(通用版)高考数学复习专题七解析几何7.3解析几何(压轴题)练习理
高考数学二轮复习课件:专题七 解析几何 7.3

全国 求直线方程,
Ⅰ 证明角相等
抛物线、直 线、斜率、垂 抛物线 直平分线
分类讨论思 想,方程思想
全国
2018 Ⅱ
求直线方程, 求圆的方程
抛物线、直 线、根与系数 抛物线 的关系、圆
方程思想
全国
Ⅲ
证明不等式 成立,证明等 式成立
椭圆、斜率、 向量的模、向 椭圆 量相等
点差法,方程 思想
-6-
1.椭圆、双曲线中a,b,c,e之间的关系
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/7/12
最新中小学教学课件
12
谢谢欣赏!
2019/7/12
最新中小学教学课件
13
方程思想
否有公共点 判别
2016 全国
Ⅱ
求三角形面 积,证明斜率 的取值范围
椭圆、直线、
三角形面积、 函数零点及
椭圆
存在性定理
方程思想,函 数思想
全国 证明平行,求
Ⅲ 轨迹方程
抛物线、直 线、斜率、三 抛物线 角形面积
方程思想,解 析法
-4-
年份 卷别 设问特点 涉及知识点 曲线模型 解题思想方法
A(x1,y1),B(x2,y2),x1≠x2,弦的中点 M(x0,y0),则
������12 ������22
= =
2������������1,两式相减得 2������������2,
������12 − ������22=2p(x1-x2),
∴(y1+y2)(y1-y2)=2p(x1-x2),
四、听方法。
高中数学解析几何复习 题集附答案

高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
下面我们通过一些例题来复习直线的方程的求解方法。
例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。
解析:首先我们可以求出直线L1的斜率k。
直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。
例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。
解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。
直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。
再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。
二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。
我们可以通过直线的方程和平面的方程来求解交点的坐标。
下面我们通过一些例题来复习直线和平面交点的求解方法。
例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。
高考数学压轴专题新备战高考《平面解析几何》知识点总复习有答案

【高中数学】《平面解析几何》知识点一、选择题1.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x 轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .2B .2C 1D 1【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =.由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22bQF a=,∴2b c a=. 又222b a c =-, ∴2240c c --=,得1c =.∴22c =. 故选:B . 【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.2.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( )A .23B .3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】由22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,212512x x =-+,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||23MN =. 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.3.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.4.如图,O 是坐标原点,过(,0)E p 的直线分别交抛物线22(0)y px p =>于A 、B 两点,直线BO 与过点A 平行于x 轴的直线相交于点M ,过点M 与此抛物线相切的直线与直线x p =相交于点N .则22||ME NE -=( )A .2pB .2pC .22pD .24p【答案】C 【解析】 【分析】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B 两点,不妨设直线AB 为x =p ,分别求出M ,N 的坐标,即可求出答案. 【详解】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B ,两点为任意的,不妨设直线AB 为x =p ,由2y 2pxx p ⎧=⎨=⎩,解得y =,则A (p),B (p),∵直线BM 的方程为yx ,直线AM 的方程为y =x , 解得M (﹣p),∴|ME |2=(2p )2+2p 2=6p 2, 设过点M 与此抛物线相切的直线为y=k (x +p ),由()2y 2=k px x p ⎧=⎪⎨+⎪⎩,消x 整理可得ky 2﹣2py ﹣+2p 2k =0, ∴△=4p 2﹣4k (﹣+2p 2k )=0, 解得k=2, ∴过点M 与此抛物线相切的直线为yp=2(x +p ),由()=2x p x p =⎧⎪⎨+⎪⎩,解得N (p ,2p ), ∴|NE |2=4p 2,∴|ME |2﹣|NE |2=6p 2﹣4p 2=2p 2, 故选C . 【点睛】本题考查了直线和抛物线位置关系,以及直线和直线的交点坐标问题,属于难题.5.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( ) A .2 B .4C .6D .8【答案】C 【解析】 【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可. 【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,OP =∴6PQ ==. 故选C 【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.6.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D 【答案】A 【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min125d d MF d +=+==,故选A. 考点:抛物线定义的应用.7.已知,A B 两点均在焦点为F 的抛物线()220y px p =>上,若4AF BF +=,线段AB 的中点到直线2px =的距离为1,则p 的值为 ( ) A .1 B .1或3C .2D .2或6【答案】B 【解析】4AF BF +=1212442422p px x x x p x p ⇒+++=⇒+=-⇒=-中 因为线段AB 的中点到直线2px =的距离为1,所以121132px p p -=∴-=⇒=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02pPF x =+;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.8.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.9.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是( )A 2B 3C .32D .62【答案】D 【解析】 【分析】 【详解】试题分析:由椭圆与双曲线的定义可知,|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a(其中2a 为双曲线的长轴长),∴|AF 2|=a +2,|AF 1|=2-a ,又四边形AF 1BF 2是矩形,∴|AF 1|2+|AF 2|2=|F 1F 2|2=32,∴a 2,∴e 326考点:椭圆的几何性质.10.