高考数学函数与解析几何压轴题

合集下载

高考压轴题

高考压轴题

第一篇解析几何篇代数运算表其外,几何性质蕴其中第1节动点生轨迹,曲线有方程——轨迹方程问题解析几何是通过坐标系用代数方法研究几何问题的一门数学学科,所以探求平面内动点的轨迹方程就自然成为用坐标法解决平面几何问题的第一步,因为有关动点的几何条件有诸多表现形式,其不同形式将导致不同的解决办法。

本部分内容将通过几个具体的案例,分析如何用不同的方法解决有关动点轨迹的问题。

第2题数乘向量关系好,等价转化得方程求动点轨迹方程是一类常见的高考圆锥曲线试题,由于平面向量具有数与形的双重身份,所以以向量语言给出动点满足的几何条件就成为近年来一种重要题型。

如,2012年高考陕西理第19题和江西理第20题等。

解这类问题的一个关键步骤就是将向量语言等价转换成坐标的形式,经过适当的化简整理即可得到所求的动点轨迹方程。

下面以2011年高考安徽卷理科第21题为例介绍这类问题的求解思路。

第3题动点轨迹方程绘,八方联系法不同在圆锥曲线复习中,要全面落实探求轨迹方程的常见方法,如:定义法、直译法、消参法、交轨法等。

面对同一问题,切入点不同,解法就会有所差异。

直线与圆锥曲线位置关系是非常基本的题型,但是当所给曲线不是完整的圆锥曲线时难度立即有所增加。

类似的考题如2012年高考辽宁理科第20题,2009年安徽文科第18题。

现以2010年高考广东卷理科第20题为例研究此类问题的解题途径。

(接上篇)第4题等价转化是法宝,分类讨论曲线明根据已知条件得到动点的轨迹方程,而方程中所含的参数对曲线的类型有决定性的影响,通过对参数的讨论,不仅可以得到对应的轨迹是何种曲线,而且还考查了对圆锥曲线标准方程的理解。

这类考题经常出现,如:2012年高考湖北理科第22题,2011年高考湖北理科第20题等,下面以2009年高考新课标理科第20题为例探讨此类问题的解法。

第2节要素多变幻,直线曲线联——直线与圆锥曲线的综合问题直线和圆锥曲线综合问题是解析几何中的重要问题,它不仅可以将解析几何中的一些主要内容有机地整合在一起,而且还能与数学中其他主体知识联系起来,是知识网络的交汇点之一,既常考不衰,又创新不断。

高中数学解析几何最难压轴题

高中数学解析几何最难压轴题

高中数学解析几何最难压轴题
高中数学解析几何最难压轴题,也就是最难的题目,是一种考察学生数学知识和技能的综合考查。

这类题目通常包括运用数学知识,解决复杂几何概念、计算、求解几何图形及其相关几何关系等多项内容,以及考查学生对几何图形的解析和抽象思维能力。

高中数学解析几何最难压轴题的一个典型题目如下:已知正方形ABCD中,AB=
3,M为CD边上的点,点P在正方形ABCD的对角线
AC上,且AP=
2,求点M到点P的距离。

解:由正方形ABCD的对角线AC等于根号2AB,可以
得到AC=根号2*3=3√2;因为AP=
2,则PM=AC-AP=3√2-2;由勾股定理得到PM的距离,
答案是1√
2。

从这个典型题目可以看出,高中数学解析几何最难压轴题的解题方法是:首先要搞清楚几何概念,了解几何图形的特性,
并正确运用数学知识,如勾股定理、直角三角形的性质等,结合题目中给出的数据进行计算,最后得出最终答案。

总之,高中数学解析几何最难压轴题,就是一种考查学生综合运用数学知识和抽象思维能力的复杂题目,解题过程中,学生要正确运用数学知识,灵活运用抽象思维能力,以达到最终的正确答案。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

解析几何与向量(高考数学压轴题常考题型)汇总

解析几何与向量(高考数学压轴题常考题型)汇总

解析几何与向量(高考数学压轴题常考题型)1.设1F 、2F 分别是椭圆1422=+y x 的左、右焦点.(Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.分析:本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力。

