微积分与解析几何
微积分第七章空间解析几何与向量代数

第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。
图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。
高等数学分支

高等数学是数学的一个重要分支,主要包括以下几个方面:
1. 微积分:微积分是研究变化的数学分支,包括导数、积分、微分方程等内容。
2. 线性代数:线性代数是研究向量空间、线性变换、矩阵等内容的数学分支,对于解决多元线性方程组、特征值问题等具有重要应用。
3. 概率论与数理统计:概率论研究随机现象的规律性,数理统计则是利用概率论的方法对数据进行分析和推断。
4. 解析几何:解析几何研究几何图形在坐标系中的表示与性质,通常与线性代数结合起来研究。
5. 数学分析:数学分析是微积分的基础,研究实数的性质、极限、连续性、收敛性等内容。
以上是高等数学的一些主要分支,涵盖了数学领域中的重要内容。
如果你对其中任何一个具体的分支有更深入的问题,欢迎继续提问哦!。
尺规作图法简介

一、尺规作图在中学就知道,几何作图所使用的工具是严格限制的,只准用圆规和直尺,直尺不能有刻度,不能使用量角器及其他任何工具.其实,这种限制自古希腊就有而且沿用至今.为什么要加以这样的限制呢?比如说,要找出一个线段的中点来,就不可以先用(有刻度的)尺去量,看它的长度是多少,然后取这个长的一半,再用这一半去量就找出中点来了.何必一定要用无刻度的直尺和圆规去寻求呢?是自己跟自己过不去吗?古希腊认为,所有的几何图形是由直线段和圆弧构成的,圆是最完美的,他们确信仅靠直尺和圆规就可绘出图形来.古希腊人十分讲究理性思维,讲究精确、严谨.他们认为依据从少数假定出发的、经由逻辑把握的东西最可靠.例如前面所说的寻求一已知线段AB的中点问题,作图的步骤是:1.以A为圆心,以一适当长度为半径画弧;2.又以B为圆心,以同样的长度为半径画弧;3.这两弧相交于两点,作两点连线,此连线与已知直线之交点即为所求之中点.然后,要根据已知几何命题来证明这个点必是中点.人们认为,这不仅是最可靠地找到了中点,而且体现了一种完美的思路和做法.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如F i=22i+1的数.费马的一个著名猜想是,当n≥3时,不定方程x n+y n=z n没有正整数解.现在他又猜测F i都是素数,对于i=0,1,2,3,4时,容易算出来相应的F i:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如F i=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如F i=22i+1的数的一般结论很难做出,而且具体分解某个F i也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k或2k×p1×p2×…×p s,其中,p1,p2,…,p s是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而3=F0.从古希腊流传下来的几何作图还有三大难题,一个是化圆为方问题,即求作一正方形,使其面积等于已知圆的面积;二是倍立方体问题,即求作一立方体,使其体积等于已知立方体的体积;三是将一任意角三等分.某些特殊角的三等分并不困难,例如将90°的角、135°的角三等分并不难,但是任意角就不一样了.例如,60°的角,你试试看,能否将它三等分?现在已有了结论,告诉你不要再试了,否则是白费时间了.可以取单位圆作代表,其面积即为π.那么,化圆为方的问题相当能吗?古希腊人对化圆为方的问题有极大兴趣,许多人进行研究.这一研究推动了圆面积的近似计算,促进了极限思想的萌生,但是并没有解决化圆为方的问题.另外两大难题虽也没解决,但也促进了对另一些数学问题的研究.尺规作图的实质在于限制只使用两种工具的条件下通过有限步骤完成作图.长度为任一有理数平方根的线段来.当然还可通过有限步骤作出长度为一有理数平方根的平方根的线段来.我们把凡能用尺规经有限次步骤作出的线段或量叫做“可作几何量”.