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值.把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.11.已知抛物线2:4C y x =,过其焦点F 的直线l 交抛物线C 于,A B 两点,若3AF FB =uu u r uu r,则AOF V 的面积(O 为坐标原点)为( )ABCD.【答案】B 【解析】 【分析】首先过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥,易得30ABM ∠=o ,60AFH ∠=o .根据直线AF:1)y x =-与抛物线联立得到12103x x +=,根据焦点弦性质得到163AB =,结合已知即可得到sin 60AH AF ==o AOF S V 即可.【详解】 如图所示:过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥. 因为3AF BF =uuu r uu u r,设BF k =,则3AF k =,11BB A M k ==. 所以2AM k =. 在RT ABM V 中,12AM AB =,所以30ABM ∠=o . 则60AFH ∠=o .(1,0)F ,直线AF 为3(1)y x =-.223(1)310304y x x x y x⎧=-⎪⇒-+=⎨=⎪⎩,12103x x +=. 所以121016233AB x x p =++=+=,344AF AB ==. 在RT AFH V 中,sin 6023AH AF ==o所以112332AOF S =⨯⨯=V 故选:B 【点睛】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.12.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为3M 的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解. 【详解】由直线的斜率为tan 60k ︒==y b =+. 圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与⎛⎫ ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C. 【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.13.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( )A .18B .30C .32D .36【答案】C【解析】【分析】【详解】 由抛物线性质可知:112AF BF p +=,又111AF BF+=,∴2p =, 即24y x =设直线AB 的斜率为k (k≠0),则直线CD 的斜率为1k -. 直线AB 的方程为y=k (x ﹣1),联立214y k x y x=⎧⎨=⎩(﹣),消去y 得k 2x 2﹣(2k 2+4)x+k 2=0, 从而242A B x x k+=+,A B x x =1 由弦长公式得|AB|=244k +, 以1k-换k 得|CD|=4+4k 2, 故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32.故选C15.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( )A .-1B .0C .1D .2【答案】A【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出. 详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+,解得1a =-,舍去.综上可得:1a =-.故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题16.过双曲线()222210,0x y a b a b-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左右两支都相交,则双曲线离心率e 的取值范围为( )A .()1,2B .()1,2C .()2,+∞D .()2,+∞【答案】C【解析】 【分析】 设过双曲线的右焦点F 与渐近线b y x a=垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之可得22b a >,从而可得双曲线的离心率e 的取值范围 .【详解】过双曲线的右焦点F 作渐近线b y x a=垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交, ∴直线AF 与渐近线b y x a =-必定有交点B , 因此,直线b y x a=-的斜率要小于直线AF 的斜率, Q 渐近线b y x a =的斜率为b a, ∴直线AF 的斜率a k b =-,可得b a a b -<-, 即22,b a b a a b>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >双曲线离心率e 的取值范围为()2,+∞,故选C. 【点睛】 本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.17.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:221169x y +=,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最短路程是( ).A .20B .18C .16D .以上均有可能【答案】C【解析】【分析】根据椭圆的光学性质可知,小球从点A 沿直线出发,经椭圆壁反弹到B 点继续前行碰椭圆壁后回到A 点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案.【详解】依题意可知小球经两次椭圆壁后反弹后回到A 点,根据椭圆的性质可知所走的路程正好是4a=4×4=16故选:C .【点睛】本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义,是基础题.18.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( )A .4B .2C .2D .【答案】D【解析】 ()1ln (0,0)a a f x x a b b b+=-->>, 所以()'a f x bx =-,则f ′(1)=-a b为切线的斜率,切点为(1,-1a b +), 所以切线方程为y +1a b +=-a b(x -1), 整理得ax +by +1=0. 因为切线与圆相切,所以22a b +=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab ,所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2,所以a +b ≤,即a +b 的最大值为. 故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.19.已知椭圆22198x y +=的一个焦点为F ,直线220,220x y x y -+=--=与椭圆分别相交于点A 、B 、C 、D 四点,则AF BF CF DF +++=( )A .12B .642+C .8D .6【答案】A【解析】【分析】画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a +++=+++=,得到答案.【详解】画出图像,如图所示:直线220,220x y x y -+=--=平行,根据对称性知:()()22412AF BF CF DF AF AF DF DF a +++=+++==. 故选:A .【点睛】本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.20.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .322-B .22-C 32D 21【答案】D【解析】 由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PFPMm PQ PQ α===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设2004x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以222PQ PF ,==,则2PF PQ a +=,∴21a =,1c =,∴21c e a ==,故选D .。