函数与方程思想,以方程的意识解决平面解析几何问题 解:(Ⅰ)解法一:易知2,1,a b c ===所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2-当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1解法二:易知2,1,a b c ===,所以())12,F F ,设(),P x y ,则22212121212121212cos 2PF PF F F PF PF PF PF F PF PF PF PF PF +-⋅=⋅⋅∠=⋅⋅⋅((22222211232x y x y x y ⎡⎤=+++-=+-⎢⎥⎣⎦(以下同解法一)(Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭∴12122243,1144k x x x x k k +=-⋅=++由()2214434304k k k ⎛⎫∆=-+⨯=-> ⎪⎝⎭得:2k <或2k >- 又000090cos 000A B A B OA OB <∠<⇔∠>⇔⋅>∴12120OA OB x x y y ⋅=+>又()()()2121212122224y y kx kx k x x k x x =++=+++22223841144k k k k -=++++22114k k -+=+ ∵22231044k k k -++>++,即24k < ∴22k -<<故由①、②得22k -<<-或22k <<2.(07福建)如图,已知点(10)F ,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ =.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M ,已知1MA AF λ=,2MB BF λ=,求12λλ+的值;分析:本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力. 函数与方程的思想, 等价转化思想方法解法一:(Ⅰ)设点()P x y ,,则(1)Q y -,,由QP QF FP FQ =得:(10)(2)(1)(2)x y x y y +-=--,,,,,化简得2:4C y x =.(Ⅱ)设直线AB 的方程为:1(0)x my m =+≠.设11()A x y ,,22()B x y ,,又21M m ⎛⎫-- ⎪⎝⎭,, 联立方程组241y x x my ⎧=⎨=+⎩,,,消去x 得: 2440y my --=,2(4)120m ∆=-+>,故121244y y m y y +=⎧⎨=-⎩,.由1MA AF λ=,2MB BF λ=得:1112y y m λ+=-,2222y y m λ+=-,整理得:1121my λ=--,2221my λ=--,12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222y y m y y +=-- 2424m m =---0=.解法二:(Ⅰ)由QP QF FP FQ =得:()0FQ PQ PF +=,()()0PQ PF PQ PF ∴-+=,220PQ PF ∴-=,PQ PF∴=.所以点P 的轨迹C 是抛物线,由题意,轨迹C 的方程为:24y x =.(Ⅱ)由已知1MA AF λ=,2MB BF λ=,得120λλ<.则:12MA AF MBBFλλ=-.…………①过点A B ,分别作准线l 的垂线,垂足分别为1A ,1B ,则有:11MAAA AF MBBB BF==.…………②由①②得:12AF AF BFBFλλ-=,即120λλ+=.3.如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为 曲线E.(I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围.分析:本小题主要考查直线、圆、椭圆、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力. 函数与方程的思想, 等价转化思想方法解:(I ).0,2=⋅= ∴NP 为AM 的垂直平分线,∴|NA|=|NM|.又.222||||,22||||>=+∴=+AN CN NM CN∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆.且椭圆长轴长为,222=a 焦距2c=2..1,1,22===∴b c a∴曲线E 的方程为.1222=+y x(II )当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程 得.230.034)21(222>>∆=+++k kx x k 得由设2212212211213,214),,(),,(k x x k k x x y x H y x G +=+-=+则)2,()2,(,2211-=-∴=y x y x λλ 又λλλλλ2122221222122121)1(.,)1(,x x x x x x x x x x x x x ==++∴=+=+∴=∴,λλλλ222222)1()121(316,213)1()214(+=++=++-∴k k k k 整理得.331.316214.316323164,2322<<<++<∴<+<∴>λλλ解得k k.131,10<<∴<<λλ 又又当直线GH 斜率不存在,方程为.31,31,0===λx)1,31[,131的取值范围是即所求λλ<≤∴4. 已知方向向量为v=(1,3)的直线l 过点(0,-23)和椭圆C :)0(12222>>=+b a b y a x 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在过点E (-2,0)的直线m 交椭圆C 于点M 、N ,满足634=⋅ON OM ,cot ∠MON ≠0(O 为原点).若存在,求直线m 的方程;若不存在,请说明理由.点评:本小题主要考查直线、椭圆及平面向量的基本知识,平面解析几何的基本方和综合解题能力。

解析几何小题压轴题题库题(适用培优)

解析几何小题压轴题题库题(适用培优)

