函数图象变换及练习题
题型07 函数图象变换及利用对称性求和(解析版)

秒杀高考数学题型之函数图象变换及利用对称性求和【秒杀题型一】:平移变换。
『秒杀策略』:()()y f x y f x a =→=+,如果0a >,则向左平移a 个单位;反之向右平移a 个单位,即左加右减;()()y f x y f x b =→=+,如果0b >,则向上平移b 个单位,反之向下平移b 个单位,即上加下减。
1.(高考题)为了得到函数321x y -=-的图象,只需把函数2xy =上所有点 ( ) A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度 C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度 【解析】:选A 。
2.(高考题)将函数21x y =+的图象按 得到函数12x y +=的图象。
【解析】:先向左平移一个单位,然后向下平移一个单位。
3.(高考题)把函数e xy =的图象向右平移两个单位,得到()y f x =的图象,则()f x = ( )A.e 2x +B.e 2x -C.2e x - D.2ex +【解析】:选C 。
4.(高考题)若01,1a b <<<-,则函数()x f x a b =+的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解析】:选A 。
5.(高考题)为了得到函数13()3x y =⨯的图象,可以把函数1()3x y =的图象 ( ) A.向左平移3个单位长度 B.向右平移3个单位长度 C.向左平移1个单位长度 D.向右平移1个单位长度【解析】:函数可化简为:1113()()33x x y -=⨯=,即向右平移1个单位长度,选D 。
6.(高考题)为了得到函数3lg 10x y +=的图象,只需把函数lg y x =的图象上所有的点 ( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【解析】:函数可化简为:1)3lg(-+=x y ,即向左平移3个单位长度,再向下平移1个单位长度,选C 。
高一数学三角函数图象变换试题答案及解析

高一数学三角函数图象变换试题答案及解析1.为了得到函数的图像,只需将函数的图像( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】先用诱导公式将化为= =,由平移知识知,只需将函数的图像向右平移个长度单位,故选B.考点:诱导公式;平移变换2.为了得到函数的图像,只需把函数的图像()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】B【解析】=sin2(x-),为了得到函数的图象,只需将的图象向右平移个单位即可,故选A.【考点】函数y=Asin(ωx+φ)的图象变换.三角函数图像的平移.3.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A.B.C.D.【答案】C【解析】将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数,再将所得的图象向左平移个单位,得函数,即故选C.【考点】函数y=Asin(ωx+φ)的图象变换.4.函数(其中,的图象如图所示,为了得到的图象,可以将的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】A【解析】由图知,,∴,∴.又由图可得,∵,∴,∴,∴为了得到的图象,可以将的图象向右平移个单位长度,故选A.【考点】1、三角函数的图象;2、函数的图象变换.5.要得到函数y=cos()的图像,只需将y=sin的图像( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】本题考查三角函数的图像平移问题,要注意将函数解析式变为,然后根据“左加右减”的口诀平移即可.【考点】三角函数图像平移.6.函数的图象向右平移个单位后与函数的图象重合.则的解析式是( )A.B.C.D.【答案】C【解析】根据反方向知:的图像向左平移个单位后得到,根据左加右减的平移原理得到:,故选C.【考点】的图像变换7.函数的最小正周期为()A.B.C.D.【答案】【解析】由三角函数的最小正周期得.解决这类问题,须将函数化为形式,在代时,必须注意取的绝对值,因为是求最小正周期.【考点】三角函数的周期计算8.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C.0D.【答案】B【解析】根据题意,由于将函数的图象沿轴向左平移个单位后,得到,故可知的一个可能取值为,故答案为B.【考点】三角函数的图象变换点评:主要是考查了三角函数的图象变换的运用,属于基础题。
高中数学 三角函数图像变换训练-含答案

三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪⎝⎭D .πcos 24y x ⎛⎫ ⎪⎝+⎭=2.(2023·河南开封·统考二模)把函数πsin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =3.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)函数()sin f x x =的图象经过下列哪个变换可以得到()πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,这个变换是()A .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标扩大为原来的2倍B .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标缩小为原来的12C .先把函数()sin f x x =的图象上每个点的横坐标缩小为原来的12,再将图象向左平移π3个单位D .先把函数()sin f x x =的图象上每个点的横坐标扩大为原来的2倍,再将图象向左平移π6个单位4.(2023春·河北衡水·高一校考阶段练习)为了得到函数πsin 410y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数4πcos 5y x ⎛⎫=- ⎪⎝⎭图象上所有点的()A .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向右平移π20个单位长度B .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向左平移π5个单位长度C .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向右平移π5个单位长度D .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向左平移π20个单位长度5.(2023春·上海浦东新·高一华师大二附中校考阶段练习)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像()A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位6.(2023春·安徽·高一校联考阶段练习)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图象上的所有点的横坐标伸长到原来的4倍(纵坐标不变),再向右平移π3个单位长度,得到函数()g x 的图象,则π2g ⎛⎫= ⎪⎝⎭()A .12B .2C D .17.(2023春·河南焦作·高二温县第一高级中学校考阶段练习)将函数()sin 2y x ϕ=+的图象沿x 轴向右平移π8个单位长度后,得到一个偶函数的图象,则ϕ的一个可能取值为()A .π4-B .π4C .3π8D .3π88.(2023·河北·高三学业考试)为了得到函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭,x ∈R 的图象,只需将函数2sin y x =,x ∈R 的图象上所有的点()A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度二、多选题9.