可以证明,“可作几何量”就是那些有理数经有限次+、-、×、÷和开方这类运算得到的量.否则叫“不可作几何量”.化圆为方的问题直至19世纪才得到答案:它是不可能的.因为可作几何量”.这一悬而未决、延宕两千多年的古老问题,最终得以解决.属“不可作几何量”,所以,倍立方体问题的答案也明确了:不可能!再以60°角为例来分析任意角的三等分问题.为把60°三等分,必然要用尺规作出量cos 20°或sin 20°.以下三角恒等式是我们熟知的:cos 3x=4cos3x-3cos x,将x=20°代入,得将cos 20°换写为y,即是三次代数方程:这个三次方程的一个正实根当为其所需之解,然而,它必会有有理数的立方根表示.因而y=cos 20°也是一个“不可作几何量”.故三等分问题亦属不可能.难怪古希腊人对这三个问题久久未找到答案,难怪这是真正的难题.不是古希腊人不智,确实是当时的数学水平还难以使他们得出三大几何作图难题均以“不可能”为结局的结论来.二、解析几何与微积分数学以两千多年的历史伴随人类文明.从公元前到公元16世纪,几何与代数各自平行发展着,几何则以更大的魅力影响着人类文明.但几何似乎仅是关于形的科学而与数无关;代数则似乎与形无关而仅是关于数的科学.代数与几何难以被联系起来的原因是,人们心目中的数是一个个孤立的定数,因而难以从数想到由无穷多个点连成的线条等图形;而对于形,例如,线段和封闭图形,它们与数的联系似乎仅有由数刻画的长度和面积,因而难以从图形想到数的其他表现能力.把数与形密切联系起来的关键是变量概念的形成;另一个同等重要的问题是把图形如线条视为是由动点形成的.只有变动的数与变动的点联系起来,才使数与形的密切关系被深刻地揭示出来了.这里,决定性的工具是坐标,有了坐标,数就是点,点就是数,变动的点就是变动的数,变动的数就是变动的点,于是变数与图形结合在一块了.真正的困难还在于,任何一个具体的图形都不带有一个坐标在身上,亦即,人们在现实生活中是不能直接看到坐标的.当然,稍稍想一想,生活中也有根本感受不到的坐标存在着.例如,在我们说东、南、西、北的时候,一般是确定的站在某一点来说,比如说“北京在东面”,这对站在兰州的人来讲是对的,对站在济南的人来讲是不对的.同样,站在郑州应当说“武汉在南面”,而站在广州,则只能说“武汉在北面”.这实际上就是有了坐标原点的概念,有了坐标的思想.可是,问题还没有那样简单,还需要有运动的观念,还需要有更精确的描述,才能借以刻画几何图形,才能实现数与形的有效融合.数与形的充分结合才产生解析几何.解析几何的主要创始人笛卡儿的有关工作也经历了一个发展过程,所以解析几何并不是瞬间的、偶然出现的产物.让我们看一个实例.首先,我们回顾一下已知两线段而由尺规作出比例中项的办法,如果两线段一样长,那它们本身就是比例中项.如果不一样,那么,可在较长的线段AC上取一点B,使AB等于较短线段的长.再以AC为直径画圆,然后过B作AC的垂线交圆于D,连接AD,AD即为所求之比例中项.在右图中,我们按以上方式作出了AB与AC的比例中项,即接着,我们容易作出E、F、G、H、…使得如果设AB=1,AD=x,上式就变成了从线段看,AD=x时AF=x3,AF=AD+DF,若记DF=a,我们得到x3=x+a.反过来看,a作为已知数,容易作出一长度为a的线段DF,根据由以上分析所得之启示可作出AD,那么,AD实际上便是三次方程式x3=x+a的根.这就是笛卡儿在正式形成其明确的解析几何思想之前的一例,把代数方程与几何结合起来的一例.他还曾利用几何方法探寻四次代数方程求根的方法.这是把几何与代数问题结合的一个方面.另一方面,笛卡儿对几何问题又运用了代数方法,例如,研究几何轨迹的问题.解析几何的精华在于把几何曲线用代数方程来表达,同时又利用代数的研究方法来研究几何.从进一步的分析还可发现,这种方法其所以十分强有力,是因为形与数的联系比人们想象的要紧密得多,许多复杂的几何现象是通过解析的方法发现的,许多复杂的几何问题是通过解析方法解决的.这不仅是一个手段问题,也是对世界本质的看法问题.所以,笛卡儿的解析几何具有深远的意义.我们从所熟知的内容来看看解析几何的意义.例如,我们知道椭圆、双曲线、抛物线的标准方程是:y2=2px我们并不需要画出图形来而只要一看式子就知道它是个什么样子.