高考数学-解析几何-专题练习及答案解析版

高考数学解析几何专题练习解析版82页1.已知双曲线的方程为22221(0,0)x y a b a b-=>>, 过左焦点F 1的直线交双曲线的右支于点P , 且y 轴平分线段F 1P , 则双曲线的离心率是( ) A . 3B .32+C . 31+D . 322. 一个顶点的坐标()2,0, 焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A , B 两点, 且△OAB (O 为坐标原点)的面积为, 则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点, 则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0, π/2), Q (-2, π), 则有 ( )(A)P 在曲线C 上, Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上, Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数), 则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N , 若212F F MN ≤, 则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线, 交双曲线于A , B 两点, 设双曲线的左顶点M , 若MAB ∆是直角三角形, 则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x , N M ,是椭圆上关于原点对称的两点, P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k , 021≠k k , 则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点, F 1、F 2是该双曲线的两个焦点, 若2:3:21=PF PF , 则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为, 则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32, 过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r, 则k =( )(A )1 (B (C (D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限, 则直线l 的倾斜角的取值范围是( ) A .[6π, 3π) B .(6π, 2π) C .(3π, 2π) D .[6π, 2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点, 若线段AB 的中点为(1,1)M -, 则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -, 若F 为双曲线221x y -=的右焦点, P 是该双曲线上且在第一象限的动点, 则OA FP uu r uu r⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a , 则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点, P 为双曲线上的一点, 若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列, 则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1, 1)、B(0, -1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=, 则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P , 半径10r =; B 、圆心()1,3P , 半径10r =;C 、圆心()1,3P -, 半径10r =;D 、圆心()1,3P -, 半径10r =29.F 1、F 2是双曲线C :x 2- 22y b=1的两个焦点, P 是C 上一点, 且△F 1PF 2是等腰直角三角形, 则双曲线C 的离心率为 A .12 B .22C .32 D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图, 轴截面为边长为34等边三角形的圆锥, 过底面圆周上任一点作一平面α, 且α与底面所成二面角为6π, 已知α与圆锥侧面交线的曲线为椭圆, 则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点, F 为C 的焦点,若2FA FB=, 则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C , 过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点, 若3=, 则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l , 过(1,0)M 且斜率为3的直线与l 相交于点A , 与C 的一个交点为B .若AM MB =u u u u r u u u r, 则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切, 又与直线x +1=0相切, 则动圆圆心的轨迹方程是 ( ) A.y 2=8x B.y 2=-8x C.y 2=4x D.y 2=-4x36.若R k ∈, 则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k 37.点(-1, 2)关于直线y =x -1的对称点的坐标是 (A )(3, 2) (B )(-3, -2) (C )(-3, 2) (D )(3, -2) 38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( ) A .直线与圆相交但不过圆心. B . 相切. C .直线与圆相交且过圆心. D . 相离40.椭圆的长轴为A1A2, B 为短轴的一个端点, 若∠A1BA2=120°, 则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称, 则圆C 的方程为( ) A .(x +1)2+y 2=1 B .x 2+y 2=1 C .x 2+(y +1)2=1 D .x 2+(y -1)2=142.已知直线l 经过坐标原点, 且与圆22430x y x +-+=相切, 切点在第四象限, 则直线l 的方程为( )A.3y x = B .3y x =- C .3y x =D .3y x =- 43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时, 实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞ 44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =, 则双曲线离心率的取值范围是( ) A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点, O 为坐标原点,1(,0)2OA =u u u r , 则OA OP ⋅u u u r u u u r 的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <, 则直线0Ax By C ++=一定不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限47.[2012·课标全国卷]等轴双曲线C 的中心在原点, 焦点在x 轴上, C 与抛物线y 2=16x 的准线交于A , B 两点, |AB|=43, 则C 的实轴长为( )A.2B.22C.4D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后, 反射光线的反向延长线都汇聚到双曲线的另一个焦点。