(2023春·重庆渝中·高一重庆巴蜀中学校考阶段练习)由曲线1π:sin 23C y x ⎛⎫=- ⎪⎝⎭得到2:cos C y x =,下面变换正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移5π6个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的12倍,纵坐标不变,再把得到的曲线向左平移5π12个单位长度,得到曲线2C C .把1C 向左平移5π6个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线2C D .把1C 向左平移5π12个单位长度,再把得到的曲线上各点的横坐标缩短到原来的2倍,纵坐标不变,得到曲线2C 10.(2023秋·山西运城·高一康杰中学校考期末)已知函数()tan πf x x =,将函数()y f x =的图象向左平移13个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数()g x 的图象,则下列描述中正确的是().A .函数()g x 的图象关于点2,03⎛⎫- ⎪⎝⎭成中心对称B .函数()g x 的最小正周期为2C .函数()g x 的单调增区间为51,33k k ⎛⎫-++ ⎪⎝⎭,k ∈ZD .函数()g x 的图象没有对称轴三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪D .πcos 24y x ⎛⎫ ⎪+=2.(2023·河南开封·统考二模)把函数sin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =。
高考专题练习: 函数的图象

1.利用描点法作函数的图象 其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换 ①y =f (x )――→关于x 轴对称y =-f (x ). ②y =f (x )――→关于y 轴对称y =f (-x ). ③y =f (x )――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)――→关于y =x 对称y =log a x (x >0).(3)翻折变换①y =f (x )――――――――――――――→保留x 轴及上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )――――――――――――――――→保留y 轴及右边图象,并作其关于y 轴对称的图象y =f (|x |).(4)伸缩变换①y =f (x )a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变→y =f (ax ).②y =f (x )a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变→y =af (x ).常用结论1.函数图象自身的轴对称(1)f(-x)=f(x)⇔函数y=f(x)的图象关于y轴对称.(2)函数y=f(x)的图象关于x=a对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x)⇔f(-x)=f(2a+x).(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.2.函数图象自身的中心对称(1)f(-x)=-f(x)⇔函数y=f(x)的图象关于原点对称.(2)函数y=f(x)的图象关于(a,0)对称⇔f(a+x)=-f(a-x)⇔f(x)=-f(2a-x)⇔f(-x)=-f(2a+x).一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()(5)将函数y=f(-x)的图象向右平移1个单位得到函数y=f(-x-1)的图象.()答案:(1)×(2)×(3)×(4)√(5)×二、易错纠偏常见误区|(1)函数图象的平移、伸缩法则记混出错;(2)不注意函数的定义域出错.1.设f(x)=2-x,g(x)的图象与f(x)的图象关于直线y=x对称,h(x)的图象由g(x)的图象向右平移1个单位得到,则h(x)=________.解析:与f (x )的图象关于直线y =x 对称的图象所对应的函数为g (x )=-log 2x ,再将其图象右移1个单位得到h (x )=-log 2(x -1)的图象.答案:-log 2(x -1)2.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].答案:(2,8]作函数的图象(师生共研)作出下列函数的图象. (1)y =x 2-2|x |-1. (2)y =x +2x -1.(3)y =|log 2(x +1)|.【解】 (1)先化简,再作图,y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,图象如图所示.(2)因为y =x +2x -1=1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位长度,再向上平移1个单位长度,即得y =x +2x -1的图象,如图所示.(3)利用函数y =log 2x 的图象进行平移和翻折变换,图象如图实线所示.函数图象的三种画法(1)直接法:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数来画图象.(3)图象变换法:若函数图象可由某个基本函数的图象经过平移、伸缩、翻折、对称得到,可利用图象变换作出.[提醒] (1)画函数的图象时一定要注意定义域.(2)利用图象变换法时要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.分别作出下列函数的图象.(1)y =|x -2|(x +1); (2)y =⎝ ⎛⎭⎪⎫12|x |.解:(1)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=⎝ ⎛⎭⎪⎫x -122-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-⎝ ⎛⎭⎪⎫x -122+94.所以y =⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫x -122-94,x ≥2,-⎝ ⎛⎭⎪⎫x -122+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,加上y =⎝ ⎛⎭⎪⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图中实线部分.函数图象的识别(多维探究) 角度一 知式选图 方法一 特殊点法函数f (x )=x 2-⎝ ⎛⎭⎪⎫12x的大致图象是( )【解析】由f(0)=-1,得函数图象过点(0,-1),可排除D;由f(-2)=4-4=0,f(-4)=16-16=0,得函数图象过点(-2,0),(-4,0),可排除A,C.故选B.【答案】 B使用特殊点法排除一些不符合要求的错误选项,主要注意两点:一是选取的点要具备特殊性和代表性,能排除一些选项;二是可能要选取多个特殊点进行排除才能得到正确答案.方法二性质检验法函数f(x)=ln(2-|x|)的大致图象为()【解析】由2-|x|>0,解得-2<x<2,所以函数f(x)=ln(2-|x|)的定义域为(-2,2),定义域关于原点对称.又因为f(-x)=ln(2-|-x|)=ln(2-|x|)=f(x),所以函数f(x)=ln(2-|x|)在定义域上为偶函数,排除C和D;当0<x<2时,f(x)=ln(2-x)单调递减,排除B.故选A.【答案】 A利用性质识别函数图象是解题的主要方法,采用的性质主要是定义域、值域、函数的奇偶性、函数局部的单调性等.当然,对于一些更为复杂的函数图象的判断,还可能同特殊点法结合起来使用.方法三图象变换法已知函数f(x)=log a x(0<a<1),则函数y=f(|x|+1)的图象大致为()【解析】当x≥0时,y=f(|x|+1)=f(x+1)=log a(x+1),而函数y=log a(x +1)的图象可由函数y=log a x的图象向左平移一个单位得到,又函数y=f(|x|+1)为偶函数,所以函数y=f(|x|+1)的图象是由函数y=log a(x+1),x≥0的图象及其关于y轴对称的图象组成的,所以A正确.