所谓标准方程,是从代数表达形式来看的,而从几何上看,则是其图形摆得方方正正,例如,标准椭圆方程实际上是其圆心摆在原点,其长短半轴分别与平面的两条坐标轴重合.但是,实际的情况并不总是以标准的形式呈现在我们面前的.直线也有其标准形式,但一般形式是ax+by+c=0;二次曲线的一般方程式是ax2+2bxy+cy2+dx+ey+f=0.然后,我们可以通过解析的方法、代数的方法把它们化为标准形式,例如,对二次方程,我们可以通过以下的变换来做这件事情:通过这样的变换,就可以把一般方程化为标准方程.这一过程,这种工作,从表面看来似与几何毫无关系,我们只是在做着代数的工作.通过上面的变换,原来的方程就变为一个新的形式了,现在把它们并列写下来:ax2+2bxy+cy2+dx+ey+f=0a′x′2+2b′x′y′+c′y′2+d′x′+e′y′+f′=0这成了两个不同的式子,却有3个相等的式子:a+c=a′+c′,换句话说,在前述变换之下,有两个东西不变(对此,我们前面曾提到过).至此,我们对一般二次代数方程所作的叙述全是代数的,对方程进行代数变换(两种线性变换),以及这种变换之下的不变量.接下去我们还可以说明,一般二次方程能在变换之下化为标准方程.下面将用全套的几何语言来叙述与以上相关的全套代数涵义,或说明全套代数语言的几何涵义:在给出了一般二次曲线之后,我们总可以通过平移和旋转,把它摆在标准位置上.以椭圆为例,即把它的圆心移到原点来,把它的长短轴移至坐标轴上来,而二次曲线的原形是不变的.可见,用几何的语言来说,也是很简单的.那么,代数的讨论有什么实际的意义呢?在一般地给出了一个二次代数方程后,你很难看出它会是怎样一条曲线,如果一点一点地描绘也不是件简单的事.然而,代数的讨论告诉我们有几个不变式在那里,我们甚至不必最终化成标准表达式,就能由几个不变式看出曲线的类型和性质.这是重要的定性分析.此外,这种分析也使我们能把所有的二次曲线准确无误地详尽无遗地予以归类了.从哲学上说,笛卡儿的解析几何可说是他理性主义的产物.上面以二次曲线为例,表明代数方法与几何问题的结合,产生了最充分的理论说明.笛卡儿们认为世界是十分有秩序有条理的,是可以用方程来表达的.奇异就出在这种有序的世界和有序的运动里面.在解析几何出现后不久,微积分被发现了.微积分与解析几何不仅是伟大的数学发现,而且为近代科学开辟了道路;它们不仅是17世纪的伟大发现,而且在人类文明史上写下了极其灿烂的一页;它们不仅为近代科学开辟了道路,而且它们本身就是划时代的成果.在微积分产生之前,人们已比较普遍地接触这样几类问题:物理方面,求速度、求距离的问题;几何方面,求切线、求长度、求面积、求体积、求物体重心的问题;在各种实际问题中,求极大、极小的问题等.因此,在微积分正式诞生之前,关于极限的思想,关于微分的思想,关于积分的思想,已经零星可见.关于极限的思想在我国古代早已出现.求速度,求切线,这就会接近微分;求距离,求长度和面积、体积,这就会接近积分.古代中国的祖暅原理与近代西方的卡瓦列里原理说的是同一原理,前者先于后者约1100年左右.这一原理当为一般大学生所熟悉:当两立体介入两平行平面之间,又为平行于这两平面的任何一平行平面所截得之截面面积相等时,那么两立体之体积相等.用符号来表达,用同一平面截得两立体之截面面积分别表示为f(x)dx和g(x)dx,原理说的是:当对于所有的x有f(x)dx=g(x)dx时,便有:作为一个著名例子,我们看看半球体积的计算.这一计算,现在看来似乎是轻而易举的,但在没有微积分之前是十分困难的.所以下面的计算方式在当时是很有意义的,它利用了祖暅——卡瓦列里原理.设半球的半径为r.以半球的大圆为底面,球顶朝上.作一平面与底面平行并与底面之距离为h.这个平面截半球所得之截面为一圆,该π(r2-h2).再看看一个截面半径为r的圆柱,其高度也为r.其下底与上面所说的半球底面摆在一个平面.现在将以此圆柱的上底为底、以下底圆的圆心为顶点作一圆锥.这一圆锥完全含于圆柱,现在把这一圆锥挖去,并考虑被挖去一圆锥的圆柱所形成的立体.当用一平行于底面的平面去截它时,其截面为一圆环,设这一平行于底面的平面距底面h,那么,这一圆环的面积也等于πr2-πh2=π(r2-h2).可见,这一立体与半球被任何同一平行平面所截之截面面积相等.根据祖暅原理,半球体积应与被挖去一圆锥的圆柱体积相等.