高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。
(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
2024年高考数学分类汇编七解析几何

2024年高考数学分类汇编七解析几何一、单选题1.(2024·全国)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)2.(2024·全国)已知双曲线2222:1(0,0)y x C a b a b −=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A.4B .3C .2D 3.(2024·全国)已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .4.(2024·北京)求圆22260x y x y +−+=的圆心到20x y −+=的距离( )A .B .2C .D 5.(2024·天津)双曲线22221()00a x y a bb >−=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x −=B .22184x y −=C .22128x y −=D .22148x y −=二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2−,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =− B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+ 7.(2024·全国)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个 三、填空题8.(2024·全国)设双曲线2222:1(0,0)x y C a b a b−=>>的左右焦点分别为12F F 、,过2F 作平行于y轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 . 9.(2024·北京)已知双曲线2214x y −=,则过()3,0且和双曲线只有一个交点的直线的斜率为 .10.(2024·北京)已知抛物线216y x =,则焦点坐标为 .11.(2024·天津)22(1)25−+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .12.(2024·上海)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 . 四、解答题13.(2024·全国)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.14.(2024·全国)已知双曲线()22:0C x y m m −=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记n P 的坐标为(),n n x y . (1)若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11kk+−的等比数列; (3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.15.(2024·全国)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.16.(2024·北京)已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D . (1)求椭圆方程和离心率; (2)若直线BD 的斜率为0,求t .17.(2024·天津)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△ (1)求椭圆方程.(2)过点30,2⎛⎫− ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线222Γ:1,(0),y x b b−=>左右顶点分别为12,A A ,过点()2,0M −的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.答案详解1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解. 【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y , 又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 2.C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】由题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =−=−=,则28224c e a ===. 故选:C. 3.C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −=⎧⎨+=⎩得12x y =⎧⎨=−⎩,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ==24AB AP ==.故选:C 4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得22260x y x y +−+=,即()()221310x y −++=,则其圆心坐标为()1,3−,则圆心到直线20x y −+==,故选:C. 5.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin θ=,因为1290F PF ∠=︒,所以121PF PF k k ⋅=−,求得112PF k =−,即21tan 2θ=,2sin θ=121212::sin :sin :sin90PF PF F F θθ=︒=则由2PF m =得1122,2PF m F F c ==, 由1212112822PF F SPF PF m m =⋅=⋅=得m =,则21122PF PF F F c c =====由双曲线第一定义可得:122PF PF a −==a b === 所以双曲线的方程为22128x y −=.故选:C 6.ABD【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【解析】对于A :设曲线上的动点(),P x y ,则2x >−4x a −=,04a −=,解得2a =−,故A 正确.对于B24x +=,而2x >−,()24x +=.当0x y ==()2844=−=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =−−+,取32x =,则2641494y =−,而64164525624510494494494−−−=−=>⨯,故此时21y >, 故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =−−≤++,故0004422y x x −≤≤++,故D 正确. 故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理. 7.ABD【分析】A 选项,抛物线准线为=1x −,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =−是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【解析】A 选项,抛物线24y x =的准线为=1x −,A 的圆心(0,4)到直线=1x −的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ==B 选项正确;C 选项,当2PB =时,1P x =,此时244PP y x ==,故(1,2)P 或(1,2)P −, 当(1,2)P 时,(0,4),(1,2)A B −,42201PA k −==−−,4220(1)AB k −==−−, 不满足1PA AB k k =−;当(1,2)P −时,(0,4),(1,2)A B −,4(2)601PA k −−==−−,4(2)60(1)AB k −−==−−, 不满足1PA AB k k =−;于是PA AB ⊥不成立,C 选项错误; D 选项,方法一:利用抛物线定义转化 根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题, (0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k −=, 于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y −+=, 2164301360∆=−⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确. 