【答案】 A通过图象变换识别函数图象要掌握两点:一是熟悉基本初等函数的图象(如指数函数、对数函数等图象);二是了解常见的一些变换形式,如平移变换、翻折变换.角度二知图选式(图)(1)已知函数f(x)的图象如图所示,则f(x)的解析式可以是()A.f(x)=ln|x|x B.f(x)=e xxC.f(x)=1x2-1 D.f(x)=x-1x(2)已知f(x)=(x-a)(x-b)(a>b)的大致图象如图所示,则函数g(x)=a x+b 的大致图象是()【解析】(1)由函数图象可知,函数f(x)为奇函数,应排除B,C.若函数为f(x)=x-1x,则x→+∞时,f(x)→+∞,排除D,故选A.(2)由函数f(x)的大致图象可知3<a<4,-1<b<0,所以g(x)的图象是由y =a x(3<a<4)的图象向下平移-b(0<-b<1)个单位长度得到的,其大致图象应为选项A中的图象,故选A.【答案】(1)A(2)A对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域(最值)、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系,常用的方法有:(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型分析解决问题.角度三由实际问题的变化过程探究函数图象广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”.如图,是由一个半径为2的大圆和两个半径为1的半圆组成的“阴阳鱼太极图”,圆心分别为O,O1,O2,若一动点P从点A出发,按路线A→O→B→C→A→D→B运动(其中A,O,O1,O2,B五点共线),设P的运动路程为x,y=|O1P|2,y与x的函数关系式为y=f(x),则y=f(x)的大致图象为()【解析】 根据题图中信息,可将x 分为4个区间,即[0,π),[π,2π),[2π,4π),[4π,6π],当x ∈[0,π)时,函数值不变,y =f (x )=1;当x ∈[π,2π)时,设O 2P →与O 2O 1→的夹角为θ,因为|O 2P →|=1,|O 2O 1→|=2,θ=x -π,所以y =(O 2P →-O 2O 1→)2=5-4cos θ=5+4cos x ,所以y =f (x )的图象是曲线,且单调递增;当x ∈[2π,4π)时,O 1P →=OP →-OO 1→,设OP →与OO 1→的夹角为α,|OP →|=2,|OO 1→|=1,α=2π-12x ,所以y =|O 1P |2=(OP →-OO 1→)2=5-4cos α=5-4cos x 2,函数y =f (x )的图象是曲线,且单调递减.【答案】 A实际背景下的函数图象识辨在实际背景中,判定两个量构成的函数图象时,在优先明确定义域后,一是直接求得解析式(定量分析)进行识辨.二是估计函数值的变化趋势判断图象走势(定性分析)作出判断.1.(2020·高考浙江卷)函数y =x cos x +sin x 在区间[-π,π]上的图象可能是( )解析:选A .令f (x )=x cos x +sin x ,所以f (-x )=(-x )cos(-x )+sin(-x )=-x cos x -sin x =-f (x ),所以f (x )为奇函数,排除C ,D ,又f (π)=-π<0,排除B ,故选A .2.(2020·贵阳四校联考)函数f (x )=⎝ ⎛⎭⎪⎫x +1x ln|x |的图象的大致形状为( )解析:选D .方法一:当x >0时,f (x )=⎝ ⎛⎭⎪⎫x +1x ln x ,且当0<x <1时,x +1x >0,ln x <0,f (x )<0,故排除B ,C ;当x <0时,f (x )=⎝ ⎛⎭⎪⎫x +1x ln(-x ),且当-1<x <0时,x +1x <0,ln(-x )<0,f (x )>0,故排除A .故选D .方法二:因为f (-x )=⎣⎢⎡⎦⎥⎤-x +1(-x )ln|-x |=-⎝ ⎛⎭⎪⎫x +1x ln|x |=-f (x ),所以f (x )是奇函数,其图象关于原点对称,故排除A ,B ;又当x =2时,f (2)=52ln 2>0,故排除C .故选D .3.已知函数f (x )的图象如图所示,则f (x )的解析式可能是( )A .f (x )=x 2-2ln |x |B .f (x )=x 2-ln |x |C .f (x )=|x |-2ln |x |D .f (x )=|x |-ln |x |解析:选B .由函数图象可得,函数f (x )为偶函数,且x >0时,函数f (x )的单调性为先减后增,最小值为正,极小值点小于1,分别对选项中各个函数求导,并求其导函数等于0的正根,可分别得1,22,2,1,由此可得仅函数f (x )=x 2-ln |x |符合条件.故选B .4.如图,四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不正确的个数为( )A .1B .2C .3D .4解析:选A .将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h 和时间t 之间的关系可以从高度随时间的变化率上反映出来.①中应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化率是先快后慢再快,正确;④中的变化率是先慢后快再慢,也正确,故只有①是错误的.函数图象的应用(多维探究) 角度一 研究函数的性质已知函数f (x )=x |x |-2x ,则下列结论正确的是 ( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)【解析】 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.【答案】 C一般根据图象观察函数性质有以下几方面:一是观察函数图象是否连续以及最高点和最低点,确定定义域、值域;二是函数图象是否关于原点或y轴对称,确定函数是否具有奇偶性;三是根据图象上升与下降的情况,确定单调性.角度二解不等式函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在(-1,3)上的解集为()A.(1,3) B.(-1,1)C.(-1,0)∪(1,3) D.(-1,0)∪(0,1)【解析】作出函数f(x)的图象如图所示.当x∈(-1,0)时,由xf(x)>0得x∈(-1,0);当x∈(0,1)时,由xf(x)>0得x∈∅;当x∈(1,3)时,由xf(x)>0得x∈(1,3).所以x∈(-1,0)∪(1,3).【答案】 C利用函数的图象研究不等式的思路当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题或函数图象与坐标轴的位置关系问题,从而利用数形结合法求解.角度三求参数的值或取值范围设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.【解析】如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知,当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).【答案】[-1,+∞)当参数的不等关系不易找出时,可将函数(或方程)等价转化为方便作图的两个函数,再根据题设条件和图象确定参数的取值范围.1.对于函数f(x)=lg(|x|+1),给出如下三个命题:①f(x)是偶函数;②f(x)在区间(-∞,0)上是减函数,在区间(0,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1 B.2C.3 D.0解析:选B.作出f(x)的图象,可知f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确.2.已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值解析:选C .画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”知在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.3.