高考数学真题专题(理数) 双曲线

合集下载

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析

高三数学双曲线试题答案及解析1.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1【答案】A【解析】由x2+y2-6x+5=0知圆心C(3,0),半径r=2.又-=1的渐近线为bx±ay=0,且与圆C相切.由直线与圆相切,得=2,即5b2=4a2,①因为双曲线右焦点为圆C的圆心,所以c=3,从而9=a2+b2,②由①②联立,得a2=5,b2=4,故所求双曲线方程为-=1,选A.2.若实数满足,则曲线与曲线的()A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等【答案】D【解析】,则,,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,因此,两双曲线的焦距相等,故选D.【考点】本题考查双曲线的方程与基本几何性质,属于中等题.3.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.4.设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为A.B.C.D.3【答案】B【解析】因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以故选B.【考点】1、双曲线的定义和标准方程;2、双曲线的简单几何性质.5.已知A1,A2双曲线的顶点,B为双曲线C的虚轴一个端点.若△A1BA2是等边三角形,则双曲线的离心率e等于.【答案】2【解析】由题意可知,解得,即,所以.则.【考点】双曲线的简单几何性质.6.已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离为()A.B.C.D.【答案】A【解析】抛物线的焦点坐标为,因此双曲线的右焦点的坐标也为,所以,解得,故双曲线的渐近线的方程为,即,因此双曲线的焦点到其渐近线的距离为,故选A.【考点】1.双曲线的几何性质;2.点到直线的距离7.已知双曲线="1" 的两个焦点为、,P是双曲线上的一点,且满足,(1)求的值;(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.【答案】(1) (2)16【解析】(1)根据题意,又,,,又|P F|•|PF|="|" F F|=, |P F|<4,得在区间(0,4)上有解,所以因此,又,所以(2)双曲线方程为=1,右顶点坐标为(2,0),即所以抛物线方程为直线方程为由(1)(2)两式联立,解得和所以弦长|AB|==168.设F是抛物线的焦点,点A是抛物线与双曲线的一条渐近线的一个公共点,且轴,则双曲线的离心率为_______.【答案】【解析】由抛物线方程,可得焦点为,不妨设点在第一象限,则有,代入双曲线渐近线方程,得,则,所以双曲线离率为.故正确答案为.【考点】1.抛物线;2.双曲线.9.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为()A.B.C.D.【答案】A【解析】由于M(1,m)在抛物线上,∴m2=2p,而M到抛物线的焦点的距离为5,根据抛物线的定义知点M到抛物线的准线x=-的距离也为5,∴1+=5,∴p=8,由此可以求得m=4,=,而双曲线的渐近线方程为y=±,根据题意得,双曲线的左顶点为A(-,0),∴kAM=,∴a=.10.设双曲线的渐近线方程为,则的值为()A.4B.3C.2D.1【答案】C【解析】由双曲线方程可知渐近线方程为,故可知。