而被挖去一圆锥的圆柱体积是:尽管在牛顿和莱布尼茨之前,人们从不同的角度接触到了微分和积分,但是对于微分与积分的关系并没有真正弄清楚.而真正的困难亦在此.很容易明白,加法与减法是互逆的运算,也不难明白,乘法与除法是互逆的运算.开方作为乘方的逆运算,在技术上更困难了;作为指数运算逆运算的对数运算的产生并不容易.逆运算常常带来一些新问题,程序性问题,多值性问题.对于微分与积分之间的联系,认识上更有特殊的困难,这样两个似乎十分不同的两种运算竟然是互逆的,这正是使人惊讶不已的地方,也是使人感到其发现之特别不易的地方.以具体问题来说,求一曲线所围成图形的面积运算怎么会与求这一曲线的切线的运算是互逆的运算呢?微积分的创立正是以发现微分与积分的互逆关系为标志的.如今我们所说的牛顿—莱布尼茨定理即微积分基本定理,讲的就是两者关系.微积分基本定理可主要以微分的形式出现,亦可主要以积分的形式出现.我们分别叙述如下:微分形式.(x)在[a,b]上可微,且积分形式.可微,且发现f(x)的积分的微分正是它自己(在一定条件下即可保证).只有在这一发现得到之后,才能说微积分产生了,因为这一定理奠定了微积分的理论基础.牛顿的发现在莱布尼茨之前,但发表的时间在莱布尼茨之后,他们两人又确系各自独立的发现,而且背景也有所不同.因此,虽然后来也曾出现过关于发现的优先权的争议,最终的看法却达成一致:牛顿和莱布尼茨共同创立了微积分的基本定理.微积分的伟大意义可以从4个方面去看.1.对数学自身的作用.自从有了解析几何和微积分,就开辟了变量数学的时代,因而数学开始描述变化,描述运动.微积分改变了整个数学世界的面貌.牛顿、莱布尼茨17世纪创立的微积分还存在着明显的逻辑缺陷,但是这种缺陷并未抑制它旺盛的生命力.18世纪的数学家们在微积分提供的思维和工具的基础上阔步前进,迅速创立了许多数学分支,诸如微分方程,无穷级数,变分法等.在进入19世纪之后,还有诸多与微积分直接相关的数学分支产生,原有的一些数学分支也开始利用微积分的方法,前者包括复变函数,微分几何等,后者包括数论,概率论等.可以说,在有了微积分之后的两、三百年期间,数学获得了极大的发展,获得了空前的繁荣.微积分的严密逻辑基础也在19世纪完善地建立起来.微积分基本定理的表现形式在多维空间和一般拓扑空间中也获得了拓广,在更广阔的领域中延伸,进一步显示了它在数学领域里的普遍意义.2.对其他自然科学和工程技术的作用.有了微积分,整个力学、物理学都得以它为工具来加以改造,微积分成了物理学的基本语言,而且,许多物理学问题要依靠微积分来寻求解答.“数理不分家”,这句话在有了微积分之后就具有了真实的意义,离开了微积分不可能有现代物理,无论是力学、电学还是光学、热学.微积分的创立得到了天文学的启示,此后,天文学再也离不开微积分.19世纪上半叶可能还认为化学只需要简单的代数知识,而生物学基本上与数学没有联系.现在,化学、生物学、地理学等都必须深入地同微积分打交道.3.对人类物质文明的影响工程技术是最直接影响人类物质生活的,然而工程技术的基础即数理科学,也可以说,现代工程技术少不了微积分的支撑.从机械到材料力学,从大坝到电站的建设,都要利用微积分的思想和方法.如果说在落后的生产方式之下,只需要少量的几何、三角知识就可以工作的话,如今,任何一个未学过微积分的人都不可能从事科学技术工作.在有了微积分和万有引力原理之后,人们就预见了人造卫星及宇宙飞行的可能,并且早已利用微积分计算出了宇宙速度.今日满天飞行的人造卫星早在微积分产生之初就已在学者们的预料之中.在今天人类广泛的经济活动、金融活动中,微积分也成了必不可少的工具.微积分诞生之初的主要背景是物理学和几何学,而今,它几乎为一切领域所运用.它对人类物质生活的影响是越来越大.4.对人类文化的影响只要研究变化规律就要用上微积分,在人文、社会科学领域亦如此,因而微积分也渗透于人文、社会科学,用它来描述和研究规律性的东西.哲学尤其关注微积分,那是因为微积分给了哲学许多的启示,它不仅影响到哲学方法,也影响到世界观.辩证唯物主义更关注微积分.马克思十分关心数学,何止是关心,他对数学还曾有过广泛而深入的研究,特别对微积分有专门的研究.马克思在1863年7月6日致恩格斯的信中说:“有空时我研究微积分.顺便说说,我有许多关于这方面的书籍,如果您愿意研究,我准备寄给您一本.”