解析几何压轴小题题库一、单选题1.中,,,,中,,则的取值范围是()A.B.C.D.2.是双曲线的左、右焦点,直线l为双曲线C的一条渐近线,关于直线l的对称点为,且点在以F2为圆心、以半虚轴长b为半径的圆上,则双曲线C的离心率为A.B.C.2D.3.已知椭圆的左、右焦点分别为,,为椭圆上不与左右顶点重合的任意一点,,分别为的内心、重心,当轴时,椭圆的离心率为( )A.B.C.D.4.设,分别是椭圆的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于C点,若满足且,则椭圆的离心率为A.B.C.D.5.若点A,F分别是椭圆的左顶点和左焦点,过点F的直线交椭圆于M,N两点,记直线的斜率为,其满足,则直线的斜率为A.B.C.D.6.已知点,是椭圆上的动点,且,则的取值范围是()A.B.C.D.7.过抛物线焦点的直线与抛物线交于,两点,与圆交于,两点,若有三条直线满足,则的取值范围为( )A .B .C .D .8.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[]0,1B .[]1,1- C .⎡⎢⎣⎦ D .⎡⎢⎣⎦9.过双曲线的左焦点作直线与双曲线交于,两点,使得,若这样的直线有且仅有两条,则离心率的取值范围是( )A .B .C .D .10.已知直线,直线,其中,.则直线与的交点位于第一象限的概率为( ) A .B .C .D . 11.已知正方体,空间一动点P 满足,且,则点P 的轨迹为A .直线B .圆C .椭圆D .抛物线12.已知直线l :x-y+3=0和点A (0,1),抛物线y=x 2上一动点P 到直线l 和点A 的距离之和的最小值是( ) A .2 B .C .D .13.已知实数满足,,则的最大值为( ) A .B .2C .D .414.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2B.3C.D.15.设不等式组所表示的平面区域为,其面积为.①若,则的值唯一;②若,则的值有2个;③若为三角形,则;④若为五边形,则.以上命题中,真命题的个数是( )A.B.C.D.16.过双曲线的焦点且垂直于x轴的直线与双曲线交于A,B两点,D为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为A.B.C.D.17.过原点的一条直线与椭圆=1(a>b>0)交于A,B两点,以线段AB为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.B.C.D.18.已知抛物线的焦点为F,过F点的直线交抛物线于不同的两点A、B,且,点A关于轴的对称点为,线段的中垂线交轴于点D,则D点的坐标为A.(2,0)B.(3,0)C.(4,0)D.(5,0)19.在平面直角坐标系中,过双曲线上的一点作两条渐近线的平行线,与两条渐近线的交点分别为,,若平行四边形的面积为3,则该双曲线的离心率为()A.B.C.D.20.在坐标平面内,与点距离为2,且与点距离为1的直线共有()条A.4B.3C.2D.121.已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是()A.B.[,]C.D.)22.已知双曲线的一个焦点恰为圆Ω:的圆心,且双曲线C的渐近线方程为.点P在双曲线C的右支上,,分别为双曲线C的左、右焦点,则当取得最小值时,=()A.2B.4C.6D.823.已知是双曲线的右焦点,过点作垂直于轴的直线交于双曲线于两点,分别为双曲线的左、右顶点,连接交轴于点,连接并延长交于点,且为线段的中点,则双曲线的离心率为()A.B.C.D.24.设F为双曲线E:的右焦点,过E的右顶点作x轴的垂线与E的渐近线相交于A,B两点,O为坐标原点,四边形OAFB为菱形,圆与E在第一象限的交点是P,且,则双曲线E的方程是A.B.C.D.25.已知抛物线:与圆:交于,,,四点.若轴,且线段恰为圆的一条直径,则点的横坐标为()A.B.3C.D.626.在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为()①圆的面积为;②椭圆的长轴为;③双曲线两渐近线的夹角为;④抛物线中焦点到准线的距离为.A.1个B.2个C.3个D.4个27.已知F为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,其中O为坐标原点,则与面积之和的最小值是A.B.3C.D.28.已知,是椭圆的左右焦点,点M的坐标为,则的角平分线所在直线的斜率为A.B.C.D.29.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为()A.B.C.D.30.已知是抛物线的焦点,过点的直线与抛物线交于不同的两点,与圆交于不同的两点(如图),则的值是( )A.B.2C.1D.31.已知抛物线的焦点为,过点的直线与抛物线交于,两点,则的面积的最小值为( )A.B.C.D.32.已知双曲线C:,过左焦点的直线l的倾斜角满足,若直线l分别与双曲线的两条渐近线相交于A,B两点,且线段AB的垂直平分线恰好经过双曲线的右焦点,则该双曲线的离心率为( )A.B.C.D.33.在平面直角坐标系中,圆经过点,,且与轴正半轴相切,若圆上存在点,使得直线与直线关于轴对称,则的最小值为()A.B.C.D.34.已知A,B分别是双曲线C:的左、右顶点,P为C上一点,且P在第一象限.记直线PA,PB的斜率分别为k1,k2,当2k1+k2取得最小值时,△PAB的重心坐标为()A.B.C.D.35.如图所示,,是椭圆C:的短轴端点,点M在椭圆上运动,且点M不与,重合,点N满足,,则A.B.C.D.36.若三次函数()的图象上存在相互平行且距离为的两条切线,则称这两条切线为一组“距离为的友好切线组”.已知,则函数的图象上“距离为4的友好切线组”有()组?A.0B.1C.2D.337.已知是双曲线:上的一点,半焦距为,若(其中为坐标原点),则的取值范围是()A.B.C.D.38.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知、是一对相关曲线的焦点,是椭圆和双曲线在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是( )A.B.C.D.239.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A.B.C.2D.40.已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则()A.B.C.D.41.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,则的横坐标范围是( )A.B.C.D.42.已知是双曲线上一点,是左焦点,是右支上一点,与的内切圆切于点,则的最小值为 ( )A.B.C.D.43.已知直线过抛物线:的焦点,交于两点,交的准线于点。