专题 以双曲线为情境的中点弦问题(解析版)高考数学专题复习

专题  以双曲线为情境的中点弦问题(解析版)高考数学专题复习

05 以双曲线为情境的中点弦问题典例分析一、求中点弦所在直线的方程1.已知双曲线222:1(0)y C x b b-=>的离心率为2,过点(3,3)P 的直线与双曲线C 交于A ,B 两点,且点P 恰好是弦AB 的中点,则直线AB 的方程为( )A .230x y --=B .290x y +-=C .360x y --=D .60x y +-=【答案】C 【解析】【分析】运用点差法即可求解【详解】由已知得21a =,又2c e a ==,222c a b =+,可得23b =.则双曲线C 的方程为2213y x -=.设()11,A x y ,()22,B x y ,则221122221,31,3y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩两式相减得()2222121203y y x x ---=,即()()()()1212121203y y y y x x x x +-+--=. 又因为点P 恰好是弦AB 的中点,所以126x x +=,126y y +=,所以直线AB 的斜率为()1212121233x x y y x x y y +-==-+,所以直线AB 的方程为33(3)y x -=-,即360x y --=.经检验满足题意2.已知直线:0l x y m -+=与双曲线2212y x -=交于不同的两点A ,B ,若线段AB 的中点在圆225x y +=上,则m 的值是________. 【答案】±1【分析】将直线方程代入双曲线方程,利用韦达定理及中点坐标公式求得AB 中点M 点坐标,代入圆的方程,即可求得m 的值.【详解】设点1(A x ,1)y ,2(B x ,2)y ,线段AB 的中点0(M x ,0)y ,由22012x y m y x -+=⎧⎪⎨-=⎪⎩,得22220x mx m ---=(判别式△0)>,122x x m +=,1202x x x m +∴==,002y x m m =+=,点0(M x ,0)y 在圆225x y +=上,则22(2)5m m +=,故1m =±.3.过点()1,1P 的直线l 与双曲线2212y x -=交于,M N 两点,且点P 恰好是线段MN 的中点,则直线l 的方程为___________.【答案】210x y --=【分析】设1(M x ,1)y ,2(N x ,2)y ,分别代入双曲线方程,两式相减,化简可得:()()()()1212121212x x x x y y y y -+=+-,结合中点坐标公式求得直线MN 的斜率,再利用点斜式即可求直线方程. 【详解】过点(1,1)P 的直线l 与该双曲线交于M ,N 两点,设1(M x ,1)y ,2(N x ,2)y ,∴221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得:121212121()()()()2x x x x y y y y -+=+-,因为P 为MN 的中点,122x x ∴+=,122y y +=,12122()x x y y ∴-=-,则12122MNy y x x -==-, 所以直线l 的方程为12(1)y x -=-,即为210x y --=.4.双曲线()2222:10,0x y C a b a b-=>>的离心率为2,经过C 的焦点垂直于x 轴的直线被C 所截得的弦长为12.(1)求C 的方程;(2)设A ,B 是C 上两点,线段AB 的中点为()5,3M ,求直线AB 的方程. 【答案】(1)221412x y -=;(2)522y x =-【分析】(1)根据已知条件求得,a b ,由此求得C 的方程.(2)结合点差法求得直线AB 的斜率,从而求得直线AB 的方程.【解析】(1)因为C 的离心率为2,所以2212b a+=,可得223b a =.将22x a b =+22221x y a b -=可得2b y a =±,由题设26b a =.解得2a =,212b =,23b =C 的方程为221412x y -=. (2)设()11,A x y ,()22,B x y ,则22111412x y -=,22221412x y -=.因此222212120412x x y y ---=,即()()()()121212120412x x x x y y y y +-+--=.因为线段AB 的中点为()5,3M ,所以1210xx +=,126y y +=,从而12125y y x x -=-,于是直线AB 的方程是522y x =-. 二、求中点弦所在直线的斜率1.直线l 交双曲线 2214x y -=于A 、B 两点,且(4,1)P 为AB 的中点,则l 的斜率为( )A .4B .3C .2D .1【答案】D 【解析】【分析】设出点A ,B 的坐标,利用“点差法”求出直线l 的斜率,再验证作答.【详解】设11(,)A x y ,22(,)B x y ,因点A ,B 在双曲线 2214x y -=上,则221114x y -=,222214x y -=,两式相减得:121212121()(0)()()4x x x x y y y y +--+-=,因P 为AB 中点,则128x x +=,122y y +=,于是得2121y y x x --=1,即直线l 的斜率为1,此时,直线l 的方程为:3y x =-,由22344y x x y =-⎧⎨-=⎩消去y 并整理得:2324400x x -+=,2244340960∆=-⨯⨯=>,即直线l 与双曲线 2214x y -=交于两点,所以直线l 的斜率为1. 2.直线l 与双曲线2212x y -=的同一支相交于,A B 两点,线段AB 的中点在直线2y x =上,则直线AB 的斜率为( )A .4B .2C .12D .14【答案】D 【解析】【分析】根据已知条件,设出,A B 两点坐标,使用点差法,带入双曲线方程作差,化简即可完成求解. 【详解】设11(,)A x y 、22(,)B x y ,线段AB 的中点00(,)M x y ,由已知,,A B 两点在双曲线上,所以{x 122−y 12=1x222−y 22=1,两式做差可得01212121201··2AB y y y y y k x x x x x -+==-+,点00(,)M x y 在直线2y x =上,所以002y x =,代入上式可得14AB k =,故直线AB 的斜率为14. 3.已知双曲线2213y x -=,过点()2,1P 作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为________. 【答案】6【分析】设点()11,A x y 、()22,B x y ,利用点差法可求得直线AB 的斜率.【详解】设点()11,A x y 、()22,B x y ,则12122212x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,即121242x x y y +=⎧⎨+=⎩,由已知条件可得221122221313y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两个等式作差得()2222121203y y x x ---=,即()()()()121212123y y y y x x x x +-+-=,即()()1212243y y x x --=, 所以,直线AB 的斜率为12126AB y y k x x -==-. 4.已知双曲线M 与椭圆22:15x N y +=有相同的焦点,且M 与圆22:1C x y +=相切.(1)求M 的虚轴长.(2)是否存在直线l ,使得l 与M 交于A ,B 两点,且弦AB 的中点为()4,6P ?若存在,求l 的斜率;若不存在,请说明理由.【答案】(1)3(2)存在,2 【分析】(1)根据题意得出双曲线方程后求解;(2)中点弦问题,可用点差法,化简后得到斜率,然后代回检验.【解析】(1)因为椭圆22:15x N y +=的焦点坐标为()2,0±,所以可设M 的方程为()2222104x y a a a -=>-.因为M 与圆22:1C x y +=相切,所以1a =,则2243b a =-=,故M 的虚轴长223b =(2)由(1)知,M 的方程为2213yx -=.设A ,B 两点的坐标分别为11(,)x y ,22(,)x y ,则221122221,31,3y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得()()()()1212121203y y y y x x x x -+-+-=,假设存在直线l 满足题意.则12128,12,x x y y +=⎧⎨+=⎩所以12122AB y y k x x -==-,因此l 的方程为220x y --=,代入M 的方程,整理得2870x x -+=,0∆>,l 与M 相交,故存在直线l 满足题意,且l 的斜率为2. 三、求中点弦的弦长1.已知点A ,B 在双曲线223x y -=上,线段AB 的中点为()1,2M ,则AB =( )A .25B .45C .10D .10【答案】C 【解析】【分析】首先结合已知条件,利用点差法求出直线AB 的斜率,进而得到直线AB 的方程,然后联立双曲线方程,结合韦达定理和弦长公式求解即可.【详解】不妨设11(,)A x y ,22(,)B x y ,从而22113x y -=,22223x y -=,由两式相减可得,12121212()()(()0)x x x x y y y y -+--+=,又因为线段AB 的中点为()1,2M ,从而122x x +=,124y y +=,故121212y y x x -=-,即直线AB 的斜率为12,直线AB 的方程为:12(1)2y x -=-,即1322y x =+,将1322y x =+代入223x y -=可得,2270x x --=,从而122x x +=,127x x =-,故22121212151()|()41022AB x x x x x x =+-=+-= 2.已知双曲线22:22C x y -=,过点(1,2)P 的直线l 与双曲线C 交于M 、N 两点,若P 为线段MN 的中点,则弦长|MN |等于( )A 42B 33C .3D .2【答案】D【分析】设直线MN 为2(1)y k x -=-,联立双曲线方程,应用韦达定理及中点坐标公式求k 值,利用弦长公式求解即可.【详解】由题设,直线l 的斜率必存在,设过(1,2)P 的直线MN 为2(1)y k x -=-,联立双曲线:224(2)2(2)(46)0k x k k x k k -+---+=设1122(,),(,)M x y N x y ,则1222(2)22P k k x x x k -+=-=-,所以22(2)22k k k--=-,,则122x x +=,123x x =-.弦长|MN |2212121()4241242k x x x x =++-=+= 3.已知双曲线C 的中心在坐标原点,焦点在x 轴上,离心率6e =,且双曲线C 过点()2,1P . (1)求双曲线C 的方程;(2)若直线:1l y kx =-与双曲线C 交于A ,B 两点,线段AB 中点的横坐标为2-,求线段AB 的长. 【答案】(1)2212x y -=;(2)15【分析】(1)设双曲线C :()222210,0x y a b a b=>>,根据题意可得62cea、222c a b =+、2222211a b -=,解方程组求得,a b 的值即可得双曲线C 的方程;(2)设()11,A x y ,()22,B x y ,联立直线与双曲线方程,可求出124x x +=-,再由2120Δ0k ⎧-≠⎨>⎩可得k 的值,由弦长公式即可得线段AB 的长.【解析】(1)设双曲线C :()222210,0x y a b a b -=>>,由题意可得:22222226211c e a c a b a b ⎧=⎪⎪⎪=+⎨⎪⎪-=⎪⎩,解得:222,1a b ==,所以双曲线C 的方程为2212x y -=.(2)设()11,A x y ,()22,B x y ,联立方程22121x y y kx ⎧-=⎪⎨⎪=-⎩,消去y 得:()2212440k x kx -+-=,因为l 与C 有两个交点,所以2120-≠k 且()22216161216160k k k ∆=+-=->,解得:21k <且212k ≠, 所以11k -<<且2≠k ①,由根与系数的关系可得:122412k x x k +=--,122412x x k -=- 又因为AB 中点的横坐标为2-, 所以24412kk -=--,即2210k k +-=,解得:1k =-或12k =②,结合①②可知12k =, 此时1:12l y x =-,1224412k x x k +=-=--,1224812x x k =-=--, 所以()22221212121511()44322152AB k x x x x x ⎛⎫=+-++--+ ⎪⎝⎭AB 的长为15四、求双曲线的方程1.已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为()4,7N --,则E 的方程为( )A .22154x y -=B .22145x y -=C .22111113663x y -=D .22111116336x y -=【答案】C 【解析】【分析】求出直线l 的方程,并设出双曲线E 的方程,再联立并借助中点坐标即可计算作答. 