方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t −,又(0,4)A ,又PA PB =,214t =+,整理得216300t t −+=,2164301360∆=−⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确. 故选:ABD8.32【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x y a b−=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225bAF a ==,又122AF AF a −=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:329.12±【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立3x =与2214x y −=,解得y =设所求直线斜率为k ,则过点()3,0且斜率为k 的直线方程为()3y k x =−, 联立()22143x y y k x ⎧−=⎪⎨⎪=−⎩,化简并整理得:()222214243640k x k x k −+−−=,由题意得2140k −=或()()()2222Δ244364140k k k =++−=,解得12k =±或无解,即12k =±,经检验,符合题意. 故答案为:12±.10.()4,0【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,由此即可得解.【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0. 故答案为:()4,0. 11.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【解析】圆22(1)25−+=x y 的圆心为()1,0F ,故12p=即2p =, 由()2221254x y y x⎧−+=⎪⎨=⎪⎩可得22240x x +−=,故4x =或6x =−(舍),故()4,4A ±,故直线()4:13AF y x =±−即4340x y −−=或4340x y +−=, 故原点到直线AF 的距离为4455d ==, 故答案为:4512.【分析】根据抛物线的定义知8P x =,将其再代入抛物线方程即可.【解析】由24y x =知抛物线的准线方程为1x =−,设点()00,P x y ,由题意得019x +=,解得08x =,代入抛物线方程24y x =,得2032y =,解得0y =±,则点P 到x轴的距离为故答案为: 13.(1)12(2)直线l 的方程为3260x y −−=或20x y −=.【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x −=−,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可. 【解析】(1)由题意得2239941b a b=⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk −==−−,则直线AP 的方程为132y x =−+,即260x y +−=,AP =,由(1)知22:1129x y C +=, 设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 此时该平行线与椭圆的交点即为点B , 设该平行线的方程为:20x y C ++=,=6C =或18C =−, 当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=−⎩或332x y =−⎧⎪⎨=−⎪⎩,即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,当()0,3B −时,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=,当33,2B ⎛⎫−− ⎪⎝⎭时,此时12l k =,直线l 的方程为12y x =,即20x y −=,当18C =−时,联立2211292180x y x y ⎧+=⎪⎨⎪+−=⎩得22271170y y −+=,227421172070∆=−⨯⨯=−<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y −−=或20x y −=. 法二:同法一得到直线AP 的方程为260x y +−=, 点B到直线AP 的距离d =设()00,B x y,则22001129x y =⎪+=⎪⎩,解得00332x y =−⎧⎪⎨=−⎪⎩或0003x y =⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +−=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π=联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=−⎪⎩或cos 0sin 1θθ=⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B −,16392PABS=⨯⨯=,符合题意,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=, 当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠−,解得0x =或22443kx k −=+,0k ≠,12k ≠−,令22443k x k −=+,则2212943k y k −+=+,则22224129,4343k k B k k ⎛⎫−−+ ⎪++⎝⎭ 同法一得到直线AP 的方程为260x y +−=, 点B 到直线AP的距离d ==32k =,此时33,2B ⎛⎫−− ⎪⎝⎭,则得到此时12l k =,直线l 的方程为12y x =,即20x y −=,综上直线l 的方程为3260x y −−=或20x y −=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠不满足条件.当l 的斜率存在时,设3:(3)2PB y k x −=−,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=−+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +−−+−−=, ()()()2222Δ24124433636270k kk k k =−−+−−>,且AP k k ≠,即12k ≠−,21222122241243,36362743k k x x k PB k k x x k ⎧−+=⎪⎪+⎨−−⎪=⎪+⎩, A 到直线PB距离192PAB d S ===, 12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =−,即3260x y −−=或20x y −=. 法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABPS=⨯⨯=≠不满足条件. 