高中数学解析几何压轴题

高中数学解析几何压轴题

专业资料整理分享高中数学解析几何压轴题一.选择题1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B ∠PFR=∠QFR C.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1C.D.e2+15.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.156.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4xB.y2=4x(x≠0)C.y2=﹣4xD.y2=﹣4x(x≠0)9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22B.20C.18D.1611.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()A.B.(,+∞)C.D.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.8D.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4C.0或4D.0或﹣41.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则PN∥MQ,,又由双曲线第二定义可知=,3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,B C D,,,4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一2B D,∴M((的坐标代入,可得5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最由题意可得:椭圆的焦点分别是两圆(的焦点分别是两圆(6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()B C D=(+解:∵若(+)e==7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()B C D==8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足、的坐∥∥22+=1(y≠0)B+=1(y≠0)C﹣=1(y≠0)D﹣=1(y≠0)=2,根据抛物线定义可得(10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()B C D,,再利用余弦定理,即可求得|=2|=,12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()BD,+∞)解:曲线=,k′=,<k≤13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=B C=,14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()B C D,=的中点坐标是()﹣,,m=15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值根据双曲线上存在两点(﹣,,∴b=,m二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.)根据椭圆的离心率为kk'==,利用,即可求直,且经过点(的标准方程为…(,及=则有,的最小值为17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.S S S S,故.=•≤15,所以(﹣在双曲线上,所以,所以=,﹣==,则S=5.﹣=,﹣﹣的取值范围为18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.,可得:中,,所以,(﹣,(﹣:.,圆的方程为(<=ty=y=3×[+4×[=<19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.•=并与椭圆联立,利用韦达定理求﹣•=x'2+2b2﹣a2(﹣a≤x≤a),••.,=0,=+=++20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.b=,知==,,==,=+4当且仅当21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k 的取值范围..所以,得(的中垂线为,由,的中点为,即,得,,∴,④…(根据导数知识易得.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.的大小,求出)由时,轨迹是双曲线,焦点为,离心率时,轨迹是椭圆,焦点为,离心率时,轨迹是椭圆,焦点为,离心率>;b≤23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.⇒代入①即得的方程为的坐标为.的方程为,得,得,当且仅当,即,的面积的最小值为24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.则.=.又由sin60°=a,平方整理得<φ<分)=..所以•φ=θ<φ<时,θ=φ<时,点4,则..<φ<)分)= sinφ=aφ=时,点θ=φ<25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.的方程为,解得的方程为.故点,的直线方程为得,.,则,同理可得,的斜率的直线方程为,由.,得.此时,的距离为,===.面积的最大值为.26.已知点B(0,1),A,C为椭圆上的两点,△ABC是以B为直角顶点的直角三角形.(I)当a=4时,求线段BC的中垂线l在x轴上截距的取值范围.(II)△ABC能否为等腰三角形?若能,这样的三角形有几个?)依题意,可知椭圆的方程为:x++,令y=0得x==cosθ(cosθ≠0),利用余弦cosθ的有x+1∴椭圆的方程为:),=﹣=(x++,cosθ(cosθ≠0)≤x=cosθ≤,,﹣得:|AB|=|BC|=|=||==+1≥3(当且仅当,即当时,以<a≤27.如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).(1)若l经过点F,求弦长|PQ|的最小值;(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T①求证:②求的取值范围.,消去,|PQ|=,消去可取一切不相等的正数∴)==28.过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1 (1)若抛物线在点B处的切线恰好与圆C相切,求直线l的方程;(2)过点A、B分别作圆C的切线BD、AE,试求|AB|2﹣|AE|2﹣|BD|2的取值范围.,则过点的切线方程为:相切,坐标为的方程为:29.已知圆C的圆心在抛物线x2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.(1)求弦长MN;(2)设AM=l1,AN=l2,求的取值范围.所以.所以θ=45°时,原式有最大值从而30.已知以动点P为圆心的圆与直线y=﹣相切,且与圆x2+(y﹣)2=外切.(Ⅰ)求动P的轨迹C的方程;(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.(1)求直线L斜率k的取值范围;(2)设椭圆E的方程为+=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若=0,求E离心率的范围.相切,且与圆﹣外切,建立方程,即可求动)求出直线方程代入抛物线和椭圆方程,由,则有的斜率为﹣∴|k|>∴k<﹣>﹣﹣,>恒成立,方程②的判别式,∴>)+1=><<。