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是________.解析:在同一直角坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].答案:(-1,1]4.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是________.解析:先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝ ⎛⎭⎪⎫12,1.答案:⎝ ⎛⎭⎪⎫12,1[A 级 基础练]1.(2021·福州市质量检测)函数y =x 2e x 的大致图象为 ( )解析:选A .y =x 2e x ≥0,排除选项C ;函数y =x 2e x 既不是奇函数也不是偶函数,排除选项D ;当x →+∞时,y →+∞,排除选项B .综上,选A .2.(2020·高考天津卷)函数y =4xx 2+1的图象大致为( )解析:选A .方法一:令f (x )=4xx 2+1,显然f (-x )=-f (x ),f (x )为奇函数,排除C ,D ,由f (1)>0,排除B ,故选A .方法二:令f (x )=4x x 2+1,由f (1)>0,f (-1)<0,故选A .3.已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )解析:选D .在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D .4.若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-2解析:选B .令f (x )=0,则(ax 2+bx )e x =0,解得x =0或x =-ba ,由图象可知,-b a >1,又当x >-ba 时,f (x )>0,故a >0,结合选项知a =1,b =-2满足题意,故选B .5.已知函数y =f (-|x |)的图象如图所示,则函数y =f (x )的图象不可能是( )解析:选C .函数y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0,f (x ),x <0,当x <0时,y =f (-|x |)=f (x ),所以函数y =f (-|x |)的图象在y 轴左边的部分,就是函数y =f (x )的图象,故可得函数y =f (x )的图象不可能是C .6.已知奇函数f (x )在x ≥0时的图象如图所示,则不等式xf (x )<0的解集为________解析:因为函数f (x )是奇函数,所以图象关于原点对称,补全当x <0时的函数图象,如图.对于不等式xf (x )<0,当x >0时,f (x )<0,所以1<x <2;当x <0时,f (x )>0,所以-2<x <-1,所以不等式xf (x )<0的解集为(-2,-1)∪(1,2).答案:(-2,-1)∪(1,2)7.若函数f (x )=⎩⎨⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=________.解析:由题图可得a (-1)+b =3,ln(-1+a )=0,所以a =2,b =5, 所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1. 答案:-18.给定min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).答案:(4,5)9.作出下列函数的图象. (1)y =2x +2; (2)y =|log 2x -1|.解:(1)将y =2x 的图象向左平移2个单位长度,图象如图①.(2)先作出y =log 2x 的图象,再将其图象向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方,即得y =|log 2x -1|的图象,如图②.10.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.(2)f (x )=x |4-x |=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4,f (x )的图象如图所示.(3)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,即方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞).[B 级 综合练]11.(2020·河北九校第二次联考)函数f (x )=⎝ ⎛⎭⎪⎫1-21+e x sin x 的图象的大致形状是( )解析:选A .因为f (x )=⎝ ⎛⎭⎪⎫1-21+e x sin x =e x -1e x+1sin x ,且y =e x -1e x +1和y =sin x 都是奇函数,所以f (x )=e x -1e x+1sin x 为偶函数,故其图象关于y 轴对称,排除C ,D .当x ∈(0,π)时,e x >1,所以y =e x -1e x +1>0,又sin x >0,所以f (x )>0,故排除B ,故选A .12.已知函数f (x )=|x 2-1|,若0<a <b 且f (a )=f (b ),则b 的取值范围是( ) A .(0,+∞) B .(1,+∞) C .(1,2)D .(1,2)解析:选C .作出函数f (x )=|x 2-1|在区间(0,+∞)上的图象如图所示,作出直线y =1,交f (x )的图象于点B ,由x 2-1=1可得x B =2,结合函数图象可得b 的取值范围是(1,2).13.已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集是________.解析:由已知得,f (x )=⎩⎨⎧1,x ≥0,-1-2x -1,x <0.其图象如图所示:由图可知,不等式f (x 2-2x )<f (3x -4)等价于⎩⎪⎨⎪⎧3x -4≥0,x 2-2x <0或⎩⎪⎨⎪⎧3x -4<0,x 2-2x <0,x 2-2x <3x -4,解得43≤x <2或1<x <43,所以所求的解集为(1,2).答案:(1,2)14.已知函数f (x )=2x ,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式[f (x )]2+f (x )-m >0在R 上恒成立,求m 的取值范围.解: (1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示,由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,即原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,即原方程有两个解.(2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝ ⎛⎭⎪⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].[C 级 提升练]15.如图,烈士公园内有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4 m 和a m(0<a <12),不考虑树的粗细.现有16 m 长的篱笆,并借助墙角围成一个矩形花圃ABCD ,要求将这棵树围在矩形花圃内.设此矩形花圃的最大面积为u (单位:m 2),则函数u =f (a )的图象大致是( )解析:选B .设AD 长为x m ,则CD 长为(16-x )m ,又点P 在矩形ABCD 内,所以a ≤x 且16-x ≥4,即a ≤x ≤12.则矩形ABCD 的面积S =x (16-x )=-(x -8)2+64(a ≤x ≤12).若0<a ≤8,当且仅当x =8时,S max =u =64;若8<a <12,S max =u =a (16-a ).故u =⎩⎪⎨⎪⎧64,0<a ≤8,a (16-a ),8<a <12,其图象从左至右,先是一段水平的直线段,后接一段开口向下的抛物线,其形状与B 中图象接近.故选B .16.若平面直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )图象上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0),2e x(x ≥0),则f (x )的“和谐点对”有( ) A .1个B .2个C .3个D .4个解析:选B .作出函数y =x 2+2x (x <0)的图象关于原点对称的图象,看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.选B .。