【详解】直线l 的方程为:0(7)(3)3(4)y x --=⋅---,即3y x =-,设双曲线E 的方程为:22221(0,0)x y a b a b-=>>,由222231y x x y a b =-⎧⎪⎨-=⎪⎩消去y 并整理得:222222()6(9)0b a x a x a b -+-+=, ()()()422222222Δ3649490a a a bb a b ba=--+=+->,因弦AB 的中点为()4,7N --,于是得22234a b a-=--,即2247a b =,而229a b +=,解得223663,1111a b ==,满足0∆>,所以双曲线E 的方程为22136631111x y -=,即22111113663x y -=. 2.若双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,点P 为C 的左支上任意一点,直线l 是双曲线的一条渐近线,PQ l ⊥,垂足为Q .当2PF PQ +的最小值为6时,1F Q 的中点在双曲线C 上,则C 的方程为( )A .222x y -= B .224x y -=C .22116y x -=D .22124x y -=【答案】B 【解析】 【分析】由双曲线定义21||||2PF PF a -=得到21122PF PQ PF PQ a FQ a +=++≥+,再利用焦点到渐近线的距离为b 求得26b a +=,设出渐近线方程求得1F Q 的中点坐标代入双曲线方程联解求得a b 、的解.【详解】212PF PF a -=,211||||22PF PQ PF PQ a FQ a ∴+=++≥+,又()1,0F c =-,2,0F c ,双曲线的渐近线方程为:by x a =±,即0bx ay ±=,∴22bc bc b c a b±==+, 即1FQ 的最小值为b ,即26b a +=,不妨设直线OQ 为:b y x a =,1F Q OQ ⊥,∴点()1,0F c -,2(,)a ab Q c c--,1F Q 的中点为22(,)22a c ab c c +--,将其代入双曲线C 的方程,得:2222222()144a c a a c c +-=,即22222221144a c a a cc ⎛⎫+ ⎪⎝⎭-=, 解得:2c a ,又26b a +=,222+=a b c ,2a b ∴==,故双曲线C 的方程为224x y -=.3.过双曲线22221(0,0)x y a b a b-=>>的左焦点(3,0)F -的直线与双曲线交,M N 两点,且线段MN 的中点坐标为(3,6),则双曲线方程是_______________. 【答案】22136x y -= 【分析】设()11,M x y ,()22,N x y ,可得126x x +=,1212y y +=,将,M N 两点坐标代入双曲线方程,两式相减整理可得2121212122MNy y x b k x y x x y a-+-+==⨯,利用已知点的坐标求出直线MN 的斜率,即可得2a 与2b 的关系,结合2229c a b =+=即可得2a 、2b 的值,进而可得双曲线方程.【详解】设()11,M x y ,()22,N x y ,则2211221x y a b -=,2222221x y a b-=,两式相减可得:2222121222x x y a b y =--, 所以()()()()1212121222x x x x y y y y a b -+-+=,因为点(3,6)是线段MN 的中点,所以126xx +=,1212y y +=,所以222212122221126122MNy y x b b b k x y y a x x a a -+-+==⨯=⨯=,因为()60133MN k -==--,所以2212b a =,即222b a =, 因为222239c a b a =+==,所以23a =,26b =,所以双曲线方程是22136x y -=, 五、中点弦与双曲线的离心率交汇12的直线与双曲线()2222:10,0x y C a b a b-=>>相交于A ,B 两点,O 为坐标原点,AB 的中点为P ,若直线OP 的斜率为2C 的离心率为( )A 3B .2C 5D .3【答案】C【分析】利用点差法,结合直线斜率公式、中点坐标公式、双曲线离心率公式进行求解即可.【详解】设()11,A x y ,()22,B x y ,()00,P x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得2222121222x x y y a b --=, 所以2121221212y y x x b x x a y y -+=⋅-+.因为1202x x x +=,1202y y y +=,所以21202120-=⋅-y y b x x x a y .因为12122AB y y k x x -==-0022OPy k x ==22222a ,224b a=,故2215b e a =+ 2.过点(1,1)M 作斜率为12的直线与双曲线2222Γ:1-=x y a b 相交于A ,B 两点,若M 是线段AB 的中点,则双曲线Γ的离心率为___________. 6【分析】利用点差法,结合M 是线段AB 的中点,斜率为12,即可求出双曲线Γ的离心率. 【详解】设1(A x ,1)y ,2(B x ,2)y ,则2211221x y a b -=①,2222221x y a b-=②,M 是线段AB 的中点,∴1212x x +=,1212y y +=,直线AB 的方程是1(1)12y x =-+,12121()2y y x x ∴-=-,过点(1,1)M 作斜率为12的直线与双曲线22221(0,0)x y a b a b-=>>相交于A ,B 两点,M 是线段AB 的中点,∴①②两式相减可得22221212220x x y y a b ---=,即()()()()22212121222212121212y y y y y y b a x x x x x x -+-===--+,2216c b e a a ∴==+ 3.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,虚轴的上端点为B ,点P ,Q 为C 上两点,点()2,1M -为弦PQ 的中点,且//PQ BF ,记双曲线的离心率为e ,则2e =______. 21+【分析】解法一,利用点差法,结合1212y y bx x c-=--,以及12124,2x x y y +=-+=,变形得到22a bc =,再转化为关于,a c 的齐次方程,求解2e ;解法二,设直线()12y k x -=+,bk c=-,与双曲线方程联立,利用根与系数的关系表示中点坐标,再转化为关于,a c 的齐次方程,求解2e . 【详解】解法一:由题意知(),0F c ,()0,B b ,则PQBF bk k c==-.设()11,P x y ,()22,Q x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,,两式相减,得()()2121221212b x x y y x x a y y +-=-+.因为PQ 的中点为()2,1M -,所以124x x +=-,122y y +=,又1212PQ y y bk x x c -==--,所以2242b b c a --=,整理得22a bc =,所以()42222244a b c c c a ==-,得424410e e --=,得221e +=解法二 :由题意知(),0F c ,()0,B b ,则BF bk c=-.设直线PQ 的方程为()12y k x -=+,即21y kx k =++,代入双曲线方程,得()()()222222222221210b a k x a k k x a k a b --+-+-=.设()11,P x y ,()22,Q x y ,结合()2,1M -为PQ 的中点,得()2122222214a k k x xb a k ++==--.又BF bk k c ==-,所以222222144b b b a b a c c c ⎡⎤⎛⎫⎛⎫⎛⎫⋅-⋅-+=-+⋅- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,整理得22a bc =,所以()42222244a b c c c a ==-,得424410e e --=,得221e +.方法点拨1:对于有关弦中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.2:对于中点弦问题可采用点差法求出直线的斜率,设()11,A x y ,()22,B x y 为弦端点坐标,()00,P x y 为AB 的中点,直线AB 的斜率为k ,若椭圆方程为22221x y a b+=()0a b >>,则2020b x k a y =-,若椭圆方程为22221y x a b+=()0a b >>,则2020a x k b y =-,若双曲线方程为22221x y a b-=()0a b >>,则2020b x k a y =,若双曲线方程为22221y x a b-=()0a b >>,则2020a x k b y =. 巩固练习1.已知点A ,B 是双曲线22:123x y C -=上的两点,线段AB 的中点是()3,2M ,则直线AB 的斜率为( )A .23B .32C .49D .94【答案】D 【解析】【分析】利用点差法和两点坐标求直线斜率公式化简计算即可.【详解】设()11,A x y ,()22,B x y ,则22112222123123x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()()()()1212121223x x x x y y y y +-+-=,即()()12126423x x y y --=,∴121294AB y y k x x -==-. 2.已知双曲线221164x y -=,以点()5,1P -为中点的弦所在的直线方程为( )A .45210x y +-=B .54210x y +-=C .240x y --=D .240x y +-=【答案】B 【分析】利用点差法可求得弦所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】设弦的两个端点坐标分别为()11,x y 、()22,x y ,则1212102x x y y +=⎧⎨+=-⎩,则2211222211641164x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差得()()()()12121212416y y y y x x x x -+-+=,所以,弦所在直线的斜率()()1212121245164x x y y k x x y y +-===--+, 故所求直线方程为()5514y x =---,即54210x y +-=. 3.已知倾斜角为π4的直线与双曲线2222:1(0,0)y x C a b a b -=>>,相交于A ,B 两点,(1,3)M 是弦AB 的中点,则双曲线的渐近线的斜率是( )A .3B .3C .2D .2【答案】A 【解析】【分析】依据点差法即可求得a b 、的关系,进而即可得到双曲线的渐近线的斜率.【详解】设1122(,)(,)A x y A x y 、,则12121212++y y =1=3,122x x y y x x -=-,,由22112222222211y x a b y x a b ⎧-=⎪⎪⎨⎪-=⎪⎩,可得()()()()12121212220y y y y x x x x a b -+-+-=,则22620a b-=,即22=3a b ,则3a b则双曲线2222:1(0,0)y x C a b a b-=>>的渐近线的斜率为3a b ±=4.已知双曲线2212y x -=,过点()1,1P 作直线l 与双曲线交于A ,B 两点,则能使点P 为线段AB 中点的直线l 的条数为( )A .0B .1C .2D .3【答案】A 【解析】 【分析】先假设存在这样的直线l ,分斜率存在和斜率不存在设出直线l 的方程,当斜率k 存在时,与双曲线方程联立,消去y ,得到关于x 的一元二次方程,直线与双曲线相交于两个不同点,则0∆>,32k <,又根据M 是线段AB 的中点,则21A B x x +=,由此求出2k =与32k <矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点M 的直线不满足条件,故符合条件的直线l 不存在. 【详解】设过点(1,1)M 的直线方程为(1)1y k x =-+或1x =,①当斜率存在时有22(1)112y k x y x =-+⎧⎪⎨-=⎪⎩,得2222(2)(22)230k x k k x k k -+--+-=(*).当直线与双曲线相交于两个不同点,则必有:2222(22)4(2)(23)0k k k k k ∆=----+->,即32k <又方程(*)的两个不同的根是两交点A 、B 的横坐标,21222()2k k x x k -∴+=--又(1,1)M 为线段AB 的中点,∴1212x x +=,即222()22k k k --=-,2k ∴=,使22k -≠0但使∆<0,因此当2k =时,方程①无实数解. 