高三数学解析几何压轴题训练——离心率

高三数学解析几何压轴题训练——离心率

高三数学解析几何压轴题训练——离心率离心率是圆锥曲线的重要几何性质,是描述圆锥曲线形状的重要参数.圆锥曲线的离心率的求法是一类常见题型,也是历年高考考查的热点.求解圆锥曲线的离心率的值或取值范围,其关键是建立恰当的等量或不等量关系,以过渡到含有离心率e 的等式或不等式使问题获解.[典例] 已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23 D.34[思路点拨]本题以椭圆内点线的交错关系为条件,而结论是椭圆的离心率,思考目标自然是要得到a ,b ,c 满足的等量关系,那么方向不外乎两个:坐标关系或几何关系,抓住条件“直线BM 经过OE 的中点”作为突破口适当转化,获得所需等式.[方法演示] 法一:数形结合法如图,设直线BM 与y 轴的交点为N ,且点N 的坐标为(0,m ),根据题意,点N 是OE 的中点,则E (0,2m ),从而直线AE 的方程为x -a +y2m =1,因此点M 的坐标为-c ,2m (a -c )a. 又△OBN ∽△FBM , 所以|FM ||ON |=|FB ||OB |,即2m (a -c )a m =a +c a ,解得c a =13,所以椭圆C 的离心率为13.法二:交点法同法一得直线AE 的方程为x -a +y 2m=1,直线BN 的方程为x a +ym =1.又因为直线AE与直线BN 交于点M ,且PF ⊥x 轴,可设M (-c ,n ).则⎩⎪⎨⎪⎧-c -a +n 2m =1,-c a +n m =1,消去n ,解得c a =13,所以椭圆C 的离心率为13.法三:三点共线法 同法一得直线AE 的方程为x -a +y 2m=1,由题意可知M ⎝⎛⎭⎫-c ,2m ⎝⎛⎭⎫1-c a ,N (0,m ),B (a,0)三点共线,则2m ⎝⎛⎭⎫1-ca -m -c =m -a,解得c a =13,所以椭圆C 的离心率为13.法四:方程法设M (-c ,m ),则直线AM 的方程为y =ma -c (x +a ),所以E ⎝ ⎛⎭⎪⎫0,ma a -c .直线BM 的方程为y =m -c -a (x -a ),与y 轴交于点⎝ ⎛⎭⎪⎫0,ma a +c ,由题意知,2ma a +c =maa -c,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13.法五:几何法在△AOE 中,MF ∥OE ,所以MF OE =a -ca .在△BFM 中,ON ∥MF ,所以OE 2MF =a a +c ,即OE MF =2aa +c.所以MF OE ·OE MF =a -c a ·2a a +c =1,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13. [答案] A [解题师说]1.本题的五种方法,体现出三个重要的数学解题策略.2.在求解圆锥曲线(椭圆和双曲线)的离心率问题时,要把握一个基本思想,就是充分利用已知条件和挖掘隐含条件建立起a 与c 的关系式.[注意] 在求离心率的值时需建立等量关系式,在求离心率的范围时需建立不等量关系式.[应用体验]1.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233 C .3D .2解析:选A 依题意,不妨设点P 在双曲线的右支上,F 1,F 2分别为其左、右焦点,设椭圆与双曲线的离心率分别为e 1,e 2,则有e 1=|F 1F 2||PF 1|+|PF 2|,e 2=|F 1F 2||PF 1|-|PF 2|,则1e 1+1e 2=2|PF 1||F 1F 2|.在△PF 1F 2中,易知∠F 1F 2P ∈⎝⎛⎭⎫0,2π3, 由正弦定理得|PF 1||F 1F 2|=sin ∠F 1F 2P sin ∠F 1PF 2=23sin ∠F 1F 2P ,所以1e 1+1e 2=43sin ∠F 1F 2P ≤43=433,当且仅当sin ∠F 1F 2P =1,即∠F 1F 2P =π2时取等号,因此1e 1+1e 2的最大值是433.2.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,则双曲线离心率的取值范围为__________.解析:设直线l 的方程为x a +yb =1.由已知,点(1,0)到直线l 的距离d 1与点(-1,0)到直线l 的距离d 2之和s =d 1+d 2=b (a -1)a 2+b 2+b (a +1)a 2+b 2=2ab c ≥45c ,整理得5a c 2-a 2≥2c 2,即5e 2-1≥2e 2,所以25e 2-25≥4e 4,即4e 4-25e 2+25≤0,解得54≤e 2≤5,52≤e ≤ 5.故双曲线离心率的取值范围为52, 5. 答案:52, 5一、选择题1.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C.23D.34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.2.已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D .2解析:选A 法一:作出示意图如图所示,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.法二:因为MF 1与x 轴垂直,所以|MF 1|=b 2a.又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.3.已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率等于( )A.53B.54C.53或2516D.53或54解析:选D 当m <0,n >0时,圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径R =1,由mx 2+ny 2=1,得y 21n -x 2-1m=1,则双曲线的焦点在y 轴上,对应的一条渐近线方程为y =±a b x ,设双曲线的一条渐近线为y =ab x ,即ax -by=0.∵一条渐近线与圆x 2+y 2-6x -2y +9=0相切,∴圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,所以8a 2-6ab =0,即4a -3b =0,b =43a ,平方得b 2=169a 2=c 2-a 2,所以c 2=259a 2,c =53a ,故离心率e =c a =53;当m >0,n <0时,双曲线的渐近线为y =±ba x ,设双曲线的一条渐近线方程为y =ba x ,即bx -ay =0,∴|3b -a |a 2+b2=1,即9b 2-6ab +a 2=c 2=a 2+b 2,∴8b 2-6ab =0,即4b =3a ,平方得16b 2=9a 2,即16(c 2-a 2)=9a 2, 可得e =54.综上,e =53或54.4.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53 C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1.∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a .∵|PA |=12|PF 1|=a +c ,∴4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.5.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作∠F 1PF 2的角平分线交x 轴于点M ,若2|PM |2=|PF 1|·|PF 2|,则该椭圆的离心率为( )A.12 B.22 C.32D.33解析:选B 记∠PF 1F 2=2α,∠PF 2F 1=2β,则有∠F 1MP =2β+π-(2α+2β)2=π2+(β-α),sin ∠F 1MP =cos(α-β)=sin ∠F 2MP ,则椭圆的离心率e =2c2a =sin (2α+2β)sin 2α+sin 2β=2sin (α+β)cos (α+β)2sin (α+β)cos (α-β)=cos (α+β)cos (α-β).由已知得2|PM ||PF 1|=|PF 2||PM |,即2sin 2αcos (α-β)=cos (α-β)sin 2β,2sin2αsin 2β=cos 2(α-β),cos(2α-2β)-cos(2α+2β)=cos 2(α-β),即[2cos 2(α-β)-1]-[2cos 2(α+β)-1]=cos 2(α-β),cos 2(α-β)=2cos 2(α+β),cos (α+β)cos (α-β)=22=e ,所以该椭圆的离心率e =22. 6.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与C 在第二象限的交点为P ,O 为原点,若|OP |=|OF |,则C 的离心率为( )A .5 B. 5 C.53D.54解析:选A 依题意得F (-5,0),|OP |=|OF |=5,tan ∠PFO =43,cos ∠PFO =35,|PF |=2|OF |cos ∠PFO =6.记双曲线的右焦点为F 2,则有|FF 2|=10.在△PFF 2中,|PF 2|=|PF |2+|FF 2|2-2|PF |·|FF 2|·cos ∠PFF 2=8.由双曲线的定义得a =12(|PF 2|-|PF |)=1,则C的离心率为e =ca =5.7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,若双曲线右支上存在两点B ,C使得△ABC 为等腰直角三角形,则该双曲线的离心率e 的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选C如图,由△ABC 为等腰直角三角形,所以∠BAx =45°.