①1865年5月20日,马克思又在给恩格斯的一封信中说到:“在工作之余——西,任何其他读物总是把我赶回写字台来.”②马克思不只研究牛顿、莱布尼茨,而且研究了牛顿、莱布尼茨之后一个多世纪内的一批著名数学家,如达朗贝尔,欧拉,拉格朗日等人.1882年11月22日,马克思在致恩格斯的一封信中还说到:“我未尝不可用同样的态度去对待所谓微分方法的全部发展——这种方法始于牛顿和莱布尼茨的神秘方法,继之以达朗贝尔和欧拉的唯理论的方法,终于拉格朗日的严格的代数方法(但始终是从牛顿—莱布尼茨的原始的基本原理出发的),——我未尝不可以用这样的话去对待分析的这一整个发展过程,说它在利用几何方法于微分学方面,也就是使之几何形象化方面,实际上并未引起任何实质性的改变.”③马克思那个时代写到了“终于拉格朗日”表明马克思已站在前沿,他可能还未看到柯西、魏尔斯特拉斯的分析方法、极限方法,但也是从“牛顿—莱布尼茨”那里出发的.从1863年的信到1882年的信,从信中表现出来的对微积分越来越深入的分析,可以看出,马克思是多么认真、多么深入又在多么漫长的时间里关注和研究着微积分!我们可以想一想,马克思作为一位哲学家、思想家、经济学家、政治家为何如此深切地关心和深入地研究数学尤其是微积分?再看看恩格斯本人.恩格斯在《自然辩证法》中有一段许多人熟悉的话:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼茨大体上完成的,但不是由他们发明的.”①当然,应当说大体上是由他们发现的,另一位可以说接近这一发现的是牛顿的老师——巴罗.恩格斯还在《反杜林论》这部著作中说到:“因为辩证法突破了形式逻辑的狭隘界限,所以它包含着更广的世界观的萌芽.在数学中也存在着同样的关系.初等数学,即常数的数学,是在形式逻辑的范围内活动的,至少总的说来是这样,而变数的数学——其中最重要的部分是微积分——本质上不外是辩证法在数学方面的运用.”②事实上,恩格斯不只是注意深入研究微积分,研究数学,他还令人敬佩地广泛地研究了他所处时代的数十个自然科学领域的最新成果.也许,恩格斯是一个杰出的榜样,是从社会文化的角度深刻分析过自然科学的榜样.顺便说说,列宁对于数学,尤其是物理学,也有过浓厚的兴趣.似乎在马克思、恩格斯、列宁之后的马克思主义者很少有这种兴趣,更少有这样深刻的见解.这是不是一种遗憾呢?也许,不一定每位马克思主义者都需要有如此广博而深刻的自然科学见解,也许学识与智慧及其表现形式也不一样.然而,有一点似乎应当是共同的,任何一位真正的马克思主义者必然是对自然科学的各种进步寄予深切关注和满腔热情的支持,并且特别关注它们对社会进步的巨大影响.邓小平具有这样的品质,邓小平亦可算这一方面的典范,虽然他没有可能熟悉现代意义下的微积分,但他把社会文化与自然文化也联系在一起.三、非欧几何直到现在,知道非欧几何的大学生还少得可怜,甚至大学数学专业本科毕业了,学习了大约15年以上的数学,不少人还是不知道非欧几何.这一事实,让人在赞美非欧几何之时多少有些遗憾.为了使我们的叙述更实在些,不能不以尽可能简洁的方式介绍一下有关背景.欧几里得几何在公元前300年就产生了,现在简称欧氏几何.中学生所学的几何基本上是欧氏几何,这种几何已流传两千多年,至今每个学生仍然学习它,多多少少要学习;它的影响遍及世界各国.欧氏几何的主要特征是首开公理方法,不仅是在数学领域,而且是在整个科学领域开创了公理方法.公理方法的基本要点是,从少数几个概念(原始概念)和少数几个命题(原始命题,又称公理)出发;演绎出本学科其他所有概念和命题,从而构成这一学科的全貌.运用这种方法的学科因而自然地被认为具有最严密的演绎体系,做到了这一点的学科就被认为是严谨的科学,也被认为是十分成熟的学科门类.所以,几何被认为是最早成熟的自然科学分支.由于几何在数学领域长期作为主要的代表,。
机器学习数学知识积累之线性代数解析几何,微积分