当直线l 斜率存在时,设3:(3)2l y k x =−+, 设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫−+ ⎪⎝⎭,联立223323436y kx k x y ⎧=−+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, ()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, 其中()()22223Δ8343436362702k k k k k ⎛⎫=−−+−−> ⎪⎝⎭,且12k ≠−,则2222363627121293,3434B B k k k k x x k k −−−−==++, 则211312183922234P B k S AQ x x k k +=−=+=+,解的12k =或32k =,经代入判别式验证均满足题意. 则直线l 为12y x =或332y x =−,即3260x y −−=或20x y −=.14.(1)23x =,20y = (2)证明见解析 (3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可; (2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可. 【解析】(1)由已知有22549m =−=,故C 的方程为229x y −=. 当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y −=联立得到22392x x +⎛⎫−= ⎪⎝⎭.解得3x =−或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q −,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =−+,与229x y −=联立,得到方程()()229n n x k x x y −−+=.展开即得()()()2221290n n n n k x k y kx x y kx −−−−−−=,由于(),n n n P x y 已经是直线()n n y k x x y =−+和229x y −=的公共点,故方程必有一根n x x =. 从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k −−−=−=−−,相应的()2221n n nn n y k y kx y k x x y k +−=−+=−. 所以该直线与C 的不同于n P 的交点为222222,11n n n n n n n ky x k x y k y kx Q k k ⎛⎫−−+− ⎪−−⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x−−−−,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+−+− ⎪−−⎝⎭. 这就得到21221n n nn x k x ky x k ++−=−,21221n n n n y k y kx y k ++−=−. 所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++−+−−=−−− ()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=−=−=−−−−−. 再由22119x y −=,就知道110x y −≠,所以数列{}n n x y −是公比为11k k+−的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b =,(),UW c d =,则12UVWSad bc =−.(若,,U V W 在同一条直线上,约定0UVWS =)证明:211sin ,1cos ,22UVWS UV UW UV UW UV UW UV UW =⋅=⋅−()222211122UV UW UV UW UV UW UV UW UV UW ⎛⎫⋅⎪=⋅−=⋅−⋅⎪⋅⎭==12ad bc ==−. 证毕,回到原题.由于上一小问已经得到21221n n nn x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 而又有()()()111,n n n n n n P P x x y y +++=−−−−,()122121,n n n n n n P P x x y y ++++++=−−, 故利用前面已经证明的结论即得 ()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==−−−+−− ()()()()12112112n n n n n n n n x x y y y y x x ++++++=−−−−− ()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=−+−−− 2219119119112211211211k k k k k k k k k k k k ⎛⎫−+−+−+⎛⎫⎛⎫⎛⎫⎛⎫=−+−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+−+−+−⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−, 故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++−+⎛⎫−=−=− ⎪+−⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫−+⎛⎫⎛⎫−=−=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++−−−=−−−. 移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++−−+=−−+. 故()()()()321213n n n n n n n n y y x x y y x x ++++++−−=−−.而()333,n n n n n n P P x x y y +++=−−,()122121,n n n n n n P P x x y y ++++++=−−. 所以3n n P P +和12n n P P ++平行,这就得到12123n n n n n n P P P P P P SS+++++=,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.15.(1)22143x y +=(2)证明见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b ,故椭圆方程为22143x y +=.(2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−−()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k kx x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.16.(1)221,42x y e +==(2)2t =【分析】(1)由题意得b c ==a ,由此即可得解;(2)说明直线AB 斜率存在,设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k −−+==++,而()121112:y y AD y x x y x x −=−++,令0x =,即可得解.【解析】(1)由题意b c ===2a ==, 所以椭圆方程为22142x y +=,离心率为e =(2)显然直线AB 斜率存在,否则,B D 重合,直线BD 斜率不存在与题意不符, 同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立22142x y y kx t ⎧+=⎪⎨⎪=+⎩,化简并整理得()222124240k x ktx t +++−=, 由题意()()()222222Δ1682128420k t k t k t =−+−=+−>,即,k t 应满足22420k t +−>,所以2121222424,1221kt t x x x x k k −−+==++, 若直线BD 斜率为0,由椭圆的对称性可设()22,D x y −, 所以()121112:y y AD y x x y x x −=−++,在直线AD 方程中令0x =, 得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt t−++++++====+==+++−,所以2t =,此时k 应满足222424200k t k k ⎧+−=−>⎨≠⎩,即k应满足k <或k >,综上所述,2t =满足题意,此时k <k >17.