图象变换典型例题

图象变换典型例题一、基础过关1. 要得到y =sin ⎝⎛⎭⎫x -π3的图象,只要将y =sin x 的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度2. 为了得到函数y =sin ⎝⎛⎭⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度3. 为得到函数y =cos(x +π3)的图象,只需将函数y =sin x 的图象( )A .向左平移π6个单位长度B .向右平移π6个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度4. 把函数y =sin ⎝⎛⎭⎫2x -π4的图象向右平移π8个单位,所得图象对应的函数是( )A .非奇非偶函数B .既是奇函数又是偶函数C .奇函数D .偶函数5. 将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是( ) A .y =cos 2xB .y =1+cos 2xC .y =1+sin(2x +π4)D .y =cos 2x -16. 函数y =sin 2x 图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象的函数解析式为f (x )=____________. 7. 某同学给出了以下论断:①将y =cos x 的图象向右平移π2个单位,得到y =sin x 的图象;②将y =sin x 的图象向右平移2个单位,可得到y =sin(x +2)的图象; ③将y =sin(-x )的图象向左平移2个单位,得到y =sin(-x -2)的图象; ④函数y =sin ⎝⎛⎭⎫2x +π3的图象是由y =sin 2x 的图象向左平移π3个单位而得到的. 其中正确的结论是______(将所有正确结论的序号都填上).性质(值域)典型例题一、基础过关1. 若α,β都是第一象限的角,且α<β,那么 ( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定2. 函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 3. 函数y =|sin x |的一个单调增区间 是( )A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 4. 下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5. 函数y =-3sin ⎝⎛⎭⎫2x -π6的单调递增区间是( )A.⎣⎡⎦⎤k π+π3,k π+5π6(k ∈Z )B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ) C.⎣⎡⎦⎤2k π+π3,2k π+5π6(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z ) 6. 函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是________. 7. 函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.8. 求下列函数的单调增区间.(1)y =1-sin x 2;(2)y =log 12sin ⎝⎛⎭⎫x 2-π3. 二、能力提升9. 已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C .2D .310.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________. 11.设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值.12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.性质(周期性)典型例题一、基础过关1. 函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π2. 函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( )A .5B .10C .15D .20 3. 下列函数中,周期为2π的是( )A .y =sin x2B .y =sin 2xC .y =|sin x2|D .y =|sin x | 4. 下列函数中,不是周期函数的是( )A .y =sin x -1B .y =sin 2xC .y =|sin x |D .y =sin |x | 5. 已知f (x )=sin(πx -π)-1,则下列命题正确的是( )A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 6. 函数f (x )=sin ⎝⎛⎭⎫2πx +π4的最小正周期是_____. 7. 若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,求f (x )的解析式.8. 判断下列函数的奇偶性.(1)f (x )=cos ⎝⎛⎭⎫π2+2x cos(π+x ); (2)f (x )=1+sin x +1-sin x ; (3)f (x )=e sin x +e -sin xe sin x -e-sin x .二、能力提升9. 定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( )A .-12B.12C .-32D.3210.已知函数f (x )=8sin ⎝⎛⎭⎫k 3x -π3-2的最小正周期不大于3,则正整数k 的最小值是________. 11.已知周期函数f (x )是奇函数,6是f (x )的一个周期,且f (-1)=1,则f (-5)=________. 12.判断函数f (x )=ln(sin x +1+sin 2x )的奇偶性.正余弦函数图像综合一、基础过关1. 已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ(|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为 ( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π32. 已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )3. y =f (x )是以2π为周期的周期函数,其图象的一部分如图所示,则y =f (x )的解析式为( )A .y =3sin(x +1)B .y =-3sin(x +1)C .y =3sin(x -1)D .y =-3sin(x -1) 4. 下列函数中,图象的一部分如下图所示的是( )A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫2x -π6C .y =cos ⎝⎛⎭⎫4x -π3D .y =cos ⎝⎛⎭⎫2x -π6 5. 函数y =12sin ⎝⎛⎭⎫2x -π6与y 轴最近的对称轴方程是__________. 6. 已知函数y =sin(ωx +φ) (ω>0,-π≤φ<π)的图象如下图所示,则φ=________.7. 函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点与最低点横坐标之差是3π,又图象过点(0,1),求函数的解析式.8. 已知曲线y =A sin(ωx +φ) (A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎫π8,2,此点到相邻最低点间的曲线与x 轴交于点⎝⎛⎭⎫38π,0,若φ∈⎝⎛⎭⎫-π2,π2. (1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在[0,π]上的图象.