(数理逻辑)离散数学习题参考答案1

合集下载

离散数学课后习题答案(最新)

离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。

《离散数学》复习题及答案

《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学 练习-第1部分 数理逻辑(解答)

离散数学 练习-第1部分 数理逻辑(解答)

5、下列命题公式为重言式的是( D ),为矛盾式的是( C )
A、(P→Q)⋀Q⋀R
B、(P→P)→Q
C、(Q⋁R)⋀R
D、((P→Q)⋀(Q→R))→(P→R)
6、命题公式 (P→Q) 的主合取范式中含有( D )个极大项, 主析取范式中含有( B )个极小项 A、0 B、1 C、2 D、3
7、下列式子不正确的是( D ) A、∃xA(x) ⇔ ∀xA(x) B、∃x(A→B(x)) ⇔ A→∃xB(x) C、∀xA(x) ⇔ ∃xA(x) D、∀x(A(x)→B) ⇔ ∀xA(x)→B
以下方案任选一:①A不去,B不去,C去;②A不去,B去,C不去; ③A去,B不去,C去
9、证明下列谓词公式为永真式
(xF( x) yG( y)) (yG( y) xF( x))
证明:题中的谓词公式为 (P Q) (Q P) 的代换实例
(P Q) (Q P) (P Q) (Q P) (P Q) (P Q) 1 (A A 1)
(P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) m001 m000 m011 m111 m0 m1 m3 m(7 主析取范式) M2 M4 M5 M(6 主合取范式) (P Q R) (P Q R) (P Q R) (P Q R)
命题“并不是所有汽车都比火车跑得慢”可符号化为( C )
命题“说汽车都比火车快是不对的”可符号化为( C ) A、∃x(F(x)∧∀y(G(y)→H(x,y))) B、∃x∃y(F(x)∧G(y)→H(x,y)) C、∀x∀y(F(x)∧G(y)→H(x,y)) D、∀x(F(x)∧∃y(G(y)→H(x,y)))

离散数学习题解答(祝清顺版)

离散数学习题解答(祝清顺版)
2
(1) 错误; (2) 正确; (3) 正确; (4) 错误; (5) 错误; (6) 错误; (7) 正确; (8) 正确; (9) 错误; (10) 错误. 10. (1) {d}; (2) {a, c, e}; (3) {a, b, c, e}; (4) {b, d, e}. 11. 各集合的文氏图如图所示(阴影部分).
5
195 = 1 ∙ 154 + 41 154 = 3 ∙ 41 + 31 41 = 1 ∙ 31 +10 31 = 3 ∙ 10 +1 10=10 ∙ 1 +0 所以, gcd(934, 195) = 1. 代回去, 有 gcd(540, 168) = 1 = 31 3 ∙ 10 = 31 3 ∙ (41 1∙31) = 4 ∙ 31 3 ∙ 41 = 4 ∙ (154 3 ∙ 41) 3 ∙ 41 = 4 ∙ 154 15 ∙ 41 = 4 ∙ 154 15 ∙ (1951 ∙ 154) = 19 ∙ 154 15 ∙ 195 = 19 ∙ (934 4 ∙ 195) 15 ∙ 195 = 19 ∙ 934 91 ∙ 195 故 gcd(540, 168) = 19 ∙ 934 91 ∙ 195, 其中 m=19, n = 91. (2) 方法同(1). 计算可得: gcd(369, 25) = 1, gcd(369, 25)= 4 ∙ 369 59 ∙ 25, 其中 m=4, n = 59. (3) 方法同(1). 计算可得: gcd(369, 25) = 33, gcd(369, 25)= 8 ∙ 165 1 ∙ 1287, 其中 n=8, m = 1. (4) 方法同(1). 计算可得: gcd(369, 25) = 2, gcd(369, 25)= 17 ∙ 42 2 ∙ 256, 其中 n=8, m = 1. 32. 由定理 1.3.8, 可得 ab=lcm(a, b)gcd(a, b)=24 ∙ 144. 由已知条件 a+b=120, 根据根与 系数的关系可构造一个一元二次方程 x2120x+24 ∙ 144=0 解之得, x1=72, x2=48. 由此可得 a=72, b=48 或 a=48, b=72. 33. (1) 运用辗转相除法可得 10920 = 1 ∙ 8316 + 2604 8316 = 3 ∙ 2604 + 504 2604 = 5 ∙ 504 + 84 504 = 6 ∙ 84 +0 所以, gcd(934, 195) = 84. (2) 对于(1)中各式回代过去, 有 gcd(10920, 8316) = 84 = 2604 5 ∙ 504 = 2604 5 ∙ (8316 3 ∙ 2604) = 16 ∙ 2604 5 ∙ 8316 = 16 ∙ (10920 1 ∙ 8316) 5 ∙ 8316 = 16 ∙ 10920 21 ∙ 8316 故 gcd(10920, 8316) = 21 ∙ 8316+16 ∙ 10920, 其中 m = 21, n=16. (3) 由最大公因子与最小公倍数的关系, 有 ab 8316 10920 =1081080. lcm(a, b) gcd(a, b) 84