(1)221129x y +=(2)存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =−,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤可求t 的范围.【解析】(1)因为椭圆的离心率为12e =,故2a c =,b ,其中c 为半焦距, 所以()()2,0,0,,0,A c B C ⎛− ⎝⎭,故122ABC S c =⨯=△故ca =,3b =,故椭圆方程为:221129x y +=.(2)若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =−,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=−⎪⎩可得()223412270k x kx +−−=, 故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k +==−++ 而()()1122,,,TP x y t TQ x y t =−=−,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+−−=+−−−− ⎪⎪⎝⎭⎝⎭()()22121233122kx x k t x x t ⎛⎫⎛⎫=+−++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯−−+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫−−−−++++ ⎪⎝⎭=+ ()22223321245327234t t k t k ⎛⎫⎡⎤+−−++− ⎪⎣⎦⎝⎭=+, 因为0TP TQ ⋅≤恒成立,故()223212450332702t t t ⎧+−−≤⎪⎨⎛⎫+−≤⎪ ⎪⎝⎭⎩,解得332t −≤≤.若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q −或()()0,3,0,3P Q −,此时需33t −≤≤,两者结合可得332t −≤≤.综上,存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设. 18.(1)b(2)(2,P(3)(303,3⎛ ⎝⎦【分析】(1)根据离心率公式计算即可; (2)分三角形三边分别为底讨论即可;(3)设直线:2l x my =−,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【解析】(1)由题意得21c cea ===,则2c =,b == (2)当b =时,双曲线22Γ:183y x −=,其中()2,0M −,()21,0A , 因为2MA P △为等腰三角形,则①当以2MA 为底时,显然点P 在直线12x =−上,这与点P 在第一象限矛盾,故舍去;②当以2A P 为底时,23MP MA ==,设(),P x y ,则 2222318(2)9y x x y ⎧−=⎪⎨⎪++=⎩,联立解得2311x y ⎧=−⎪⎪⎨⎪=⎪⎩或2311x y ⎧=−⎪⎪⎨⎪=⎪⎩10x y =⎧⎨=⎩, 因为点P 在第一象限,显然以上均不合题意,舍去; (或者由双曲线性质知2MP MA >,矛盾,舍去);③当以MP 为底时,223A P MA ==,设()00,P x y ,其中000,0x y >>,则有()2200220019183x y y x ⎧−+=⎪⎪⎨−=⎪⎪⎩,解得002x y =⎧⎪⎨=⎪⎩(2,P .综上所述:(2,P .(3)由题知()()121,0,1,0A A −,当直线l 的斜率为0时,此时120A R A P ⋅=,不合题意,则0l k ≠, 则设直线:2l x my =−,设点()()1122,,,P x y Q x y ,根据OQ 延长线交双曲线Γ于点R , 根据双曲线对称性知()22,R x y −−,联立有22221x my y x b =−⎧⎪⇒⎨−=⎪⎩()222221430b m y b my b −−+=, 显然二次项系数2210b m −≠, 其中()()22222422Δ44134120mb b m b b m b =−−−=+>,2122241b my y b m +=−①,2122231b y y b m =−②, ()()1222111,,1,A R x y A P x y =−+−=−,则()()122112111A R A P x x y y ⋅=−+−−=,因为()()1122,,,P x y Q x y 在直线l 上, 则112x my =−,222x my =−,即()()2112331my my y y −−−−=,即()()2121213100y y m y y m +−++=,将①②代入有()2222222341310011b b mm m b m b m +⋅−⋅+=−−,即()()2222231341010b m m b m b m +−⋅+−=化简得2223100b m b +−=,所以 22103m b=−, 代入到 2210b m −≠, 得 221031b b =−≠, 所以 23b ≠, 且221030m b =−≥,解得2103b ≤,又因为0b >,则21003b <≤,综上知,()2100,33,3b ⎛⎤∈ ⎥⎝⎦,(303,3b ⎛∴∈ ⎝⎦.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设:2l x my =−,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.。
2018年高考数学二轮复习第二部分高考22题各个击破专题七解析几何7.3.2圆锥曲线中的最值范围证明问题课件文

-8-
难点突破 (1)△ABP是等腰直角三角形⇒a=2;由 ������������ = ������������,得Q 2 点坐标,代入椭圆方程求得b;
3
(2)设直线y=kx-2,代入椭圆方程,由根与系数的关系及Δ>0得k的 一个范围,由原点O在以MN为直径的圆外⇒ ������������ ·������������ >0⇒x1x2+y1y2>0⇒关于k的不等式⇒k的另一范围,取两个k的范围的 交集得结论. 由向量数量积的坐标公式,即可求得直线l斜率的取值范围.
解 (1)由题意知△ABP是等腰直角三角形,a=2,B(2,0),
设 Q(x0,y0),由 ������������ = ������������,则 x0= ,y0=- ,代入椭圆方程, 解得 b2=1,
������ 2 2 5 5
3
6
4
∴椭圆方程为 4 +y2=1.
-9-
(2)由题意可知,直线l的斜率存在,设方程为y=kx-2,设 M(x1,y1),N(x2,y2),
4 2 2 9 3
-������ 2 +4������ +3 2( ������ 2 +1)
.
-4-
因为|PA|= 1 + ������ 2 ������ + |PQ|= 1 + ������ 2 (xQ-x)=-
1
2 (������ -1)(������ +1)2 ������ 2 +1
= 1 + ������ 2(k+1), ,
≥4 2,
当且仅当 y1=± 2 2,即 A(1,± 2 2)时取等号, △AMN 面积的最小值为 4 2.
高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。
2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。
I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。
Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。
4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。
5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。
6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(通用版)高考数学复习专题七解析几何7.3解析几何(压轴题)练
习理
7.3 解析几何(压轴题)
命题角度1曲线与轨迹问题
高考真题体验·对方向
1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.
(1)解设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).