故过点(1,1)m 与双曲线交于两点A 、B 且M 为线段AB 中点的直线不存在. ②当1x =时,经过点M 的直线不满足条件. 综上,符合条件的直线l 不存在.5.已知点A ,B 在双曲线224x y -=上,线段AB 的中点()3,1M ,则AB =( )A 2B .2C 5D .5【答案】D 【解析】 【分析】先根据中点弦定理求出直线AB 的斜率,然后求出直线AB 的方程,联立后利用弦长公式求解AB 的长.【详解】设()11,A x y ,()22,B x y ,则可得方程组:2211222244x y x y ⎧-=⎨-=⎩,两式相减得:()()()()12121212x x x x y y y y +-=+-,即121212121y y y y x x x x +-⋅=+-,其中因为AB 的中点为()3,1M ,故121213y y x x +=+,故12123y y x x -=-,即直线AB 的斜率为3,故直线AB 的方程为:()133y x -=-,联立()221334y x x y ⎧-=-⎨-=⎩,解得:2212170x x -+=,由韦达定理得:126x x +=,12172x x =,则()221212145AB k x x x x =++-=6.过点(1,1)A 作直线l 与双曲线2212y x -=交于P ,Q 两点,且使得A 是PQ 的中点,直线l 方程为( ) A .210x y --= B .2x +y -3=0 C .x =1 D .不存在【答案】D 【解析】【分析】设出点P ,Q 的坐标,利用“点差法”求出直线l 的斜率并求出其方程,再将直线l 与双曲线方程联立验证即可得解.【详解】设点1122(,),(,)P x y Q x y ,因点(1,1)A 是PQ 的中点,则121222x x y y +=⎧⎨+=⎩,从而有221122222222x y x y ⎧-=⎨-=⎩,两式相减得:121212122()()()()0x x x x y y y y +--+-=,即12122()()0x x y y ---=,于是得直线l 的斜率为12122y y x x --=, 直线l 的方程为:12(1)y x -=-,即21y x =-,由222122y x x y =-⎧⎨-=⎩消去y 并整理得:22430x x -+=,此时2(4)42380∆=--⨯⨯=-<,即方程组222122y x x y =-⎧⎨-=⎩无解,所以直线l 不存在. 7.(多选题)过M (1,1)作斜率为2的直线与双曲线22221(0,0)x y a b a b-=>>相交于A 、B 两点,若M 是AB的中点,则下列表述正确的是( )A .b <aB .渐近线方程为y =±2xC .离心率3eD .b >a【答案】CD【分析】根据M (1,1)是AB 的中点,且斜率为2,利用点差法求解.【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得22221212220x x y y a b ---=,化简得2121221212y y x x b x x a y y -+=⋅-+,因为M (1,1)是AB 的中点,所以222b a=,即2b a =所以b a >,渐近线方程为2y x =,离心率为2213c b e a a=+=8.(多选题)已知双曲线C :()22210y x a a-=>,其上、下焦点分别为1F ,2F ,O 为坐标原点.过双曲线上一点()00,M x y 作直线l ,分别与双曲线的渐近线交于P ,Q 两点,且点M 为PQ 中点,则下列说法正确的是( )A .若l y ⊥轴,则2PQ =.B .若点M 的坐标为()1,2,则直线l 的斜率为14C .直线PQ 的方程为0021y yx x a-=. D 5,则三角形OPQ 的面积为2. 【答案】ACD【分析】利用双曲线基本性质,点差法及三角形面积的表示,即可得到结果.【详解】若l y ⊥轴,则直线l 过双曲线的顶点,()0,M a ±,双曲线的渐近线方程为y ax =±,易得P ,Q 两点的横坐标为±1 ,∴2PQ =,即A 正确;若点M 的坐标为()1,2,则2a =2220-=y x ,设()()1122,,,P x y Q x y ,利用点差法:2222112220,20y x y x -=-=,两式作差可得,2222121222y y x x -=-,即222212121212121222,2y y x xy y x x x x y y -+-=-=-+∴1212l k =⨯=,即B 错误;若()00,M x y ,利用点差法同样可得220121212120l a x y y x x k a x x y y y -+===-+,∴直线PQ 的方程为()20000a x y y x x y -=- ,即00222200y y y a x x a x -=-,002222200y y a x x y a x a -=-=,∴0021y y x x a -=,故C 正确;5,则双曲线方程为2214y x -=,∴渐近线方程为2y x =±,设()()1122,2,,2P x x Q x x -,∴122112122OPQS x y x y x x =-= ,联立方程00142y yx x y x⎧-=⎪⎨⎪=⎩ 可得10022x y x =- ,同理可得20022x y x -=+,∴12220000022882222244OPQSx x y x y x y x -==⋅===-+-, 9.(多选题)曲线C :221ax by +=(0ab ≠)与直线1y x =-交于A ,B 两点,过原点与线段AB 中点的直线的斜率为k ,以下结论正确的是( ) A .若3k =3a b = B .若3k =3a b =-3C .若0k >,则C 为椭圆D .若C 为双曲线,则0k < 【答案】AD【分析】设()()1122,,,A x y B x y ,利用点差法可得ak b=,再依次判断每个选项即可. 【详解】设()()1122,,,A x y B x y ,则12121y y x x -=--,线段AB 的中点为1212,22x x y y ++⎛⎫ ⎪⎝⎭,又2211222211ax by ax by ⎧+=⎨+=⎩,两式相减得()()()()121212120a x x x x b y y y y +-++-=,则12121212y y x xa x xb y y -+=-⋅-+,由题意可知121222y y k x x +=+,即1212y y k x x +=+,则有11a b k -=-⋅,即a k b=,对A ,若3k =则3a b =故A 正确;对B ,若3k =则3a b =-故B 错误;对C ,若0k >,则0ak b=>,当1k ≠时,且0,0a b >>时,曲线是椭圆,否则曲线是圆或不存在,故C 错误;对D ,若C 为双曲线,则0ab <,此时0ak b=<,故D 正确. 10.已知双曲线2222:1(0,0)x y C a b a b-=>>,C 的左、右焦点分别为1F 、2F ,且C 的焦点到渐近线的距离为1,直线1y k x m =+与C 交于P ,Q 两点,M 为弦PQ 的中点,若(OM O 为坐标原点)的斜率为2k ,1214k k =,则下列结论正确的是____________①4a =; ②C 5; ③若12PF PF ⊥,则12PF F △的面积为2;④若12PF F △的面积为2512PF F △为钝角三角形 【答案】②④ 【解析】 【分析】由已知可得2214b a =,可求a ,e ,从而判断①②,求出∴12PF F 的面积可判断③,设0(P x ,0)y ,利用面积求出点P 的坐标,再求边长,求出21cos PF F ∠可判断④.【详解】设1(P x ,1)y ,2(Q x ,2)y ,可得2211221x y a b -=,2222221x y a b-=,两式相减可得1212121222()()()()x x x x y y y y a b -+-+=,由题意可得12112y y k x x -=-,且1212(,)22x x y y M ++,12212y y k x x +=+,2122b k k a∴=,1214k k =,∴2214b a =,2251b e a ∴=+②正确;C 的焦点到渐近线的距离为1,设()2,0F c 到渐近线0bx ay -=的距离为d ,则221d b a b===+,即1b =,2a ∴=,故①错误,145c ∴+若12PF PF ⊥,不妨设P 在右支上,2212||||20PF PF +=,又12||||4PF PF -=,12||||2PF PF ∴⋅=, 则12PF F △的面积为12121||||12PF F SPF PF =⋅=,故③不正确;设0(P x ,0)y ,12012||252PF F S c y =⨯⨯=0||2y ∴=, 将0||2y =代入双曲线2214x y -=,得2020x =,0||5x =,根据双曲线的对称性,不妨取点P 的坐标为5,2),221||(255)27PF ∴++,222||(255)23PF =-+,21cos 02325PF F ∠<⨯⨯,21PF F ∴∠为钝角,∴12PF F △为钝角三角形.故④正确.11.已知斜率为1的直线l 与双曲线C :()222210,0x y a b a b-=>>相交于B ,D 两点,且BD 的中点为()1,3M ,则C 的离心率是______. 【答案】2 【解析】【分析】设1122(,),(,)B x y D x y ,代入双曲线方程,利用点差法,可求得223b a=,代入离心率公式,即可得答案.【详解】设1122(,),(,)B x y D x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差可得:2222121222x x y a b y =--,即1212121222()()()()x x x x y y y y a b -+-+=,因为()1,3M 为BD 中点,所以12122,6x x y y +=+=,又直线BD 斜率为1所以12121y y x x -=-,代入可得,223b a =,所以C 的离心率2212be a+.12.已知双曲线2212y x -=上存在两点,M N 关于直线y x b =-+对称,且MN 的中点在抛物线23y x =上,则实数b 的值为________. 【答案】0或94【解析】【分析】设1(M x ,1)y ,2(N x ,2)y ,MN 的中点为0(E x ,0)y ,由点差法可得0MN y k x ;通过,M N 两点关于直线y x b =-+对称,可得1MN k =,求出E 的坐标,代入抛物线方程求解即可.【详解】设1(M x ,1)y ,2(N x ,2)y ,MN 的中点为0(E x ,0)y ,则221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩, 由点差法可得212121211()()()()2x x x x y y y y -+=-+,即212121212y y y y x x x x -+⋅=-+①,显然12x x ≠,又因为12012022x x x y y y +=⎧⎨+=⎩②,代②入①可得02MN y k x ⋅=;由,M N 两点关于直线y x b =-+对称,可得1MN k =,所以002y x =,又因为00y x b =-+,所以2(,)33b b E ,代入抛物线方程得24393b b=⨯,解得0b =或94b =.13.已知P ,Q 为曲线22:14x C y -=上的两点,线段PQ 的中点为()3,1M ,则直线PQ 的斜率为( )A .–3B .34-C .34D .3【答案】C 【解析】【分析】设1122(,),(,)P x y Q x y ,代入双曲线方程相减可得直线斜率.【详解】设1122(,),(,)P x y Q x y ,则221122221414x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得12121212()()()()04x x x x y y y y -+--+=,所以121212122334()4214PQ y y x x k x x y y -+⨯====-+⨯⨯.此时直线方程为31(3)4y x -=-,3544y x =-,代入双曲线方程有:2235()1444x x --=,整理得241605x x -+=,4116364055∆=-⨯=>,直线与双曲线相交于两点,又12623x x +==⨯,M 是PQ 中点,满足题意.14.已知斜率为1的直线与双曲线()2222:10,0x y C a b a b-=>>相交于A 、B 两点,O 为坐标原点,AB 的中点为P ,若直线OP 的斜率为2,则双曲线C 的离心率为( )A 3B .2C 5D .3【答案】A 【解析】【分析】利用点差法可求得22b a 的值,结合221b e a=+C 的离心率的值.【详解】设()11,A x y 、()22,B x y 、()00,P x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得2222121222x x y y a b --=,所以2121221212y y x x b x x a y y -+=⋅-+.因为1202x x x +=,1202y y y +=,所以21202120-=⋅-y y b x x x a y . 