机器学习数学知识积累之线性代数解析⼏何,微积分解析⼏何解析⼏何的基本思想是⽤代数的⽅法来研究⼏何,把空间的⼏何结构系统地代数化,数量化向量的定义⼀个有长度和⽅向的⽮量,和标量(scalar)相对应向量的⼤⼩(有向线段的长度)称为向量的模 $|\vec{a}|$长度为1的向量称为单位向量向量的平⾏(共线),共⾯和垂直向量共线平⾏的充分必要条件是:存在⼀个标量$ \lambda $ 使得以下成⽴: $$\vec{a} = \lambda \vec{b}$$向量共⾯的充分必要条件是:a,b,c之间存在线性变换关系使得以下成⽴:$$\vec{c} = \lambda \vec{b}+ \eta \vec{a}$$向量垂直的充分必要条件是:$$\vec{a} \cdot \vec{b} = 0$$向量的线性运算加法:三⾓形法则,平⾏四边形法则,多边形法则(多个向量尾⾸相连,最终A的起点到Z的终点连接起来即为所有这些向量的和)减法数乘:只改变向量长度,⽅向⼀致或相反(随这个数据正负⽽定)向量加减法⼏何⽰意图向量的代数表⽰把空间中所有的向量的尾部都拉到坐标原点,这样N维点空间可以与N维向量空间建⽴⼀⼀对应关系:N维点空间中点(0,0,0…0)取作原点,那么每⼀个点都可以让⼀个向量和它对应,这个向量就是从坐标原点出发到这个点为⽌的向量。
向量在轴上的投影$C'和D‘$分别称为点$C,D$在轴u上的投影,向量$\vec{CD}$在轴u上的投影为C,D两点在u轴上的投影点$C',D'$组成的有向线段$\vec{C'D'}$的值,其绝对值等于向量$|\vec{C'D'}|$,其正负的符号由$\vec{C'D'}$的⽅向决定,当$\vec{C'D'}和u$轴同⽅向时值为正,反⽅向时值为负。
记为$Prj_u\vec{CD}$投影定理:向量$\vec{CD}$在轴u上的投影等于向量的模乘以轴与向量的夹⾓的余弦:$$Prj_u\vec{CD}=|\vec{CD}|cos(\varphi )$$性质定理:n个向量的和在轴上的投影等于两个向量在该轴上的投影之和.$$Prj_u(a_1+a_2+..+a_n) = Prj_ua_1+Prj_ua_2+...+Prj_ua_n$$向量的内积(数量积,点乘)和外积内积:两个向量的内积或者叫点乘结果是⼀个标量,其值等于a,b的模乘以其夹⾓的cos值。
微积分中的初等数学内容

与《微积分》课程有关的初等数学内容一、教材中已介绍的内容:逻辑、集合、函数及其性质、极坐标。
二、解析几何。
1。
方程(或方程组或不等式组)0F =与图形S 的定义:如果“点(),x y 在S 上⇔(),x y 满足0F =”,则称0F =是图形S 的方程;S 是方程0F =的图形。
2。
交与并的方程:设F S 的方程是(),0F x y =;G S 的方程是(),0G x y =,则F G S S 的方程为()(),,0F x y G x y =;FG S S 的方程为()(),0,,0F x yG x y =⎧⎪⎨=⎪⎩。
3。
平移:方程(),0F x a y b --=的图形是将(),0F x y =的图向右(0a <时向左)平移a 个单位后再向上平移(0b <向下)b 个单位。
4。
对称:方程(),0F x y -=(或(),0F x y --=)的图形关于0x =(或()(),0,0x y =)对称。
如xy e =与xy e -=-关于原点对称;2x y =本身关于0y =对称。
5。
伸缩:设0k >,则,0x F y k ⎛⎫=⎪⎝⎭的图形是将(),0F x y =的图沿x 轴方向(从0x =向左右两侧)伸缩k 倍。
如221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭是由221x y +=分别沿x 、y 轴方向伸缩a 、b倍而得。
6。
描点作图法:根据函数的单调性,在单调区间的端点计算函数值并描点连线做图。
三、方程组的解法:只能将方程组等价地变形为另一方程组。
可用的变形方法见下: 1。
线性法:(1)把方程乘个数后加到另一方程上;(2)某方程乘非零数;(3)两方程交换位置。
2。
代入法:()()1212,,,,,,,0n n y f x x x g y x x x =⎧⎪⎨=⎪⎩⇔()()()121212,,,,,,,,,,0n n n y f x x x g f x x x x x x =⎧⎪⎨=⎪⎩。
微积分A(二)总复习(向量代数和空间解析几何)

(6) a , b , c 共面 [a , b , c ] 0 a x a y az
bx cx by cy
a x bx a y by az bz 0.
