第9章 钯催化C-C键交叉偶联反应的机理

合集下载

钯催化交叉偶联反应

钯催化交叉偶联反应

钯催化的交叉偶联反应一、偶联反应综述1.交叉偶联反应偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。

狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。

交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。

2.碳碳键形成的重要性新碳-碳键的形成在有机化学中是极其重要的。

人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。

目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。

合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。

从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。

3.有机合成中的钯催化交叉偶联反应随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。

特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。

三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。

钯催化构建天然产物(1)

钯催化构建天然产物(1)

钯催化构筑天然产物【摘要】过渡金属钯在金属有机化学方面具有丰富的反应性, 用作催化剂具有高效率、用量少、选择性高等优点, 钯催化剂在有机合成中的应用有着举足轻重的地位, 由于钯催化剂的新应用, 有机合成领域出现了很多新的合成工艺、合成产物等[1]。

本文在查阅文献的基础上,对钯催化C-C, C-N键偶联构筑天然产物进行了概述。

【关键词】钯催化C-C, C-N键偶联1.钯催化C-C偶联构筑天然产物钯催化的交叉偶联反应金属钯催化的交叉偶联反应是最有效的形成C-C键的方法之一。

经过30多年来的发展,已经实现了各种卤代芳烃及酚类衍生物与各种有机金属试剂及不饱和烃类化合物的交叉偶联反应,如Heck偶联反应,Negishi偶联反应,Stille偶联反应,Kumada偶联反应,Ullmann 偶联反应,以及Suzuki-Miyaura偶联反应。

这类偶联反应已广泛应用于天然产物、生理活性化合物以及有机电子材料的合成中,并已实现了产业化应用。

基于该方法学在有机合成及材料合成领域的杰出贡献,Heck,Suzuki和Negish等三位科学家获得了2010年诺贝尔化学奖。

虽然金属钯催化的交叉偶联反应得到了蓬勃的发展,但在提高催化反应的催化活性、降低催化剂用量、实现温和的反应条件、扩大反应原料的适用性等方面仍是具有挑战性的研究课题。

1.1.1 Mizoroki-Heck反应Mizoroki和Heck分别于1971和1972年发现了一类重要的形成与不饱和双键相连新的C-C 键的反应,故称作Mizoroki-Heck反应。

此类反应在过去的40多年中已经逐渐发展成为一种应用日益广泛的有机合成方法,Heck反应机理如下(Scheme 1)。

Mizoroki-Heck反应是合成具有各种取代基的不饱和化合物最为有效的方法之一。

由于它具有广泛的底物适用性和对许多官能团有好的兼容性,因此,被广泛的应用于新药合成、染料以及有机发光料等领域。

钯催化交叉偶联反应

钯催化交叉偶联反应

钯催化交叉偶联反应什么是钯催化交叉偶联反应?钯催化交叉偶联反应(Palladium-Catalyzed Cross-Coupling Reaction)是一种重要的有机合成反应。

它是一类碳-碳键构造的反应,是通过将两种不同的碳基官能团或碳碳键连接在一起,以形成新的C-C化合物。

反应机理在钯催化交叉偶联反应中,两个分子的有机基团进行偶联,然后由钯离子起催化作用,生成新的碳碳键。

催化剂形式上是Pd(0)配合物,反应机理如下:1.钯催化剂先通过脱对氢化学计量通常分配Pdcatalyst (I)。

2.钯催化剂进一步和配体形成配合物(PdL2)。

3.配合物和卤代烃发生交换生成过渡态PdL2(RX)。

过渡态中,钯离子与亲电吸引剂的卤素原子形成键;此过程中C-X钩体断裂,形成第一级碳中间体。

4.结合第二个有机基团生成PdL2(RY)介于新的物种。

5.最后的反应产物通常通过还原反应,将钯催化剂还原为Pd(0)。

应用钯催化交叉偶联反应已经成为有机合成中的重要反应之一,广泛应用于制药、化工、材料科学等领域。

其重要应用包括:•制备非对映选择性或对映选择性的C-C连接化合物。

•制备有机材料。

•合成复杂天然产物的合成方法研究。

反应类型钯催化交叉偶联反应可以根据反应物和类型进行分类。

最常用的交叉偶联反应类型是官能团反应 (Functional Group Coupling) 和碳-碳双键偶联反应 (Carbon-Carbon Double Bond Coupling),这些反应分类包括下列:1.骨架化反应 (Fragmentation Reaction)2.偶联反应 (Cross-Coupling Reaction)3.代换反应 (Substitution Reaction)4.重排反应 (Rearrangement Reaction)反应优点由于钯催化交叉偶联反应具有高效性、选择性、重复性和收率高的特点,它已经成为有机化学领域极为重要的反应之一。

c-c交叉偶联反应

c-c交叉偶联反应

c-c交叉偶联反应C-C交叉偶联反应:构建碳-碳键的重要工具在有机合成领域,C-C交叉偶联反应是一种非常重要的反应,它可以用于构建碳-碳键,创造出多样化的有机分子结构。