设其中一条渐近线与x 轴的夹角为θ,则θ<45°,即tan θ<1. 又其渐近线的方程为y =b a x ,则ba <1,又e = 1+b 2a2, 所以1<e <2,故双曲线的离心率e 的取值范围为(1,2).8.已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x轴的直线与双曲线交于M ,N 两点,若MF 1―→·NF 1―→>0,则该双曲线的离心率e 的取值范围是( )A .(2,2+1)B .(1,2+1)C .(1,3)D .(3,+∞)解析:选B 设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,所以y =±b 2a ,不妨设M ⎝⎛⎭⎫c ,b 2a ,N ⎝⎛⎭⎫c ,-b 2a ,则MF 1―→·NF 1―→=-2c ,-b 2a ·⎝⎛⎭⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+ 2.9.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A.⎝⎛⎭⎫1,52 B.⎝⎛⎭⎫52,+∞ C.⎝⎛⎭⎫1,54 D.⎝⎛⎭⎫54,+∞解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b2=1的渐近线方程为y =±b a x ,且“右”区域是由不等式组⎩⎨⎧y <b ax ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2ba ,即b a >12,因此题中的双曲线的离心率e = 1+⎝⎛⎭⎫b a 2∈⎝⎛⎭⎫52,+∞. 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎫14,34B.⎝⎛⎭⎫23,1 C.⎝⎛⎭⎫12,23D.⎝⎛⎭⎫0,12 解析:选C 由题意可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =a 2-c 2a (a +c ).又13<k <12,所以13<a 2-c 2a (a +c )<12,化简可得13<1-e 21+e <12,从而可得12<e <23. 11.已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线的离心率的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选A 如图,不妨设F 1(0,c ),F 2(0,-c ),则过点F 1与渐近线y =ab x 平行的直线为y =ab x +c .联立⎩⎨⎧y =ab x +c ,y =-ab x ,解得⎩⎨⎧x =-bc 2a,y =c2,即M ⎝⎛⎭⎫-bc 2a ,c 2. 因为点M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内, 故⎝⎛⎭⎫-bc 2a 2+⎝⎛⎭⎫c22<c 2,化简得b 2<3a 2, 即c 2-a 2<3a 2,解得ca <2,所以双曲线的离心率的取值范围为(1,2).12.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率的取值范围为( )A.53,+∞ B.54,+∞ C .1,53D .1,54解析:选B 将x =c 代入x 2a 2-y 2b2=1得y =±b 2a ,不妨取A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±b a x ,得y =±bca ,不妨取C ⎝⎛⎭⎫c ,bc a ,D ⎝⎛⎭⎫c ,-bc a ,所以|CD |=2bc a .因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54.二、填空题13.设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点为A .B ,C是椭圆E 上关于原点对称的两点(B ,C 均不在x 轴上),若直线BF 平分线段AC ,则E 的离心率为________.解析:法一:设AC 的中点为M (x 0,y 0),依题意得点A (a,0),C (2x 0-a,2y 0),B (a -2x 0,-2y 0),F (c,0),其中y 0≠0.由B ,F ,M 三点共线得k BF =k BM ,2y 0c -a +2x 0=3y 03x 0-a ≠0,化简得a =3c ,因此椭圆E 的离心率为13.法二:连接AB ,记AC 的中点为M ,B (x 0,y 0),C (-x 0,-y 0),则在△ABC 中,AO ,BM 为中线,其交点F 是△ABC 的重心.又F (c,0),由重心坐标公式得c =x 0-x 0+a3,化简得a =3c ,因此椭圆E 的离心率为13.答案:1314.已知双曲线C 2与椭圆C 1:x 24+y 23=1具有相同的焦点,则两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为__________.解析:设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由⎩⎨⎧x 24+y 23=1,x 2a 2-y2b 2=1,解得交点的坐标满足⎩⎪⎨⎪⎧x 2=4a 2,y 2=3(1-a 2),由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=44a 2·3(1-a 2)=83·a 2·1-a 2≤83·a 2+1-a 22=43,当且仅当a 2=1-a 2,即a 2=12时,取等号,此时双曲线的方程为x 212-y 212=1,离心率e = 2.答案: 215.已知点A (3,4)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,则当椭圆的中心到直线x =a 2a 2-b 2的距离最小时,椭圆的离心率为__________.解析:因为点A (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的点,所以9a 2+16b 2=1,所以b 2=16a 2a 2-9.因为a >b >0,所以1=9a 2+16b 2>9a 2+16a 2=25a2,从而a 2>25. 设椭圆的中心到直线x =a 2a 2-b 2的距离为d ,则d =a 2a 2-b 2=a 4a 2-16a 2a 2-9=a 21-16a 2-9=a 2(a 2-9)a 2-25 =a 2-25+400a 2-25+41≥ 2400+41=9,当且仅当a 2-25=400a 2-25,即a 2=45时,等号成立,此时b 2=20,c 2=25,于是离心率e =c a =2545=535=53. 答案:5316.已知抛物线y =14x 2的准线过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的虚轴的一个端点,且双曲线C 与直线l :x +y =1相交于两点A ,B .则双曲线C 的离心率e 的取值范围为________.解析:抛物线y =14x 2化为x 2=4y ,所以准线为y =-1,所以双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的虚轴的一个端点为(0,-1),即b =1,所以双曲线C :x 2a2-y 2=1(a >0). 联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1, 消去y ,得(1-a 2)x 2+2a 2x -2a 2=0.∵与双曲线交于两点A ,B ,∴⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0⇒0<a 2<2且a 2≠1. 而b =1,则c =a 2+b 2=a 2+1, ∴离心率e =c a =a 2+1a =1+1a 2> 1+12=62,且e =1+1a 2≠2, ∴e 的取值范围为⎝⎛⎭⎫62,2∪(2,+∞). 答案:⎝⎛⎭⎫62,2∪(2,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 )] = 4 +
2 。
ax ax a
a 0, a 1
.
1 2 3 9 (1)求 f ( x) f (1 x) 及 f f f f 的值; 10 10 10 10
a f ( n) n 2 对一切 n N 都成立,若存在,求出自然数 a 的最小 f 1 n 值;不存在,说明理由; 1 n N 的大小. (3)利用(2)的结论来比较 n n 1 lg 3 和 lg n! 4
y1 2 =1 2 1 可得(x1-x2)(x1 +x2) + (y1 -y2 )(y1 + y2) = 0, y2 2 2 2 x2 + =1 2 x 12 + x1 + x2 1 y1 + y2 y1-y2 + · · = 0, 2 2 2 x1-x2 y-b y1-y2 x1 + x2 y1 + y2 ,y = , 且 = , 2 2 x-a x1-x2 6分 7分 8分 3分
椭圆交于 A、B 两点,点 Q 为线段 AB 的中点,求:1 点 Q 的轨迹方程;2 点 Q 的轨迹 与坐标轴交点个数。 解:设 A(x1,y1)、B(x2,y2)、Q(x,y), (1) ①当 x1 ≠ x2 时,不妨设直线 l 的斜率为 k,其方程为 y = k(x-a) + b,