因为12121AB y y k x x -==-,002==OP yk x ,所以2212b a =,故222b a =,故222222213c c a b b e a a a a +===+. 15.已知点()13,0F ,)23,0F ,动点M 满足122MF MF -=.(1)求动点M 的轨迹方程;(2)直线l 与点M 的轨迹交于A ,B 两点,若弦AB 的中点坐标为()2,1,求直线l 的方程. 【答案】(1)2212y x -=;(2)470x y --=【分析】(1)根据双曲线的定义求解即可;(2)根据点差法求解并检验即可得答案. 【解析】(1)根据双曲线的定义得动点M 的轨迹是以()13,0F -,()23,0F 为焦点,实轴长为2的双曲线,22,3a c ==2221,2a b c a ==-=,所以动点M 的轨迹方程2212y x -=(2) 设()()1122,,,A x y B x y ,则221112-=y x ,222212-=y x ,所以2222121222y y x x -=-,即()()()()121212122y y y y x x x x +-+-=,所以()121212122AB x x y y k x x y y +-==-+, 因为弦AB 的中点坐标为()2,1,所以12124,2x x y y +=+=, 所以()1212121224AB x x y y k x x y y +-===-+所以直线l 的方程为()142y x -=-,即470x y --=. 联立方程2212470y x x y ⎧-=⎪⎨⎪--=⎩得21456510x x -+=,此时256414515630∆=-⨯⨯=⨯>,124x x +=, 满足题意.所以直线l 的方程为470x y --=16.已知双曲线2222:1(0,0)x y C a b a b-=>>,离心率3e =22(1)求双曲线C 的标准方程;(2)过点()1,1P 能否作直线l ,使直线l 与双曲线C 交于,A B 两点,且点P 为弦AB 的中点?若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)2212y x -=;(2)不存在,理由见解析【分析】(1)根据离心率及虚轴长即可求解;(2)运用点差法求解,但是要注意检验. 【解析】(1)3ce a==222b =3c a ∴=,2b =222c a b =+,2232a a ∴=+.21a ∴=. ∴双曲线C 的标准方程为2212y x -=.(2)假设以定点(11)P ,为中点的弦存在, 设以定点(11)P ,为中点的弦的端点坐标为11(,)A x y ,2212(),()B x y x x ≠, 可得122x x +=,122y y +=.由A ,B 在双曲线上,可得:221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式相减可得以定点(11)P ,为中点的弦所在的直线斜率为:211221122()2y y x x k x x y y -+===-+, 则以定点(11)P ,为中点的弦所在的直线方程为12(1)y x -=-.即为21y x =-, 代入双曲线的方程可得22430x x -+=,由2(4)42380<∆=--⨯⨯=-,所以不存在这样的直线l . 17.已知抛物线C :22x py =(0p >)的焦点为F ,P 为C 上的动点,Q 为P 在动直线y t =(0t <)上的投影.当PQF △为等边三角形时,其面积为43 (1)求C 的方程;(2)设O 为原点,过点P 的直线l 与C 相切,且与椭圆22142x y +=交于A ,B 两点,直线OQ 与AB 交于点M .试问:是否存在t ,使得M 为AB 的中点?若存在,求t 的值;若不存在,请说明理由. 【答案】(1)24x y =;(2)存在,1-,理由见解析. 【分析】(1)根据PQF △的面积可求出等边三角形的边长为4,再由60OFQ PQF ∠=∠=,cos60p OF PQ ==⋅求出p 的值即可得C 的方程;(2)设200,4x P x ⎛⎫ ⎪⎝⎭,则()0,Q x t ,可得0OQ t k x =,由导数的几何意义可得012l k x =,设()11,A x y ,()22,B x y ,中点1212,22x x y y M ++⎛⎫⎪⎝⎭,由点差法可得12l OMk k ⋅=-,01OM k x =-,因此可求出1t =-即可. 【解析】(1)设()00,P x y ,0,2p F ⎛⎫⎪⎝⎭,因为PQF △为等边三角形时,其面积为43所以21si πn 4323PQ ⨯=4PQ =,即4PQ PF FQ ===,由抛物线定义可知,y=t 为抛物线的准线,由题意可知60OFQ PQF ∠=∠=,所以12cos60422p OF FQ ==⋅=⨯=,所以C 的方程24x y =; (2)设200,4x P x ⎛⎫ ⎪⎝⎭,则P 在动直线y t =上的投影()0,Q x t ,当00x ≠时,0OQ t k x =,由214y x =可得12y x '=,所以切线l 的斜率为012l k x =, 设()11,A x y ,()22,B x y ,线段AB 的中点1212,22x x y y M ++⎛⎫ ⎪⎝⎭,由22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,可得22221212042x x y y --+=, 所以()()()()12121212042x x x x y y y y +-+-+=,整理可得:1212121212y y y y x x x x -+⋅=--+,即12l OM k k ⋅=-, 所以01122OM x k ⋅=-,可得01OM k x =-,又因为0OQ OM t k k x ==,所以当1t =-时,01OQ OM k k x ==-,此时,,O M Q 三点共线,满足M 为AB 的中点,综上,存在t ,使得点M 为AB 的中点恒成立,1t =-.18.已知双曲线2222:1(0,0)x y E a b a b-=>>经过点(2,3),一条渐近线的倾斜角为60︒.(1)求双曲线的标准方程;(2)若斜率为(0)k k ≠的直线l 与双曲线E 交于两个不同的点M ,N ,线段MN 的中垂线与y 轴交于点(0,4),求实数k 的取值范围.【答案】(1)2213y x -=;(2)(,2)(3,0)3)(2,)-∞-⋃⋃⋃+∞. 【分析】(1)根据给定条件列出关于a ,b 的方程求解即可作答.(2)设出直线l 的方程,联立直线l 与双曲线E 的方程消去y ,借助韦达定理及判别式列式计算作答. 【解析】(1)依题意,双曲线E 的渐近线方程为by x a =±,因一条渐近线的倾斜角为60︒,即3b a= 由双曲线E 经过点(2,3),得22231a b -=,解得1a =,3b =E 的方程为2213y x -=. (2)设直线l 的方程为y kx m =+,11(,)M x y ,22(,)N x y ,由2233y kx mx y =+⎧⎨-=⎩消去y 并整理得222(3)230k x kmx m ----=,230k -≠, 22222(2)4(3)(3)12(3)0km k m m k ∆=+-+=+->,即223m k >-,则12223km x x k +=-,212233m x x k +=-,12122226()2233km my y k x x m k m k k +=++=⋅+=--,于是得线段MN 中点为2(3km k -,23)3m k -,因此,线段MN 的垂直平分线的方程为2231()33m kmy x k k k -=----,而线段MN 的垂直平分线过点(0,4), 从而有22314()33m km k k k-=----,化简得23m k =-,代入223m k >-得:242963k k k -+>-, 解得2k >或2k <-,或33k <<0k ≠,所以k 的取值范围为(,2)(3,0)3)(2,)-∞-⋃-⋃⋃+∞. 19.中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点()2,3A ;②该曲线的渐近线与圆22840x x y -++=相切;③点P 在该双曲线上,1F 、2F 为该双曲线的焦点,当点P 的纵坐标为32时,恰好12PF PF ⊥.(1)求双曲线E 的标准方程;(2)过定点()1,1Q 能否作直线l ,使l 与此双曲线相交于1Q 、2Q 两点,且Q 是弦12Q Q 的中点?若存在,求出l 的方程;若不存在,说明理由.【答案】(1)条件选择见解析,双曲线E 的标准方程为2213y x -=;(2)不存在,理由见解析【分析】(1)选①:利用双曲线的定义求出2a 的值,结合c 的值可求得b 的值,由此可得出双曲线E 的标准方程; 选②:求出3ba=2c a =,结合已知条件可得出a 、b 的值,由此可得出双曲线E 的标准方程; 选③:利用双曲线的定义和勾股定理可得出2122PF PF b ⋅=,然后利用三角形的面积公式可求得2b 的值,结合c 的值可求得a 的值,由此可得出双曲线E 的标准方程.(2)假设满足条件的直线l 存在,设点()111,Q x y 、()222,Q x y ,利用点差法可求得直线l 的斜率,可得出直线l 的方程,再将直线l 与双曲线E 的方程联立,计算∆,即可得出结论. 【解析】(1)设双曲线E 的标准方程为()222210x y a b a b-=>>.选①:由题意可知,双曲线E 的两个焦点分别为()12,0F -、()22,0F , 由双曲线的定义可得221224332a AF AF =-+=,则1a =,故223b c a -所以,双曲线E 的标准方程为2213y x -=. 选②:圆22840x x y -++=的标准方程为()22412x y -+=,圆心为()4,0,半径为23双曲线E 的渐近线方程为by x a=±24231b ab a =⎛⎫+ ⎪⎝⎭3b a =即3b a =,因为2222c a b a +=,则1a =,3b = 因此,双曲线E 的标准方程为2213y x -=.选③:由勾股定理可得2222212121212416242PF PF c PF PF PF PF a PF PF +===-+⋅=+⋅,所以,()2221222PF PF c a b ⋅=-=,则122121134222F PF S PF PF b =⋅==⨯⨯△,则3b =故221a c b =-=, 所以,双曲线E 的标准方程为2213y x -=.(2)假设满足条件的直线l 存在,设点()111,Q x y 、()222,Q x y ,则121222x x y y +=⎧⎨+=⎩,由题意可得221122221313y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差得()()()()121212123y y y y x x x x -+-+=, 所以,直线l 的斜率为12123y y k x x -==-,所以,直线l 的方程为()131y x -=-,即32y x =-. 联立223213y x y x =-⎧⎪⎨-=⎪⎩,整理可得261270x x -+=,2124670∆=-⨯⨯<,因此,直线l 不存在.20.已知0a b >>,如图,曲线Γ由曲线22122:1(0)x y C y a b +=≤和曲线22222:1(0)x y C y a b -=>组成,其中点F 1,F 2为曲线C 1所在圆锥曲线的焦点,点F 3,F 4为曲线C 2所在圆锥曲线的焦点,F 2(2,0),F 4(6,0).(1)求曲线Γ的方程;(2)如图,作直线l 平行于曲线C 2的渐近线,交曲线C 1于点A ,B ,求证:弦AB 的中点M 必在曲线C 2的另一条渐近线上.【答案】(1)221(0)2016x y y +=≤和221(0)2016x y y -=>;(2)证明见解析【分析】(1)根据题意得到2222364a b a b ⎧+=⎨-=⎩,再解方程组即可.(2)不妨令直线l 平行于渐近线25y =,设25:)l y x m =-,(25)m ≥,联立2225)1,2016y x m x y ⎧=-⎪⎪⎨⎪+=⎪⎩得到2222200x mx m -+-=,设点()11,A x y ,()22,B x y ,()00,M x y ,得到02m x =,05y =,0025y x =,即可证明中点M 在另一条渐近线25y =上. 【解析】(1)2(2,0)F ,4(6,0)F ,2222364a b a b ⎧+=∴⎨-=⎩,解得222016a b ⎧=⎨=⎩,则曲线Γ的方程为:221(0)2016x y y +=≤和221(0)2016x y y -=>. (2) 由题意曲线C 2的渐近线为:25y =,不妨令直线l 平行于渐近线25y x =, 设25:)l y x m =-,(5)m ≥,由2225)1,2016y x m x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得2222200x mx m -+-=, ()2248200m m ∴∆=-->,解得:210210m -<<所以有25210m <设点()11,A x y ,()22,B x y ,()00,M x y ,则12x x m +=,212202m x x -=,02mx ∴=,05y =,0025y ∴=,即中点M 在另一条渐近线25y =上.。