离散数学习题一,二参考答案

离散数学习题一,二参考答案

《离散数学》习题一参考答案第一节 集合的基数1.证明两个可数集的并是可数集。

证明:设A ,B 是两可数集,},,,,,{321 n a a a a A =,},,,,,{321 n b b b b B = ⎪⎩⎪⎨⎧-→j b i a N B A f j i 212: ,f 是一一对应关系,所以|A ∪B|=|N|=0ℵ。

2.证明有限可数集的并是可数集证:设k A A A A 321,,是有限个可数集,k i a a a a A in i i i i ,,3,2,1),,,,,(321 ==⎪⎩⎪⎨⎧+-→==i k j a N A A f ij k i i )1(:1,f 是一一对应关系,所以|A|=| k i i A 1=|=|N|=0ℵ。

3.证明可数个可数集的并是可数集。

证:设 k A A A A 321,,是无限个可数集, ,3,2,1),,,,,(321==i a a a a A in i i i i⎪⎪⎩⎪⎪⎨⎧+-+-+→=∞=i j i j i a N A A f ij i i )2)(1(21:1 , 所以f 是一一对应关系,所以|A|=| ∞=1i i A |=|N|=0ℵ。

4.证明整系数多项式所构成的集合是可数集。

证明:设整系数n 次多项式的全体记为}|{1110Z a a x a x a x a A i n n n n n ∈++++=--则整系数多项式所构成的集合 ∞==1N n A A ;由于k x 的系数k a 是整数,那么所有k x 的系数的全体所构成的集合是可数集,由习题2“有限个可数集的并是可数集”可得n A 是可数集,再又习题4“可数个可数集的并是可数集”得出整系数多项式所构成的集合 ∞==1N n A A 也是可数集。

5.证明不存在与自己的真子集等势的有限集合.证明:设集合A 是有限集,则|A|=n ,若B 是A 的真子集,则|B|≤|A|=n ,A-B ≠φ,即|A-B|=|A|-|AB|>0;又A=(A-B )∪B ,(A-B )B=φ,所以,,就是|A|>|B|,即得结论。

(完整版)离散数学习题答案

(完整版)离散数学习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r∧→15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0,,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q→⌝→⌝解:列出公式的真值表,如下所示:p qp⌝q⌝()p p →⌝()p p q→⌝→⌝001111011010100101110001由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:(4)()p q q⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧,此即公式的主析取范式,()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式,此即公式的主合取范式,()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔所以成假赋值为100。

离散数学课后习题答案一

离散数学课后习题答案一

§1.1 命题和逻辑连接词习题1.11. 下列哪些语句是命题,在是命题的语句中,哪些是真命题,哪些是假命题,哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)你喜欢计算机吗? (3)地球上海洋的面积比陆地的面积大。

(4)请回答这个问题! (5)632=+。

(6)107<+x 。

(7)园的面积等于半径的平方乘以圆周率。

(8)只有6是偶数,3才能是2的倍数。

(9)若y x =,则z y z x +=+。

(10)外星人是不存在的。

(11)2020年元旦下大雪。

(12)如果311=+,则血就不是红的。

解是真命题的有:(1)、(3)、(7)、 (9) 、(12) ;是假命题的有:(5)、 (8) ;是命题但真值现在不知道的有: (10)、 (11);不是命题的有:(2)、(4)、(6)。

2. 令p 、q 为如下简单命题:p :气温在零度以下。

q :正在下雪。

用p 、q 和逻辑联接词符号化下列复合命题。

(1)气温在零度以下且正在下雪。

(2)气温在零度以下,但不在下雪。

(3)气温不在零度以下,也不在下雪。

(4)也许在下雪,也许气温在零度以下,也许既下雪气温又在零度以下。

(5)若气温在零度以下,那一定在下雪。

(6)也许气温在零度以下,也许在下雪,但如果气温在零度以上就不下雪。

(7)气温在零度以下是下雪的充分必要条件。

解 (1)q p ∧;(2)q p ⌝∧;(3)q p ⌝∧⌝;(4)q p ∨; (5)q p →;(6))()(q p q p ⌝→⌝∧∨;(7)q p ↔。