这种反应可以实现不同碳原子之间的连接,从而在分子中引入新的官能团,为合成复杂化合物提供了有力的工具。

C-C交叉偶联反应的基本原理是通过一个中间体来实现两个碳原子的偶联。

这个中间体通常是一个金属催化剂,它能够促使两个碳原子之间发生键的形成。

常用的金属催化剂有钯、铜等,它们能够与有机物中的卤素或卤代烷基发生配位反应,形成一个活性的中间体。

然后,这个活性中间体与另一个含有亲电性基团的有机物发生反应,从而实现两个碳原子的连接。

C-C交叉偶联反应具有许多优点。

首先,它可以在温和的条件下进行,通常在常温下甚至是室温下就能够完成反应。

其次,它对于底物的适用范围很广,不仅可以用于芳香化合物的合成,也可以用于脂肪族化合物的合成。

此外,C-C交叉偶联反应还可以实现多步反应的简化,提高反应的效率和产率。

然而,C-C交叉偶联反应也存在一些挑战和限制。

首先,选择合适的金属催化剂是至关重要的,不同的反应需要不同的催化剂条件。

其次,底物之间的选择性也是一个问题,有时会出现竞争性反应,导致产物的选择性降低。

此外,一些底物可能具有毒性或不稳定性,需要特殊的处理和条件。

尽管存在一些挑战,C-C交叉偶联反应仍然是有机合成中一种非常重要的工具。

它在药物合成、材料化学和天然产物合成等领域具有广泛的应用。

通过合理设计反应条件和催化剂选择,可以实现高效、高产率的碳-碳键形成,从而为有机化学研究和工业应用提供了强有力的支持。

C-C交叉偶联反应是一种重要的有机合成反应,可以用于构建碳-碳键,创造出多样化的有机分子结构。

它具有许多优点和应用前景,但也需要克服一些挑战。

通过不断的研究和探索,相信C-C交叉偶联反应将在有机化学领域发挥越来越重要的作用。

钯催化反应及其机理

钯催化反应及其机理

钯催化反应及其机理研究摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。

本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。

关键词:过渡金属催化偶联反应钯催化机理1.引言进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。

在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。

很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。

在众多过渡金属中,金属钯是目前研究得最深入的一个。

自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。

2.钯催化各反应机理的研究2.1.钯催化的交叉偶联反应自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。

交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为homo coupling)。

2.1.1Heck反应Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新C—C 键的重要反应[3]。

反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。

09-钯催化反应

09-钯催化反应

4
Kumada交叉偶联反应
二、Kumada交叉偶联反应的特点(续) 4 、使用配体 dppf 会一定程度上减慢 -H 消除,加速还原消除, 因此,可以使仲烷基格氏试剂在反应中不发生异构化;
5、氯代芳香化合物反应很顺利,即使是氟苯也能碱性Ni催化 的交叉偶联反应;
6、偶联反应具有立体选择性,起始的烯基卤代物的立体化学 保持;
27
Sonogashira交叉偶联反应
二、Sonogashira交叉偶联反应的特点
1、交叉偶联反应在室温或稍高于室温的温度下进行,这比 Castro-Stephens偶联的反应条件要温和得多,是一大优点;
2、使用催化量的Cu助催化剂,可以避免极易爆炸的炔铜(摇晃就 可能引起爆炸)的处置; 3 、 Cu(I) 化 合 物 可 以 用 市 售 的 CuI 或 CuBr , 通 常 用 底 物 的 0.55mol%的助催化剂量; 4、最好的Pd催化剂是Pd(PPh3)2Cl2 or Pd(PPh3)4;
5、溶剂和试剂不需要严格干燥,然而,为了保持 Pd 催化剂的活 28 性,溶剂的脱氧是必需的;
Sonogashira交叉偶联反应
二、Sonogashira交叉偶联反应的特点(续)
6、通常碱也同时用作溶剂,偶尔也用一个助溶剂;
7、不论实验量的大小,反应总是进行得很好;
8、偶联反应是立体选择性的,底物的立体化学在产物中保持; 9、卤代物的反应活性顺序:I ≈ OTf > Br >> Cl; 10、碘和溴的活性差异相当大,因此在溴存在下,仍选择性地与 碘反应;
有机合成反应
第九章 钯催化反应中的人名反应
1
Kumada交叉偶联反应
Kumada cross-coupling reaction

钯催化反应及其机理

钯催化反应及其机理

钯催化反应及其机理研究摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。

本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。

关键词:过渡金属催化偶联反应钯催化机理1.引言进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。

在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。

很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。

在众多过渡金属中,金属钯是目前研究得最深入的一个。

自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。

2.钯催化各反应机理的研究2.1.钯催化的交叉偶联反应自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。

交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为homo coupling)。

2.1.1Heck反应Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新C—C 键的重要反应[3]。

反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。

有机合成钯催化交叉偶联反应

有机合成钯催化交叉偶联反应

有机合成中钯的催化交叉偶联反应20102401046吴健华摘要:2010年诺贝尔化学奖授予给美国化学家理查德·赫克、日本化学家根岸英一和铃木章,以表彰其发现的钯催化交叉偶联反应,更有效的连接碳原子以构建复杂分子。