二、能力提升9. 右图是函数y =A sin(ωx +φ)(x ∈R )在区间[-π6,5π6]上的图象.为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有 的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变10.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,那么a 等于( )A. 2B .- 2C .1D .-111.关于f (x )=4sin ⎝⎛⎭⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍;②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )图象关于⎝⎛⎭⎫-π6,0对称;④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为________.12.如图为函数y 1=A sin(ωx +φ) (|φ|<π2)的一个周期内的图象.(1)写出y 1的解析式;(2)若y 2与y 1的图象关于直线x =2对称,写出y 2的解析式; (3)指出y 2的周期、频率、振幅、初相.。
三角函数的图像和变换以及经典习题和答案

3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。
三角函数的图像的变换

三角函数的图像的变换1.已知函数f(x)=sin(2x﹣),则要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位2.将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A.B.C.D.3.将函数y=2cos2x的图象向左平移个单位长度,则平移后新函数图象的对称轴方程为()A.x=﹣+(k∈Z)B.x=﹣+(k∈Z)C.x=+(k∈Z)D.x=+(k∈Z)4.将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)5.函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=6.将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)7.已知f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g(x)的图象,在g(x)图象的所有对称轴中,离原点最近的对称轴方程为()A.B.C.D.9.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.10.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=.11.把函数的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为.12.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为.13.已知函数f(x)=sin(2x+)+cos(2x﹣),x∈R.(1)求f(x)的最小正周期;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)的图象,求函数y=g(x)的单调递增区间.14.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.15.已知函数f (x )=sin(2x+)+cos(2x+)+2sin x cos x.(Ⅰ)求函数f (x)图象的对称轴方程;(Ⅱ)将函数y=f (x)的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的4 倍,纵坐标不变,得到函数y=g (x)的图象,求y=g (x)在[,2π]上的值域.16.已知函数f(x)=1+2sinxcosx﹣2sin2x,x∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若把f(x)向右平移个单位得到函数g(x),求g(x)在区间[﹣,0]上的最小值和最大值.三角函数的图像的变换参考答案与试题解析一.选择题(共8小题)1.已知函数f(x)=sin(2x﹣),则要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:g(x)=sin2x=sin[2(x+)﹣],要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象向左平移个单位即可,故选:C.2.将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A. B. C.D.【解答】解:函数y=sin4x的图象向左平移个单位,得到的图象,就是y=sin(4x+φ)的图象,故故选:C.3.将函数y=2cos2x的图象向左平移个单位长度,则平移后新函数图象的对称轴方程为()A.x=﹣+(k∈Z)B.x=﹣+(k∈Z)C.x=+(k∈Z)D.x=+(k∈Z)【解答】解:函数y=2cos2x的图象向左平移个单位长度,可得y=2cos2(x+)=2cos(2x+),由余弦函数的性质:可得2x+=kπ,∴x=,k∈Z.故选:A.4.将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+sin2x)=2sin(2x+)图象上所有点向右平移个单位长度,得到函数g (x)=2sin2x的图象,令2x=kπ,求得x=,k∈Z,令k=1,可得g(x)图象的一个对称中心为(,0),故选:D.5.函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=【解答】解:∵f(x)=sin2x﹣cos2x=2sin(2x﹣),∴向右平移个单位而得到g(x)=2sin[2(x﹣)﹣]=﹣2cos2x,∴令2x=kπ,k∈Z,可解得x=,k∈Z,k=1时,可得x=,故选:C.6.将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)【解答】解:将函数f(x)=sin(+πx)=cosπx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos(πx)图象;再把图象上所有的点向右平移1个单位,得到函数g(x)=cos[π(x﹣1)]═cos(πx﹣)=sin(πx)的图象.令2kπ+≤x≤2kπ+,求得4k+1≤x≤4k+3,k∈Z,可得函数g(x)的单调递减区间是[4k+1,4k+3](k∈Z,故选:C.7.已知f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:∵f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,∴f(x)=sin(ωx+)的周期T=π,又ω>0,T==π,∴ω=2;∴f(x)=sin(2x+).令g(x)=cos2x=sin(2x+),则g(x)=sin(2x+)g(x﹣)=sin[2(x﹣)+)]=sin(2x+)=f(x),∴要想得到f(x)=sin(2x+)的图象,只需将y=g(x)=cos2x=sin(2x+)的图象右平移个单位即可.故选:B.8.将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g(x)的图象,在g(x)图象的所有对称轴中,离原点最近的对称轴方程为()A.B.C.D.【解答】解:将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到y=2sin(4x+),再将所得图象向左平移个单位得到函数g(x)的图象,得到g(x)=2sin[4(x+)+]=2sin(4x+),由4x+=+kπ,k∈Z,得x=kπ﹣,k∈Z,当k=0时,离原点最近的对称轴方程为x=﹣,故选:A.二.填空题(共4小题)9.