3. 令原子命题p :你的车速超过每小时120公里,q :你接到一张超速罚款单,用p 、q 和逻辑联接词符号化下列复合命题。

(1)你的车速没有超过每小时120公里。

(2)你的车速超过了每小时120公里,但没接到超速罚款单。

(3)你的车速若超过了每小时120公里,将接到一张超速罚款单。

(4)你的车速不超过每小时120公里,就不会接到超速罚款单。

离散数学第一学期习题及答案

离散数学第一学期习题及答案
结论:s r 9.在自然推理系统 P 中用归谬法证明下面各推理:
前提:p q, r q,r s 结论: p
参考答案:
1.
(1)p∨(q∧r) 0∨(0∧1) 0
(2)(p↔r)∧(﹁q∨s) (0↔1)∧(1∨1) 0∧1 0
(3)( p∧ q∧r)↔(p∧q∧﹁r) (1∧1∧1) ↔ (0∧0∧0) 0
6. 判断下列各式的类型:
(1)
(2)
yF(x,y).
7. 给定下列各公式一个成真的解释,一个成假的解释。
(1) (F(x)
(2) x(F(x) G(x) H(x)) 8.给定解释I如下:
(a)个体域 D={3,4};
(b) f (x) 为 f (3) 4, f (4) 3
(c) F (x, y)为F (3,3) F (4,4) 0, F (3,4) F (4,3) 1.
后件为存在实数 x 对任意实数 y 都有 x+y=5,后件假,]
此时为假命题
再取解释 I 个体域为自然数 N,
F(x,y)::x+y=5
所以,前件为任意自然数 x 存在自然数 y 使 x+y=5,前件假。此时为假命题。 此公式为非永真式的可满足式。
7.解:(1)个体域:本班同学
F(x):x 会吃饭, G(x):x 会睡觉.成真解释
所以公式类型为永真式
(3) P
q
r
00
0
p∨q 0
p∧r
(p∨q)→(p∧r)
0
1
00
1
0
0
1
01
0
1
0
0
01
1
1
0
0
1
00
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 1 1 0 0 1 1
12. 设 p : 2 + 2 = 4, q : 3 + 3 = 6
(1) p ↔ q ,真值为 1 (2) p ↔ ¬q ,真值为 0
(3) ¬p ↔ q ,真值为 0 (4) ¬p ↔ ¬q ,真值为 1
14. (2) p: 老王是山东人 q: 老王是河北人 p ∨ q
(3) p: 天气冷 q: 我穿上了羽绒服 p → q
18. 令 p: 小王会唱歌 q: 小李会跳舞;论述符号化为: (¬p ∨ ¬q) ∧ ¬( p → q)
当小王会唱歌为真,小李会跳舞为假时,论述为真。 19. (2) 可满足式 (4) 重言式 (6) 重言式 真值表分别如下:
p q ( p → ¬p) → ¬q
pq
00
1
00
01
0
01
10
1
10
11
( p ∧ q) → ¬p
1 1 1 0
¬( p ∨ q) → q
0 1 1 1
21(2) 成假赋值:010,100,101,110 (3) 成假赋值:100,101
p q r (¬q ∨ r) ∧ ( p → q)
000
1
001
1
010
0
011
1
100
0
101
0
110
0Байду номын сангаас
111
1
( p → q) ∧ (¬( p ∧ r ) ∨ p)
(4) p: 王欢与李乐组成一个组 简单命题
(6) p: 王强学过法语 q: 刘威学过法语 p ∧ q
(5) p: 李辛和李末是兄弟 简单命题
(8) p: 天下大雨 q: 他乘班车上班 p → q
(9) (10) p,q 同上, q → p
(12) p: 2 是素数 q: 4 是素数 ¬( p ∧ q)
(13) p: 2 是素数 q: 4 是素数 ¬(¬( p ∨ q))
15. p,q 为真命题,r 为假命题,(1),(2),(3),(4)的真值分别为 0,0,0,1
17. p: π 是无理数 q: 3 是无理数 r: 2 是无理数 s: 6 能被 2 整除 t: 6 能被 4 整除
p ∧ (q → r) ∧ (t → s) 真值为 1
7. 因为 p 与 q 不可能同时为真。 8. 设 p : 2 < 1, q : 3 < 2 , 则有
(1) p → q ,真值为 1 (2) p → ¬q ,真值为 1 (3) ¬q → p ,真值为 0
(4) ¬q → p ,真值为 0 (5) ¬q → p ,真值为 0 (6) p → q ,真值为 1
离散数学习题参考答案
2012.9.
第一部分 数理逻辑
第一次:(命题逻辑)P12 1, 6, 7,8,14,17,18 (命题公式)19(2)(4)(6),20(3)(4),21(2) (3)
1. 命题:(1),(2),(3),(6),(7),(10),(11),(12),(13) 简单命题:(1),(2),(7),(10),(13)
真命题:(1),(2),(3),(7)(刘红与魏真是同学的话,否则为假),(10),(11)
真值还不知道:(13) 6 (1). p: 小丽从框里拿出一个苹果 q: 小丽从框里拿出一个梨
( p ∧ ¬q) ∨ (¬p ∧ q)
(2). p:刘晓月选学英语 q: 刘晓月选学日语 ( p ∧ ¬q) ∨ (¬p ∧ q)
1
11
( p → q) → (¬q → ¬p)
1 1 1 1
p q r (( p → q ) ∧ (q → r )) → ( p → r )
000
1
001
1
010
1
011
1
100
1
101
1
110
1
111
1
20(3) 成真赋值:00,01,10 (4) 成真赋值:01,10,11
pq 00 01 10 11
相关文档
最新文档