高考数学双曲线性质典型例题

高考数学双曲线性质典型例题

(二)双曲线性质典型例题例1 求与双曲线191622=-y x 共渐近线且过()332-,A 点的双曲线方程及离心率. .例2 求以曲线0104222=--+x y x 和222-=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.例3 已知双曲线的渐近线方程为023=±y x ,两条准线间的距离为131316,求双曲线标准方程. 例4 中心在原点,一个焦点为()01,F 的双曲线,其实轴长与虚轴长之比为m ,求双曲线标准方程.例5 求中心在原点,对称轴为坐标轴经过点()31-,P 且离心率为2的双曲线标准方程.例6 已知点()03,A ,()02,F ,在双曲线1322=-y x 上求一点P ,使PF PA 21+的值最小. 例7 已知:()11y x M ,是双曲线12222=-by a x 上一点.求:点M 到双曲线两焦点1F 、2F 的距离.例9 如图所示,已知梯形ABCD 中,CD AB 2=,点E 满足EC AE λ=,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332≤≤λ时,求双曲线离心率的取值范围. 例10 设双曲线12222=-by a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点, 且原点到直线l 的距离为c 43,求双曲线的离心率.例11 在双曲线1131222=-x y 的一支上有三个点),(11y x A 、)6,(2x B 、),(33y x C 与焦点)5,0(F 的距离成等差. (1)求31y y +; (2)求证线段AC 的垂直平分线经过某个定点,并求出定点的坐标.例12 根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率25=e . (2)已知双曲线的右准线为4=x ,右焦点为)0,10(F ,离心率2=e .(3)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且︒=∠6021PF F ,31221=∆F PF S ,又离心率为2. 例13 已知双曲线12222=-by a x 的离心率21+>e ,左、右焦点分别为1F 、2F ,左准线为l ,能否在双曲线的左支上找到一点P ,使得1PF 是P 到l 的距离d 与2PF 的等比中项?例14 直线1+=kx y 与双曲线122=-y x 的左支相交于A ,B 两点,设过点)0,2(-和AB 中点的直线l 在y 轴上的截距为b ,求b 的取值范围.例15 已知1l ,2l 是过点)0,2(-P 的两条互相垂直的直线,且1l ,2l 与双曲线122=-x y 各有1A ,1B 和2A ,2B 两个交点. (1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l ,2l 的方程; (3)若1A 恰是双曲线的一个顶点,求22B A 的值. 例16 已知双曲线的渐近线方程是043=+y x ,043=-y x ,求双曲线的离心率.例17 已知双曲线S 的两条渐近线过坐标原点,且与以)0,2(A 为圆心,1为半径的圆相切,双曲线S 的一个顶点'A 和A 关于直线x y =对称,设直线l 过点A ,斜率为k .(1)求双曲线S 的方程;(2)当1=k 时,在双曲线S 的上支求点B ,使其与直线l 的距离为2;(3)当10<≤k 时,若双曲线S 的上支上有且只有一个点B 到直线l 的距离为2,求斜率k 的值及点B 的坐标. 例18 如右图,给出定点)0,(a A )0(>a 和直线1-=x l :, B 是直线l 上的动点,BOA ∠的角平分线交AB 于C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系\例19 已知双曲线C 的实轴在直线2=x 上,由点)4,4(-A 发出的三束光线射到x 轴上的点P 、Q 及坐标原点O 被x 轴反射,反射线恰好分别通过双曲线的左、右焦点1F 、2F 和双曲线的中心M .若4=PQ ,过右焦点的反射光线与右准线交点的纵坐标为98,求双曲线C 的方程和入射光线AP 、AQ 所在直线的方程.。

