k 9109 Nm2 / C 2
K的测定:库仑扭秤实验
2、适用条件: 真空、静止、点电荷
(或电荷均匀分布的球体)
3、应用: ①两相同球体接触起电
㈠:两球带同种电荷,总电量两球均分 ㈡:两球带异种电荷,先中和后,净电荷再均分
②三点电荷静电平衡
两同夹异,两大夹小,近小远大
Qq r2
m
V2 r
3、匀强电场中的圆周运动(考虑重力) B
◆例:单摆(带电小球与绝缘绳)
电场力与重力垂直——竖直面变速圆周运动
等效“重力”G: m2 g2 E 2q2
o A Eq
“最低点”:V最大,动能最大,绳子最易断
“最高点”:V最小,临界点,绳子最易弯曲
mg
4、匀强电场中的类平抛运动
——F合与V0垂直(不计重力或重力与电场力共线) ① 粒子落在极板上