钯催化交叉偶联反应,用于碳碳键形成的重要化学反应,因其反应条件温和,化学选择性高,副产品少,在有机合成领域中应用广泛。

本文综合概述了钯催化交叉偶联反应机理与发展,并对其应用领域及发展前景作简单介绍。

关键词:钯催化;交叉偶联反应;反应机理;碳碳键;有机合成;引言:碳是构成生命体的重要组成物质,而这些物质是以C-C单键或双键为基础,形成各种形式的碳胳化合物,组成生命体的各个部分。

而经过多年来的探究与改进,美国化学家理查德·赫克、日本化学家根岸英一及铃木章在有机合成中取得重大贡献与研究进展,发现钯催化交叉偶联反应,有效地连接碳原子,为构造更复杂的分子提供反应方法。

因此于2010年,诺贝尔化学奖颁发给他们三位在有机合成中杰出并取得重大贡献的有机化学家,以表彰他们在有机合成领域中所取得的卓越成就。

钯催化交叉偶联反应,作为五个被授予诺贝尔化学奖反应之一,其重要性则不言而喻。

前四个反应分别是Grignard反应(格氏反应,1912年),Diels-Alder反应(迪尔斯-阿尔德反应,1950年),Wittig反应(叶立德、维蒂斯反应,1979年)和Olefinmetathesis反应(烯烃的转位反应,2005年)。

在钯催化的交叉偶联反应中,反应步骤缩短,所需条件温和,副产品少,且可使大量的官能团在进程中得以保留而不被破坏,是一种可靠、实用的工具,广泛应用于精细化学及制药工业中, 对有机合成具有长久和深远的影响力,得到合成化学者的普遍应用。

一、钯催化交叉偶联反应机理与发展1.格氏试剂——拉开钯催化交叉偶联反应的序幕有机合成化学所构造出来的物质大部分都是以碳胳为骨架所构建起来的,然而碳原子本身十分稳定,在化学反应中并不活泼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
C-H活化芳基化反应
1 转移金属化过程是反应的决速步 2 钯不与氢原子直接作用,碱与质子结合后形成卡宾可以 与钯结合形成稳定的环状过渡态 3 Concerted metalation deprotonation (CMD)机 理
实用文档
2.3 还原消除
trans
cis
cis
1 只有顺式产物会进行还原消除 2 还原消除过程不可逆 3 过渡态能垒大小:vinyl < Ph < ethynyl < Me, 马来酰胺 < “empty” < ethylene < PMe3 ≈ MeCN 4 能垒大小与π电子接受能力成反比,因此π电子接受能力差的配体(PMe3)会在还原消除过程前 解离。
实用文档
3. 结论
计算化学 Computational
Chemistry
实验化学 Experimenta l Chemistry
有机反应机理
实用文档
钯催化C-C键交叉偶联反应及其机理
实用文档
Acc. Chem. Res. 2013, 46, 26262634.
1. 钯催化C-C键交叉偶联反应
实用文档
Angew. Chem. Int. Ed. 2012, 51, 50625085.
实用文档
2. 反应机理
1 氧化加成
2 转移金属化
3 还原消除
存在问题:
1 缺乏更为具体深入的理论和验证研究。 2 对于具体的因素和条件对于反应的影响缺乏明确 和系统解释和依据,如配体、金属和底物的类型 对于反应的影响。
实用文档
2.1 氧化加成
协同机理: 1 构型保持 2 气相反应 3 某些极性溶剂
SN2机理: 1 构型反转 2 液相反应
1 位阻小的磷配体,按SN2机理进行,在烷基位置反应。 2 位阻大的磷配体,按协同机理进行,在芳基位置反应。
实用文档
Stille couplings
1 环合机理 A:钯过渡态上只有一个配体配位 B:有利于配体离去的特性(大位阻的磷配体) C:环合步骤为决速步(F取代Cl降低能垒,Au降低环合过 渡态的位阻) 2 线性机理 A:钯过渡态上有两个配体配位 B:有利于X基团离去的特征(极性溶剂、三氟磺酸基) C:锡试剂取代X基团是最高能垒

实用文档
Chem. Eur. J. 2010, 16, 1339013397.
2.2 转移金属化
Suzuki couplings
1 Pathway 0: 没有碱反应不能进行。 2 Pathway A: 主要的反应途径,碱首先活化 硼酸。 3 Pathway B: 与Pathway A属于竞争反应, 碱首先活化钯中间体。
实用文档
Negishi couplings
1 反式(trans)过渡态比顺式(cis)的更容易生成 2 两者是相互竞争的反应 3 只有顺式过渡态可以转化为最终产物 4 顺反式不会直接相互转换
实用文档
Sonogashira couplings
1 Cu(I)可以活化炔烃生成炔基铜 2 根据脱质子和配体交换的顺序,可以将机理分为阳离子 型机理和阴离子型机理。 3 离子型机理与前两种机理存在竞争关系,可以有效提高 反应速率。 4 离子型机理中碱有两个作用:结合质子和卤素(吸电基 有利于反应进行)
相关文档
最新文档