双曲线历年高考真题100题 解析版

双曲线历年高考真题100题  解析版

高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】试题分析:依题意有222{3bac c a b ===+,解得1,a b ==2213y x -=.考点:双曲线的概念与性质. A .2 B .C .D .1【答案】D 【解析】试题分析:由离心率e =ca 可得:e 2=a 2+3a2=22,解得:a =1.考点:复数的运算 A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为x 23m −y 23=1.则c 2=3m +3,c =√3m +3,设一个焦点F(√3m +3,0),一条渐近线l 的方程为y =√3√3m=√m,即x −√my =0,所以焦点F 到渐近线l 的距离为d =√3m+3√m+1=√3,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.A .B .C .D .【答案】A 【解析】2=,所以,b a ,双曲线的渐近线方程为y x =,即0x ±=,选A. 考点:椭圆、双曲线的几何性质. A .B .C .D .3【答案】B 【解析】试题分析:因为P 是双曲线x 2a2−y 2b 2=1(a >0,b >0)上一点,所以||PF 1|−|PF 2||=2a ,又|PF 1|+|PF 2|=3b所以,(|PF 1|+|PF 2|)2−(|PF 1|−|PF 2|)2=9b 2−4a 2,所以4|PF 1|⋅|PF 2|=9b 2−4a 2 又因为|PF 1|⋅|PF 2|=94ab ,所以有,9ab =9b 2−4a 2,即9(ba )2−9(ba )−4=0 解得:ba =−13(舍去),或ba =43; 所以e 2=c 2a 2=a 2+b 2a 2=1+(b a )2=1+(43)2=259,所以e =53故选B.考点:1、双曲线的定义和标准方程;2、双曲线的简单几何性质. A .(1,3) B .(]1,3C .(3,+∞)D .[)3,+∞ 【答案】B 【详解】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a 与c 的关系.A.B.C.D.【答案】B【解析】由题意,所以,由双曲线的定义,有,∴.A.(√2,2)B.(√2,√5)C.(2,5)D.(2,√5)【答案】B【详解】由题意得,双曲线的离心率e2=(ca )2=a2+(a+1)2a2=1+(1+1a)2,因为1a 是减函数,所以当a>1时,0<1a<1,所以2<e2<5,所以√2<e<√5,故选B.考点:双曲线的几何性质.【方法点晴】本题主要考查了双曲线的几何性质及其应用,其中解答中涉及到双曲线的标准方程及简单的几何性质的应用,函数的单调性及函数的最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算、转化与化归思想的应用,本题的解得中把双曲线的离心率转化为1a的函数,利用函数的单调性是解答的关键,试题有一定的难度,属于中档题.A .3B .C .D .【答案】C 【解析】可得双曲线的准线为21a x c =±=±,又因为椭圆焦点为(1=.即b 2=3故b=故C.A .B .2C .3D .6【答案】A 【解析】试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出r 的值.22163x y -=的渐近线方程是2y =±20y ±=,又圆心是(3,0),所以由点到直线的距离公式可得r =A .考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.A .2 BC .32D .1【答案】D 【详解】由222123x y c b e a a 可知虚轴-=====,解得a=1,应选D. A .B .5C .D .【答案】D 【解析】由题意知:双曲线的一条渐近线为,由方程组2{1b y x a y x ==+,消去y,得210bx x a-+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D. 【考点定位】本小题考查双曲线与抛物线的基本知识,求离心率、直线与抛物线的位置关系等.A .22124x y -=B .22142-=x yC .22146x y -= D .221410x y -= 【答案】B 【解析】由2e =得222222331,1,222c b b a a a =+==,选B.A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=【答案】A 【详解】圆心为(5,0),渐近线方程为430x y ±=,所以半径为4545⨯=,所以圆的方程是22(5)16x y -+=,即221090x y x +-+=,选A.A .B .12C .D .24【答案】B 【解析】试题分析:由已知可得121212|:|3:2,26,4,PF PF PF PF PF PF =-=⇒==又22212121212||||F F PF PF F F PF F =+=⇒∆是直角三角形146122S =⨯⨯=,故选B .考点:双曲线标准方程及其性质. A.2B.2CD【答案】B 【解析】本小题主要考查双曲线的几何性质、第二定义、余弦定理,以及转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000[()]1a PF e x a ex c =--=+=+,22000[)]1aPF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||2PF PF F F PF PF +-,即cos60222=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0y =.A .√2B .√3C .√3+12D .√5+12【答案】D 【解析】试题分析:设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),得点B (0,b ),焦点为F (c ,0),直线FB 的斜率为−bc 由垂直直线的斜率之积等于-1,建立关于a 、b 、c 的等式,变形整理为关于离心率e 的方程,解之即可得到该双曲线的离心率;设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),可得它的渐近线方程为y =±ba x ,焦点为F (c ,0),点B (0,b )是虚轴的一个端点,∴直线FB 的斜率为k FB =0−b c−0=−b c ,∵直线FB 与直线y =ba x 互相垂直,∴−bc ×ba =−1,∴b 2=ac,∵b 2=c 2−a 2,∴c 2−a 2=ac ,∴e 2−e −1=0,∴e =1±√52∵双曲线的离心率e >1,∴e=√5+12,故选:D考点:双曲线的简单性质A .By=0 C .="0" D±y=0【答案】D 【解析】不妨设12(,0),(,0)F c F c -,则11221222OF F P OF F P F P F POP ++++==因为1260F PF ∠=,所以121212cos602F P F PF P F P F P F P ⋅⋅=⋅=,22212121212||||1cos 22PF PF F F F PF PF PF +-∠==⋅ 所以2221212||4PF PF PF PF c +=⋅+ 因为P 在双曲线上,所以122PF PF a -=则2222212121212()||244PF PF PF PF PF PF c PF PF a -=+-⋅=-⋅= 所以221244PF PF c a ⋅=-,故122212222F P F PF P F P c a ⋅⋅==-222221212||484PF PF PF PF c c a +=⋅+=-因为OP =,所以1272F P F POP +==故22121212||274F P F P F P F Pa ++⋅=,即222327ca a -=故22237b a a +=,解得b =所以双曲线的渐近线方程为0x a =0y ±=,故选DA .3B .3C .D .【答案】A 【详解】由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线,双曲线的右准线方程是3x =,故点P 到y 轴的距离是3.A .12m >B .1m ≥C .1m >D .2m >【答案】C 【解析】试题分析:由题可知1a =,b =c =ce a==>1m >,故选C . 考点:双曲线的离心率.A .12B .2C .1 D【答案】B 【解析】由于对称性,我们不妨取顶点(1,0)A ,取渐近线为0x y -=,所以由点到直线的距离公式可得d ==450得到. 【考点定位】 本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=【答案】D 【详解】由题意,双曲线221x y -=的渐近线方程为y x =±,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C :()222210x y a b a b+=>>上,∴22441a b +=,∵e =∴22234a b a -=,∴224b a =, ∴22205a b ==,∴椭圆方程为:221205x y +=.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质. A .12或32B .23或2 C .12或2 D .23或32【答案】A 【分析】设1122432PF t F F t PF t ===,,,讨论两种情况,分别利用椭圆与双曲线的定义求出,a c 的值,再利用离心率公式可得结果. 【详解】因为1122::PF F F PF 4:3:2=,所以可设1122432PF t F F t PF t ===,,, 若曲线为椭圆则123262a PF PF t c t =+==,,则12c e a ==; 若曲线为双曲线则,324222a t t t a t c t ,,=-===,∴32c e a ==,故选A . 【点睛】本题主要考查椭圆的定义及离心率以及双曲线的定义及离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解. A .2B .C .4D .【答案】C 【解析】2228x y -=可变形为22148x y -=,则24a =,2a =,24a =.故选C.A .4B .3C .2D .1【答案】C 【分析】先根据双曲线()222109x y a a -=>求出渐近线方程,再与320x y ±=比较即可求出a 的值. 【详解】由双曲线的几何性质可得,双曲线()222109x y a a -=>的渐近线方程为3y x a=±,又因为渐近线方程为320x y ±=,即32y x =±,故2a =,选C .【点睛】本题主要考查双曲线的渐近线方程的求法,属基础题.ABC .2D .3【答案】B 【分析】先设2(,),0aP t t c>,由两直线垂直,结合直线的斜率公式可得221tta a c c c c⋅=-+-,再结合三角形的面积公式可得24ct ab =,然后由双曲线离心率的求法求解即可. 【详解】解: 由P 是准线上一点,设2(,),0a P t t c>,又1(,0)F c -,2(,0)F c ,由12PF PF ⊥,可得221tt aa cc cc⋅=-+-,解得t =因为12·4PF PF ab =, 由三角形的面积公式有24ct ab =,2a =, 即223c a =,即==ce a, 故选:B. 【点睛】本题考查了直线的斜率公式及三角形的面积公式,重点考查了双曲线离心率的求法,属中档题.A.ab B .22b a + C .a D .b 【答案】B 【解析】略A .221520x y -=B .221205x y -=C .D .【解析】试题分析:由已知得2,2,bb a a=∴=在方程210y x =+中令0y =,得2222225,5,525,5,20,x c c a b a a b =-∴=-∴=+====∴所求双曲线的方程为221520x y -=,故选A . 考点:1.双曲线的几何性质;2.双曲线方程的求法. A .(0,)B .(1,)C .(,1)D .(,+∞)【答案】B 【解析】试题分析:求出渐近线方程及准线方程;求得它们的交点A ,B 的坐标;利用圆内的点到圆心距离小于半径,列出参数a ,b ,c 满足的不等式,求出离心率的范围. 解:渐近线y=±x . 准线x=±,求得A ().B (),左焦点为在以AB 为直径的圆内, 得出,,b <a ,c 2<2a 2 ∴,故选B .点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1. A .2B .2C .4D .4【答案】B试题分析:根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.A.B.C.D.【答案】A【解析】由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形.因为有且只有一对相较于点O、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得,即,,所以e>.同样地,当,即,所以e≤2.所以双曲线的离心率的范围是.故选A.A .a 2=B .a 2=3C .b 2=D .b 2=2【答案】C 【解析】由题意,C 2的焦点为(±,0),一条渐近线方程为y=2x ,根据对称性易知AB 为圆的直径且AB=2a∴C 1的半焦距c=,于是得a 2﹣b 2=5 ①设C 1与y=2x 在第一象限的交点的坐标为(x ,2x ),代入C 1的方程得:②,由对称性知直线y=2x 被C 1截得的弦长=2x ,由题得:2x=,所以③由②③得a 2=11b 2④ 由①④得a 2=5.5,b 2=0.5 故选CA .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D 【解析】 双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同. 故选D .A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C 【详解】c e a ===2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.本题考查双曲线的基本性质,考查学生的化归与转化能力.A .y=±2xB .y=C .12y x =±D .2y x =±【答案】B 【解析】双曲线的离心率为a=渐进性方程为b y x a =±,计算得b a =故渐进性方程为y =. 【考点定位】本小题考查了离心率和渐近线等双曲线的性质. A .B .C .D .【答案】C 【解析】由于对称性,我们不妨取顶点(2,0)A ,取渐近线为20x y -=,所以由点到直线的距离公式可得5d ==【考点定位】本题考查了双曲线的渐近线及点到直线的距离公式,属于简单题.A BC .2D .3【答案】B 【详解】通径|AB|=2222b a a =⋅得2222222222233b a c a a c aa c e =⇒-===⇒⇒⇒= BA .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A试题分析:双曲线的渐近线为b y x a=,所以0bx ay -=,22650x y x +-+=变形为()2234x y -+=,所以圆心为()3,0,2r =()222222329435,4b c c a c c a b =∴=∴-==∴==,所以双曲线方程为22154x y -=考点:双曲线方程及性质 A .1 B .2C .3D .4【答案】D 【解析】 由已知,取顶点,渐近线,则顶点到渐近线的距离为,解得.A .B .2C D .1【答案】A 【解析】试题分析:双曲线焦点到渐近线的距离为b ,所以距离为b =考点:双曲线与渐近线. A .B .C .D .【答案】A试题分析:由题意,得c=√5,ba =12,又a2+b2=c2,所以a=2,b=1,所以双曲线的方程为x24−y21=1,选A.【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【答案】C【解析】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.A B.54C.43D.53【答案】D 【解析】因为双曲线22221x y a b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴==,(),. 故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22221x y a b -=共渐近线的可设为2222(0)x y a bλλ-=≠;(2)若渐近线方程为b y x a =±,则可设为2222(0)x y a bλλ-=≠;(3) 双曲线的焦点到渐近线的距离等于虚半轴长b ;(4) 22221(0.0)x y a b a b -=>>的一条渐近线的斜率为b a ==可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】 依题意,,,因为,由于,,,所以当时,,,,,所以12e e <;当时,,,而,所以,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >. 考点:双曲线的性质,离心率.A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -【答案】C 【解析】试题分析:焦点在y 轴上的是C 和D ,渐近线方程为ay x b=±,故选C . 考点:1.双曲线的标准方程;2.双曲线的简单几何性质.A B .2C D【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.A .2 B.C .4D.