bz 0. cz
二、空间解析几何
1、空间曲面方程 (1) 空间曲面一般方程
F ( x , y , z ) 0 或 z f ( x , y ) 等。
向量代数
向量的 线性运算
向量概念
向量的 表示法
向量的积
数量积 混合积 向量积
空间解析几何 空间直角坐标系
一般方程 旋转曲面
曲线
参数方程 一般方程 参数方程
曲面
平 面
柱
面
直 线
二次曲面
一般方程
对称式方程 点法式方程
向 向量的坐标表达式、模、方向余弦、 量 单位向量、在另一向量上的投影; 空间两 代 点间的距离; 向量的垂直与平行、数量积 数 与向量积及其运算规律与性质意义 空 间 解 析 柱面、旋转曲面、二次曲面方程;空 几 何 间直线在坐标面上的投影
它满足交换律、结合律、分配律。
0 向量积 a b a b sin ( a ,^ b ) n , 0 a , b 所在平面的 n : 按“右手法则”垂直于 单位向量。 i j k a b a x a y az S a b . bx b y bz
a x a y az 0 与a 平行的单位向量为 a { , , } |a | |a | |a | 2 2 2 其中| a | a x a y az
的投影。
一、向量代数
ay ax a 的方向余弦为 cos , cos , |a | |a | az cos , 方向余弦满足 |a | cos2 cos2 cos2 1.
微积分在实际中的应用

微积分在实际中的应用一、微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
微积分是微分学和积分学的总称。
它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。
微分学包括求导的运算,是一套关于变化的理论。
它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。
前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。
从17 世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学时代,即微积分不断完善成为一门学科。
整个17 世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。
二、微积分的思想从微积分成为一门学科来说,是在17 世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3 世纪,古希腊的数学家、力学家阿基米德(公元前287~ 前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,与此同时,战国时期庄子在《庄子•天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。
公元3 世纪,刘徽在《九章算术》中提及割圆术“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣”用正多边形来逼近圆周。
这是极限论思想的成功运用。
他的极限思想和无穷小方法,也是世界古代极限思想的深刻体现。
虽然最后是欧洲人真正的研究和完成了微积分的创立工作,但中国古代数学对于微积分的出色工作也是不可忽视的。
解析几何与微积分第二版pdf点点文档

解析几何与微积分第二版pdf点点文档摘要:1.解析几何与微积分的关系2.解析几何的重要性3.微积分的重要性4.第二版pdf 点点文档的特点和优势5.如何更好地学习和应用解析几何与微积分正文:解析几何与微积分是数学中两个重要的领域,它们之间有着密切的联系。
解析几何主要研究空间中点的位置关系,而微积分则主要研究函数的变化和极限。
这两者结合起来,可以解决许多实际问题,如物理、工程和经济学等领域的问题。
解析几何的重要性在于它可以帮助我们更好地理解和描述空间的几何形状和结构。
解析几何中的向量分析和坐标变换等工具,可以简化和加速几何问题的解决。
同时,解析几何也为微积分提供了丰富的实际应用场景。
微积分的重要性则在于它可以帮助我们研究和描述各种现象的变化规律。
微积分中的导数和积分等工具,可以方便地解决变化率、速度、面积等问题。
微积分的应用领域非常广泛,包括物理、化学、生物学、经济学等各个领域。
第二版pdf 点点文档的特点和优势在于它提供了一种方便、快捷、高效的学习方式。
pdf 格式的文档可以在各种设备上阅读,便于携带。
同时,点点文档还提供了丰富的互动功能,如注释、高亮、书签等,可以提高学习的效率和乐趣。
如何更好地学习和应用解析几何与微积分呢?首先,我们需要打好基础,掌握基本的几何和微积分概念和工具。
其次,我们需要多做练习,通过实践来提高自己的技能和理解。
最后,我们需要结合实际应用场景,将理论知识转化为实际问题的解决方案。
总的来说,解析几何与微积分是数学中两个重要的领域,它们之间有着密切的联系。