1 的大小. 6 解: (Ⅰ)设 f ( x) g ( x) h( x) ①,其中 g ( x) 是奇函数, h( x) 是偶函数,
(Ⅲ)在(Ⅱ)的条件下,比较 f (1)和 则有 f ( x) g ( x) h( x) g ( x) h( x) 联立①,②可得 ②
g ( x) (a 1) x , h( x) x 2 lg | a 2 | (直接给出这两个函数也给分)…3 分 (Ⅱ)函数 g ( x) (a 1) x 当且仅当 a 1 0 ,即 a 1 时才是减函数, ∴ a 1 (a 1) 2 a 1 2 又 f ( x) x 2 (a 1) x lg | a 2 | ( x ) lg | a 2 | 2 4 a 1 ) ∴ f ( x) 的递减区间是 ( , ……5 分 2 a 1 2 由已知得 (a 1) 2 a 1 3 ∴ 解得 a 1 a 1 2 2 (a 1)
3。
n(n
nn 1 3 4
N
1 0
n 2 0 ,……, 3 2
n0,
1 1 2 n 相乘得 3 2
n! ,
n! ,
11 分 12 分

1 n 1n lg 3 lg n! 成立. 4
5.已知 f ( x) x 2 (a 1) x lg | a 2 | (a 2, a R) (Ⅰ)若 f ( x) 能表示成一个奇函数 g ( x) 和一个偶函数 h( x) 的和,求 g ( x) 和 h( x) 的解析式; (Ⅱ)若 f ( x) 和 g ( x) 在区间 (, (a 1) 2 ] 上都是减函数,求 a 的取值范
∴ f (1)
……14 分
(3)若 x1 0 , x2 0 , x1 x2 1,则有 f ( x1 x2 ) f ( x1 ) f ( x2 ) 。 (Ⅰ)试求 f(0)的值; (Ⅱ)试求函数 f(x)的最大值; (Ⅲ)试证明:满足上述条件的函数 f(x)对一切实数 x,都有 f(x)≤2x 。
当 a = 0,0<| b |≤ 2 时,Q 点的轨迹与坐标轴有两个交点(0,0),(0,b); 当 b = 0,0<| a |≤1 时,Q 点的轨迹与坐标轴有两个交点(0,0),(a,0); 当 0<| a |<1,0<| b |< 2(1-a2) 时,Q 点的轨迹与坐标轴有三个交点(0,0),(a,0),(0,b). 3.1 直线 m:y = kx + 1 与双曲线 x 2-y 2 = 1 的左支交于 A、B 两点。求 k 的取值范围;2 直 线 l 过点 P-2, 0及线段 AB 的中点,CD 是 y 轴上一条线段,对任意的直线 l 都与线段 CD 无 公共点。试问 CD 长的最大值是否存在?若存在,请求出;若不存在,则说明理由。 (1)解