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为y=cosx.【解答】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx.10.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T=2×(﹣)=2π.所以ω=1,所以f(x)=sin(x+φ),故+φ=+kπ,k∈Z,所以φ=+kπ,k∈Z,又因为0<φ<π,所以φ=,故答案为:11.把函数的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为.【解答】解:把函数的图象向右平移φ个单位可得函数y==的图象,若所得的图象正好关于y轴对称,则=+kπ,k∈Z,解得:φ=+kπ,k∈Z,当k=1时,φ的最小正值为;故答案为:.12.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为4.【解答】解:函数f(x)=sin(ωx+φ)(ω>0),把f(x)的图象向左平移个单位所得的图象为y=sin[ω(x+)+φ]=sin(ωx++φ),把f(x)的图象向右平移个单位所得的图象为y=sin[ω(x﹣)+φ]=sin(ωx﹣+φ),根据题意可得,y=sin(ωx++φ)和y=sin(ωx﹣+φ)的图象重合,故+φ=2kπ﹣+φ,求得ω=4k,故ω的最小值为4,故答案为:4.三.解答题(共4小题)13.已知函数f(x)=sin(2x+)+cos(2x﹣),x∈R.(1)求f(x)的最小正周期;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)的图象,求函数y=g(x)的单调递增区间.【解答】解:(1)∵函数f(x)=sin(2x+)+cos(2x﹣)=sin2x•cos+cos2xsin+cos2xcos+sin2xsin=sin2x+cos2x=2sin(2x+),∴f(x)的最小正周期为=π.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)=2sin(2x++)=2cos(2x+)的图象,令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数g(x)的增区间为[kπ﹣,kπ﹣],k∈Z.14.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.15.已知函数f (x )=sin(2x+)+cos(2x+)+2sin x cos x.(Ⅰ)求函数f (x)图象的对称轴方程;(Ⅱ)将函数y=f (x)的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的4 倍,纵坐标不变,得到函数y=g (x)的图象,求y=g (x)在[,2π]上的值域.【解答】解:(Ⅰ)∵f (x )=sin(2x+)+cos(2x+)+2sinxcosx=sin2x+cos2x+cos2x﹣sin2x+sin2x=cos2x+sin2x=2sin(2x+),∴令2x+=kπ+,k∈Z,解得函数f (x)图象的对称轴方程:x=+,k∈Z,(Ⅱ)将函数y=f (x)的图象向右平移个单位,可得函数解析式为:y=2sin[2(x﹣)+]=2sin (2x+),再将所得图象上各点的横坐标伸长为原来的 4 倍,纵坐标不变,得到函数解析式为:y=g (x)=2sin (+),∵x∈[,2π],∴+∈[,],可得:sin(+)∈[﹣,1],∴g (x)=2sin(+)∈[﹣1,2].16.已知函数f(x)=1+2sinxcosx﹣2sin2x,x∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若把f(x)向右平移个单位得到函数g(x),求g(x)在区间[﹣,0]上的最小值和最大值.【解答】解:(Ⅰ)∵函数f(x)=1+2sinxcosx﹣2sin2x=sin2x+cos2x=2sin(2x+),(Ⅰ)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z;令2kπ+≤2x+≤2kπ+,求得kπ+≤x≤kπ+,可得函数f(x)的单调减区间为[kπ+,kπ+],k∈Z.(Ⅱ)若把函数f(x)的图象向右平移个单位得到函数g(x)=2sin[2(x﹣)+]=2sin(2x﹣)的图象,∵x∈[﹣,0],∴2x﹣∈[﹣,﹣],∴sin(2x﹣)∈[﹣1,],∴g(x)=2sin(2x﹣)∈[﹣2,1].故g(x)在区间上的最小值为﹣2,最大值为1.。
高三数学三角函数图象变换试题

高三数学三角函数图象变换试题1.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.【答案】.【解析】将函数的图象上的所有点向右平移个单位,得到函数的图象,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,故所得的图象的函数解析式为.【考点】三角函数图象变换.2.将函数的图像向左平移个单位,再向上平移个单位后得到的函数对应的表达式为,则函数的表达式可以是()A.B.C.D.【答案】C【解析】由可化为.依题意等价于将函数向下平移一个单位得到,再向右平移个单位即可得到.【考点】1.三角函数的平移.2.三角函数诱导公式.3.将函数的图像向右平移个单位,再向上平移1个单位,所得到函数的图像对应的解析式为 ( )A.B.C.D.【答案】C【解析】因为将函数的图像向右平移个单位,可得到函数图像对应的函数解析式为.再向上平移1个单位,所得到函数的图像对应的解析式为.化简可得,即.故选C.【考点】1.函数图像的左右上下平移规则.2.三角形函数二倍角公式.4.把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是A.B.C.D.【答案】A【解析】把函数的图象向右平移个单位后,所得到函数为,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是,选A.【考点】三角函数图像的平移、伸缩变换.5.以下命题正确的是_____________.①把函数的图象向右平移个单位,得到的图象;②的展开式中没有常数项;③已知随机变量~N(2,4),若P(>)= P(<),则;④若等差数列前n项和为,则三点,(),()共线.【答案】①②④【解析】把函数的图象向右平移个单位,得,即,①正确;的展开式的通项公式为(),令=0,无解,②正确;由题意正态曲线关于对称,且P(>)= P(<),则,③错误;因为等差数列的前n项和为,所以,故点在直线上,④正确.【考点】1、三角函数图像变换;2、二项式定理;3、等差数列前n项和的性质.6.如果函数的图像关于直线对称,则()A.B.C.D.【答案】D【解析】由的图像关于直线对称,则在处取得最值,所以,而,所以,故选D.【考点】1.三角函数的性质;2.函数的最值求解.7.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B.【解析】函数,只需将函数向左平移个长度单位可得函数.【考点】三角函数的图像平移.8.将函数的图像向右平移个单位,那么所得的图像所对应的函数解析式是()A.B.C.D.【答案】D.【解析】由已知得平移后的图像所对应的函数解析式是,故选【考点】三角函数图像变换.9.将函数的图像向左平移个长度单位后,所得到的图像关于轴对称,则的最小值是___________________.【答案】【解析】,将其图像向左平移个长度单位后得到,图像关于轴对称,则有所以的最小值是.【考点】10.函数的部分图像如图所示,则将的图象向右平移个单位后,得到的图像解析式为________.【答案】【解析】,得周期,于是,图象易知,根据五点作图法有,解得,所以,将的图象向右平移个单位后,得到的图像解析式为【考点】函数的图象与性质.11.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】,由,只需向右平移个单位长度.【考点】函数图象的平移.12.为了得到函数的图象,可以将函数的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】将函数向右平移个单位长度得;将函数向右平移个单位长度得;将函数向左平移个单位长度得;将函数向左平移个单位长度得【考点】三角函数图像平移点评:三角函数向左平移个单位得向右平移个单位得13.为了得到函数的图象,可以将函数的图象()A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位【答案】A【解析】因为,=,所以,为了得到函数的图象,可以将函数的图象,向右平移个长度单位,选A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中函数图象变换