通过学习解析几何与微积分,我们可以更好地理解和描述现实世界中的各种现象和问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分与解析几何
微积分和解析几何是数学中两个重要的分支,本文将介绍它们的基本概念、历史发展以及它们之间的关系。
下面是本店铺为大家精心编写的5篇《微积分与解析几何》,供大家借鉴与参考,希望对大家有所帮助。
《微积分与解析几何》篇1
一、微积分的基本概念
微积分是研究函数变化的数学分支。
它的基本概念包括导数和积分。
导数表示函数在某一点处的变化率,可以用来描述函数的斜率、速度和加速度等。
积分则表示函数在某一区间内的总量,可以用来描述函数下面的面积、体积和长度等。
二、解析几何的基本概念
解析几何是研究几何图形的数学分支。
它的基本概念包括向量、矩阵和坐标系等。
向量可以用来描述几何图形中的点、线和面,矩阵则可以用来描述向量的变换,坐标系则用来表示几何图形在空间中的位置和方向。
三、微积分和解析几何的关系
微积分和解析几何有着密切的关系。
微积分中的导数和积分可以用来描述几何图形中的斜率、面积和体积等几何量,而解析几何中的向量和矩阵则可以用来描述微积分中的函数和导数等数学量。
例如,我们可以用微积分中的导数来求解几何图形中的切线斜率
和法线斜率,用积分来求解几何图形中的面积和体积等。
同时,我们也可以用解析几何中的向量和矩阵来描述微积分中的函数和导数等
数学量,例如用向量来表示函数的梯度,用矩阵来表示函数的雅可比矩阵等。
四、微积分和解析几何的应用
微积分和解析几何在各个领域都有着广泛的应用。
例如,在物理学中,微积分和解析几何可以用来描述运动的速度和加速度,求解物体的面积和体积等。
在工程学中,微积分和解析几何可以用来求解机械系统的力学特性和热力学特性等。
在计算机图形学中,微积分和解析几何则可以用来描述三维图形的形状和运动等。
总之,微积分和解析几何是数学中两个重要的分支,它们在各个领域都有着广泛的应用。
《微积分与解析几何》篇2
微积分和解析几何是数学中的两个重要分支。
解析几何主要是用坐标和向量的方法研究几何问题,包括曲线和曲面的坐标表示和向量表示。
而微积分则是研究函数的极限、导数、积分等概念,以及它们在求解几何和物理问题中的应用。
虽然解析几何里基本用不到微积分的知识,但是应用微积分方法解决几何问题的是数学的另一大分支:微分几何,它的内容比解析几何要丰富的多。
在空间解析几何中,可以用数学分析的方法来进行一般几何中进行的常规计算,如体积、面
积、弧长等等,而这些方法一般都在微积分中能找到。
微积分在线性代数、抽象代数等数学分支中也有广泛的应用。
数学家夏尔·埃雷斯曼提出了采用范畴论的语言统一不同数学分支的设想,认为这是走向数学统一的趋势。
《微积分与解析几何》篇3
微积分和解析几何是数学中的两个重要分支。
解析几何主要是用坐标和向量的方法研究几何问题,包括曲线和曲面的坐标表示和向量表示。
而微积分则是研究函数的极限、导数、积分等概念及其应用的一门数学学科。
微积分和解析几何在数学中有着不同的应用和研究对象,但在某些方面也有着密切的联系。
例如,在空间解析几何中,可以用微积分的方法来计算体积、面积、弧长等几何量。
此外,微分几何是微积分在几何学中的应用,研究几何对象的弯曲和变形等问题,其内容比解析几何要丰富的多。
总之,微积分和解析几何在数学中各有其重要的地位和应用,同时也有着一定的联系和交叉。
《微积分与解析几何》篇4
微积分和解析几何是数学中的两个重要分支。
解析几何主要是用坐标和向量的方法研究几何问题,包括曲线和曲面的坐标表示和向量表示。
而微积分则是研究函数的极限、导数、积分等概念及其应用的一门数学学科。
微积分和解析几何在数学中有着广泛的应用,如微积
分可以用于求解曲线和曲面的面积、体积等,而解析几何则可以用于描述和研究空间中的几何问题。
在空间解析几何中,可以用数学解析式来表示空间的曲线和曲面,从而可以使用数学分析的方法来进行一般几何中进行的常规计算,如体积、面积、弧长等等。
这些方法一般都在微积分中能找到。
微积分在初中几何题上也有用处,如求解曲面面积等问题。
但是,由于初中数学的局限性,微积分的应用受到了限制。
在高中数学中,微积分和解析几何的学习是相互关联的,解析几何为微积分的学习提供了基础。
微积分和解析几何是数学中的两个重要分支,它们在数学中有着广泛的应用。
《微积分与解析几何》篇5
微积分和解析几何都是数学中的重要分支。
解析几何主要使用坐标和向量的方法研究几何问题,包括曲线和曲面的坐标表示和向量表示。
而微积分则是研究函数的极限、导数、积分等概念及其应用的一门学科。
微积分和解析几何在数学中有着不同的应用和研究领域,但二者在某些方面也有着联系和交叉。
例如,在空间解析几何中,可以用微积分的方法来计算体积、面积、弧长等几何量。
此外,微分几何是微积分在几何领域的应用,研究空间中曲线和曲面的性质,并与微积分中的极限、导数、积分等概念密切相关。
总之,微积分和解析几
何在数学中各有其独特的应用和研究领域,但也有着一定的联系和交叉。