由得x0=x,y0=y.
因为M(x0,y0)在C上,所以=1.
因此点P的轨迹方程为x2+y2=2.
(2)证明由题意知F(-1,0).设Q(-3,t),P(m,n),
则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).
由=1得-3m-m2+tn-n2=1.
又由(1)知m2+n2=2,故3+3m-tn=0.
所以=0,即.
又过点P存在唯一直线垂直于OQ,
所以过点P且垂直于OQ的直线l过C的左焦点F.
2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
(1)证明由题知F.
设l1:y=a,l2:y=b,则ab≠0,
且A,B,P,Q,R.
记过A,B两点的直线为l,
则l的方程为2x-(a+b)y+ab=0.
由于F在线段AB上,故1+ab=0.
记AR的斜率为k1,FQ的斜率为k2,
则k1==-b=k2.
所以AR∥FQ.
(2)解设l与x轴的交点为D(x1,0),
则S△ABF=|b-a||FD|=|b-a|,S△PQF=.
由题设可得|b-a|,
所以x1=0(舍去),x1=1.
设满足条件的AB的中点为E(x,y).
当AB与x轴不垂直时,由k AB=k DE可得(x≠1).
而=y,所以y2=x-1(x≠1).
当AB与x轴垂直时,E与D重合.
所以所求轨迹方程为y2=x-1.
典题演练提能·刷高分
1.(2019西南名校联盟重庆第八中学高三5月月考六)设抛物线C1的方程为x2=4y,点M(x0,y0)(x0≠0)在抛物线C2:x2=-y上,过M作抛物线C1的切线,切点分别为A,B,圆N是以线段AB为直径的圆.
(1)若点M的坐标为(2,-4),求此时圆N的半径长;
(2)当M在x2=-y上运动时,求圆心N的轨迹方程.
解(1)设N(x,y),A x1,,B x2,,x1≠x2,
切线MA,MB的方程分别为y=(x-x1)+,y=(x-x2)+,
得MA,MB的交点M(x0,y0)的坐标为x0==2,y0==-4.
又k AB==1,
|AB|==4,
∴r=|AB|=2.
(2)∵N为线段AB的中点,
∴x=,y=.
点M在C2上,
即=-y0.
由(1)得2=-,
则2=-.
∴x2=-,x≠0,即x2=y(x≠0).
∴圆心N的轨迹方程为x2=y(x≠0).
2.已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.
(1)求点P的轨迹C的方程;
(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.
解(1)设P(x,y),∵A(-2,0),B(2,0),
∴k1=,k2=,
又k1k2=-,∴=-,
∴=1(x≠±2),
∴轨迹C的方程为=1(x≠±2).
(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故
,S==S△PQO,
当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×;
当直线PQ的斜率存在时,设其方程为y=k(x+1),
设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立
解得(3+4k2)x2+8k2x+4k2-12=0,
Δ=144(k2+1)>0,
故|PQ|=|x1-x2|=,
点O到直线PQ的距离d=,
S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6,故S的最大值为.
3.已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.
(1)求点P的轨迹E的方程;
(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点).
①设W(x0,y0),证明:<1;
②求四边形QRST的面积的最小值.
(1)解设动圆半径为r,由于D在圆内,圆P与圆C内切,则|PC|=2-
r,|PD|=r,|PC|+|PD|=2>|CD|=2,
由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b==1,E的方程为+y2=1.
(2)①证明由已知条件可知,垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的四个点,<1.
②解若l1或l2的斜率不存在,四边形QRST的面积为2.
若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),
解方程组得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=2,
同理得|RT|=2,
∴S QSRT=|QS|·|RT|=,
当且仅当2k2+1=k2+2,即k=±1时等号成立.
综上所述,当k=±1时,四边形QRST的面积取得最小值.
4.设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2,动点M的轨迹为E.
(1)求E的方程;
(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k≠0),l与E交于另一点P.若以点B 为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.
解(1)设点M(x,y),A(x1,y1),则Q(x1,0),
因为2,
所以2(x1-x,-y)=(0,-y1),
所以解得
由于点A在圆C:x2+y2=4上,所以x2+4y2=4,
所以点M的轨迹E的方程为+y2=1.
(2)由(1)知,E的方程为+y2=1,因为直线l:y=kx+1(k≠0).
由得(1+4k2)x2+8kx=0.
设B(x1,y1),P(x2,y2),
因此x1=0,x2=-,
|BP|=|x1-x2|=,则点P的轨迹方程为x2+(y-1)2=,。