一、基本函数作图(草图画法):
1、一次函数:
2、二次函数:
3、反比例函数:
4、指数函数:
5、对数函数:
6、幂函数:
7、正弦函数:
二、图像变换: ①平移变换:
Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左
(0)a >或向右(0)a <平移||a 个单位即可得到;
1)y =f (x )h
左移→y =f (x +h);2)y =f (x ) h
右移→y =f (x -h);
Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上
(0)a >或向下(0)a <平移||a 个单位即可得到;
1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h
下移→y =f (x )-h
②对称变换:
Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;
y =f (x ) 轴
y →y =f (-x )
Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;
y =f (x ) 轴
x →y = -f (x )
Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;
y =f (x ) 原点
→y = -f (-x )
Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y =f (x ) x
y =→直线x =f (y )
Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换:
Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;
Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原
y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:
Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐
标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a
y ⨯→y =af (x )
Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐
标伸长(1)a >或压缩(01a <<)为原来的1
a
倍得到。
f (x )y =f (x )a x ⨯→y =f (ax )
典型例题:
例题1.画出下列函数的图像
(1))(log 2
1x y -= (2)x y )2
1(-=
(3)x y 2log = (4)12-=x y
练习:
(1)作出下列函数图像:
(1)x x y 22-=; (2)x x y 22
-=;
(3)2
2+-=x y (4)2log y x
=
(2)当1>a 时,在同一坐标系中函数x
a
y -=与x y a log =的图像( )
例题2.(1)将函数a a
x b
y ++=
的图象向右平移2个单位后又向下平移2个单位,所得图象如果与原图象关于直线y=x 对称,那么 ( )
0,1)(≠-=b a A R b a B ∈-=,1)( 0,1)(≠=b a C R b a D ∈=,0)(
(2)已知函数)(x f 的图像关于直线1-=x 对称,且当()+∞∈,0x 时,有x
x f 1
)(=
,则当()2,-∞-∈x 时,)(x f 的解析式是 ( )
(A )x
1
-
(B ) (C )21+-
x (D )x
-21
练习:
(1)将函数)2(log 3+=x y 的图象向 得到函数x y 3log =的图象; (2)将函数3log 2y x =+的图象向 得到函数x y 3log =的图象. (3)将函数3x
y =的图象向左平移2个单位得到的图象为1c ,再将1c 图象向下平移2个单
位得到的图象为2c ,则图象2c 的解析式为 。
(4)把函数()f x 的图象先向左,再向下分别平移2个单位,得到函数3x
y =的图象,则
()f x = _________
(4)将函数x y 2sin =按向量⎪⎭
⎫
⎝⎛-
=1,6πa 平移后的函数解析式是
(A )1)32sin(++=πx y (B )1)3
2sin(+-=π
x y (C )1)62sin(++
=π
x y (D )1)6
2sin(+-=π
x y 例题3.已知)(x f 是偶函数,则)2(+x f 的图像关于__________对称。
练习:函数)(x f 满足)4()2(x f x f +=-,则)(x f 的图象关于_________对称.
例4.定义{},,min ,,.
a a
b a b b a b ≤⎧=⎨>⎩设{}642,6m in )(2
++-+-=x x x x f ,求函数()f x 的
最大值。
练习:(1)定义{},,
min ,,.
a a
b a b b a b ≤⎧=⎨>⎩求函数函数{}()min 2,2x x f x -=的值域。
例题5. 已知函数2
()|43|f x x x =-+,(1)求函数()f x 的单调区间;(2)求m 的取值范围,使方程()m x f =有四个不相等的实数根。
练习:
1.函数lg y x =( )
A.是偶函数,在区间(,0)-∞ 上单调递增
B.是偶函数,在区间(,0)-∞上单调递减
C.是奇函数,在区间(0,)+∞ 上单调递增
D.是奇函数,在区间(0,)+∞上单调递减 2.函数2
1
--
=x y 的单调区间是( ) A .R B .)0,(-∞ C .)2,(-∞,),2(+∞ D .)2,(-∞ 3.已知函数|22|-=x y ; (1)作出其图象;(2)由图象指出函数的单调区间; (3)由图象指出当x 取何值时,函数有最值,并求出最值.
例题6.(1)求方程0lg 32
=+-x x 的实根的个数。
(2)方程lg x +x =3的解所在区间为( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,+∞)
练习:(1)试讨论方程kx x =-1的实数根的个数。
(2)方程2log 2
1=+x x 的解所在的区间是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,+∞)
(3)已知函数32
,2
()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩
,若关于x 的方程()f x k =有两个不同的实根,则实数
k 的取值范围是 .
(4)已知函数
))((R x x f y ∈=满足)1()1(-=+x f x f ,且当[]1,1-∈x 时,2)(x x f =,则
)(x f y =与x y 5log =的图象的交点个数为 ( )
例题7.(1)函数()y f x =与()y g x =的图像如下图:
则函数
()()y f x g x =⋅的图像可能是( )
o
y
x
o y
x
o
y
x
o
y
x
(A ) (B) (C) (D) (2)函数x x y sin =的部分图象可以为 ( )
A .
B .
C .
D .
(3)方程f(x,y)=0的曲线如图所示,那么方程f(2-x,y)=0的曲线是 ( )
(4)函数b
x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是
( )
A .0,1<>b a
B .0,1>>b a
C .0,10><<b a
D .0,10<<<b a
(5)在下列图象中,二次函数y =ax 2
+bx 与指数函数y =(
a
b )x
的图象只可能是( )
O
x x
x x
y
y
y
y
O
O O。