>sin2

2


2
>2 sin2

2
,即 2(cos2 1 . 2

2
-sin2

2
) > -1,
∴ 2cos > -1,即 cos >- ∵ [0, ],∴
2 [0, 3 ) . 3 ). 4
2分
(1)当 a = 4,b = 3 时,有 f( ) = 4sin + 3cos = 5sin( + ) (其中 = arctan 2 ∵ 0≤ < ,∴ 3 ∴ 当 + = 2 3 ≤ + < 3 + ,而 0< = arctan 4 <4 .
∴ 由x=
∴Q 点的轨迹方程为 2x2 + y2-2ax-by = 0 . (*) ②当 x1 = x2 时,斜率 k 不存在,此时,l//y 轴, ∴ AB 的中点 Q 必在 x 轴上,即 Q(a,0),显然满足方程(*) 。 综上,Q 点的轨迹方程为 2x2 + y2-2ax-by = 0. (2) 当 a = b = 0 时,Q 点的轨迹与坐标轴只有一个交点(0,0);
2
8分
1 17 又 f(k) = -2k2 + k+ 2 = -2(k- )2 + 在 k (1, 2 )上是减函数, 4 8 ∴ 2 -2 = f( 2 )<f(k)<f(1) = 1, ∴ b<-(2 + 2 )或 b>2, 故与 l 无公共点的线段 CD 长有最大值 2-[-(2 + 4. 已知函数 f ( x) 10 分 12 分
n 当 a 1, 2 时,不等式 a
n 2 显然不成立.

n
当 a 3 时,
3n

n2
当 n 1 时,显然 3 1 , 成立,则 3n n 2 对一切 n N 都成立. 所以存在最小自然数 a (3) . 由3 n
n 2
n 32
2 2 1 2 当 n 2 时, 3n 1 2 1 Cn 2 Cn 22 1 2n 4 n(n21) = 2n 1 n
y = kx + 1 x -y = 1
2 2
得(1-k2)x2-2kx-2 = 0。
1分
直线与双曲线左分支有两个交点,不妨设 A(x1,y1),B(x2,y2), △ = 4k + 8(1-k )>0 x + x = 2k <0 1-k 则有 ,解得 1<k< 2 x x = -1-k >0
解: (Ⅰ)令 x1 x2 0 , 依条件(3)可得 f(0+0) ≥f(0)+f(0),即 f(0) ≤0。 又由条件(1)得 f(0) ≥0,则 f(0)=0…………………… (Ⅱ)任取 0 x1 x2 1 ,可知 x2 x1 (0,1] 则 f ( x2 ) f [(x2 x1 ) x1 ] f ( x2 x1 ) f ( x1 ) …………… 5 分 即 f ( x2 ) f ( x1 ) f ( x2 x1 ) 0 ,故 f ( x2 ) f ( x1 ) 于是当 0≤x≤1 时,有 f(x)≤f(1)=1 因此,当 x=1 时,f(x)有最大值为 1,………………… (Ⅲ)证明:研究①当 x ( ,1] 时,f(x) ≤1<2x ②当 x (0, ] 时, 首先,f(2x) ≥f(x)+f(x)=2f(x),∴ f ( x ) 显然,当 x ( 假设当 x ( 当 x( 7分 3分

2
即 =

2
-arctan
3 时,f( )max = 5. 4 , 则有 x2 y2 = 1。 2 + b a2
5分
(2)由(1)知,当 a>b>0 时,设
x = bcos y = asin
2 b ∵ 0≤ < , ∴ 0≤y≤a , - <x≤b,其方程表示一段椭圆弧,端点为 M(b,0), 3 2 b 3 a N(- , ),但不含 N 点。 2 2 设 f( ) = x + y = t,则 y = -x + t 为一直线。 x2 y2 将 y = -x + t 代入 2 + 2 = 1 可得(a2 + b2)x2-2b2tx + b2(t2-a2) = 0。 b a 当直线与椭圆相切时,有△ = 4b4t2-4b2(a2 + b2)(t2-a2) = 4b2[b2t2-(a2 + b2) (t2-a2)] = 0。 求得 t = ± a2 + b2 ,∴ f( )max = a2 + b2 。 9分 3 a-b 。 2 11 分 b 3 a 当直线过点 M(b,0)时,有 f( ) = b;当直线过点 M(- , )时,有 f( ) = 2 2 当 a< 3 b 时,f( )min = 3 a-b ;当 a≥ 3 b 时,f( )min =b。 2 7分
∴ f (1) (

3 3 1 1 2) lg | ( ) 2 | lg 2 2 2 2
1 1 1 1 1 1 1 lg lg 2 3 8 2 3 10 6
1 即 f (1)大于 1 . 6 6 6.已知定义域为[0,1]的函数 f (x)同时满足: (1)对于任意 x∈[0,1],总有 f (x)≥0; (2)f (1) =1;
相关文档
最新文档