【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质 A .14B .13C.4D.3【答案】A 【解析】试题分析:由已知设21,2,F A m F A m ==则由定义得12122,2,4,2.F A F A a m a F A a F A a -=∴===122,24.ce F F c a a====在12AF F ∆中,由余弦定理得()()2222222121212124441cos 22244a a a AF F F AF AF F AF F F a a+-+-∠===⋅⨯⨯,故选A . 考点:1.双曲线的几何性质(焦点三角形问题);2.余弦定理.A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B 【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. 【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .13B .1 2C .2 3D .32【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3=±y ,所以||3PF =,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得(2,0)F ,结合PF 与x 轴垂直,可得||3PF =,最后由点A 的坐标是(1,3),计算△APF 的面积.得的弦长为2,则C 的离心率为 ( ) A .2 BCD【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==,则点()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -【答案】D 【解析】试题分析:根据对称性,不妨设(,)A x y 在第一象限,则,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 【考点】双曲线的渐近线【名师点睛】求双曲线的标准方程时注意:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).A .y =B .y =C .y x =D .y x = 【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A. 点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.A .32B .3C .D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,2M N ,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y =和y x =联立,求得3(,2M N,所以3MN==,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=【答案】A【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(),0F c(c>0),则A Bx x c==,由22221c ya b-=可得:2bya=±,不妨设:22,,,b bA cB ca a⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay-=,据此可得:21bc bdc-==,22bc bdc+==,则12226bcd d bc+===,则23,9b b==,双曲线的离心率:2cea====,据此可得:23a=,则双曲线的方程为22139x y-=.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.A .(√2,+∞)B .(√2,2)C .(1,√2)D .(1,2)【答案】C 【解析】 c 2=a 2+1,e 2=c 2a2=a 2+1a 2=1+1a 2,∵a >1,∴0<1a 2<1 ,1<e 2<2 ,则0<e <√2,选C.A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=. 本题选择D 选项.【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .221412x y -=B .22179x y -=C .22188x y -=D .221124x y -=【答案】A 【详解】 可得渐近线方程为,将x=a 代入求得.由条件知,半焦距,所以由得,.又因,所以解得,.双曲线C 的方程为221412x y -=故选A .A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1【答案】A 【详解】由题意得,双曲线的焦距为10,即22225a b c +==, 又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上, 所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(⋃D .(,(2,)-∞+∞【答案】A 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于a,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .A .2B .C .4D .【答案】C 【解析】试题分析:双曲线方程变形为22148x y -=,所以28b b =∴=2b =考点:双曲线方程及性质A.3 B.2 CD【答案】B【详解】M N,是双曲线的两顶点,M O N,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选BA.14B.35C.34D.45【答案】C【解析】由x2-y2=2知,a2=2,b2=2,c2=a2+b2=4,∴,c=2.又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,∴|PF1,|PF2.又∵|F1F2|=2c=4,∴由余弦定理得cos∠F1PF22224+-34. 故选C.二、填空题 【答案】,.【解析】 由题意得:,,,∴焦距为,渐近线方程为.考点:双曲线的标准方程及其性质 【答案】【解析】 因为的方程为,所以的一条渐近线的斜率,所以的一条渐近线的斜率,因为双曲线、的顶点重合,即焦点都在轴上,设的方程为,所以,所以的方程为.考点:双曲线的性质,直线的斜率.【答案】y x = 【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为y x = 考点:双曲线渐近线【答案】22x y 1412-=【解析】 解:由已知得,22,4221412b c c e a a a x y==∴===∴=∴-=双曲线的方程为【答案】16 【分析】根据双曲线的焦点坐标,判断出双曲线焦点所在的坐标轴,再根据222c a b =+列方程,求得m 的值. 【详解】双曲线的焦点坐标为()0,5F ,故焦点在y 轴上,由222c a b =+得259,16m m =+=. 【点睛】本小题主要考查根据双曲线的焦点坐标求双曲线的方程,属于基础题.【答案】44 【详解】由题意因为PQ 过双曲线的右焦点(5,0), 所以P ,Q 都在双曲线的右支上, 则有6,6FP PA PQ QA -=-=,两式相加,利用双曲线的定义得28FP FQ +=,所以△PQF 的周长为284FP FQ PQ b ++=+=28+16=44. 故答案为44.【答案】1) 【详解】因为在12PF F ∆中,由正弦定理得211221sin sin PF PF PF F PF F =∠∠,则由已知,得21a c PF PF =,即12aPF cPF =,12c PF PF a=, 由双曲线的定义知212222222c a PF PF a PF PF a PF a c a-=-=⇒=-,, 由双曲线的几何性质知22222,20,a PF c a c a c ac a c a>->-⇒--<-所以2210,e e --<解得11e <<,又1()e ∈+∞,,故双曲线的离心率1)e ∈【答案】2【解析】设(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以点到直线的距离恒大于直线10x y -+=与渐近线0x y -=之间距离,因此c 的最大值为直线10x y -+=与渐近线0x y -=之间距离,为2.2=考点:双曲线渐近线,恒成立转化【答案】【分析】根据题意,根据1,,P A F 三点共线,求出直线1AF 的方程,联立双曲线方程,即可求得P 点坐标,则由11APF AFF PFF S S S ∆∆∆=-即可容易求得.【详解】设双曲线的左焦点为1F ,由双曲线定义知,12PF a PF =+,∴△APF 的周长为|P A|+|PF|+|AF|=|P A|+12a PF ++|AF|=|P A|+1PF +|AF|+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|P A|+1PF 最小,即P 、A 、1F 共线,∵(A ,()13,0F -∴直线1AF的方程为13x +=-,即3x =-代入2218y x -=整理得2960y +-=,解得y =y =-舍),所以P 点的纵坐标为∴11116622APF AFF PFF S S S ∆∆∆=-⨯⨯⨯⨯=故答案为:【点睛】本题考查双曲线中三角形面积的求解,涉及双曲线的定义,属综合中档题.【答案】2+【详解】双曲线22221x y a b-=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a =平行,其方程为()b y x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c+=,由2222a c ac +=,得2()410c c a a -+=,解之得2c a =+2c a =1ca>),故双曲线的离心率为2+考点:1.双曲线的几何性质;2.直线方程.【答案】2214x y -=【详解】依题意,设所求的双曲线的方程为224x y λ-=.点M 为该双曲线上的点,16124λ∴=-=.∴该双曲线的方程为:2244x y -=,即2214x y -=.故本题正确答案是2214x y -=.【答案】2y x =± 【解析】||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+= , 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⇒⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为2y x =±. 【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为221Ax By +=的形式,当0A >,0B >,A B ≠时为椭圆,当0AB <时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.【答案】2 【解析】222222221,,13c a b a b m e m a a +=====+=,2m =.渐近线方程是y ==.P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(,1010P ,则Q ,1(F ,2F ,则S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a-=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】48 【解析】根据双曲线方程2222y x a b -=1知a 2=16,b 2=m ,并在双曲线中有a 2+b 2=c 2,∴离心率e =c a =2,22c a=4=1616m+,m =48.【答案】 【解析】试题分析:222227,3,7310,2a b c a b c c ==∴=+=+=∴==【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,22221(0,0)x y a b a b-=>>揭示焦点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2c =b y x a =±,离心率为c a =【解析】试题分析:根据对称性,不妨设,短轴端点为,从而可知点在双曲线上,∴.考点:双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来. 【答案】11 【详解】由双曲线的方程2221(0)9x y b b-=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±, 又因为15PF =,所以2||11PF =.【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 【名师点睛】1.已知双曲线方程22221(0,0)x y a b a b -=>>求渐近线:22220x y b y x a b a-=⇒=±.2.已知渐近线y mx =设双曲线的标准方程为222m x y λ-=.3.双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】3【解析】 如图所示,由题意可得|OA|=a ,|AN|=|AM|=b , ∵∠MAN=60°, ∴, ∴=设双曲线C 的一条渐近线y=bax 的倾斜角为θ,则tanθ=||||AP OP =. 又tan θ=b a,b a =,解得a 2=3b 2,∴3==.答案:3点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,再根据222b c a=-和cea=转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).【答案】12 y x =±【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214xy-=的a=2,b=1,焦点在x轴上而双曲线22221x ya b-=的渐近线方程为y=±bxa∴双曲线2214xy-=的渐近线方程为y=±12x故答案为y=±1 2 x【点睛】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想【答案】4【详解】分析:根据离心率公式cea=,及双曲线中,,a b c的关系可联立方程组,进而求解参数a的值.。

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。

2024年全国高考甲卷理数真题试卷含答案

2024年全国高考甲卷理数真题试卷含答案

2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )A .10iB .2iC .10D .2-2.集合{}{}1,2,3,4,5,9,A B A ==,则∁A (A ∩B )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A .5B .12C .2-D .72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( )A .2-B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )A .4B .3C .2D6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( )A .16B .13C .12D .237.函数()()2e e sin x xf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭( )A.1B.1-CD.19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-”是“//a b ”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B=,294b ac =,则sin sin A C +=( )A.32B C D 12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y++-=交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .二、填空题13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a -=-,则=a .16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .19.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值.23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A B A ==,则∁A (A ∩B )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A .5B .12C .2-D .72-根据5z x y =-可得1155y x z =-,即则该直线截距取最大值时,z 有最小值,此时直线4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( )A .2-B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( )A .16B .13C .12D .237.函数()()2e e sin x xf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭( )A .1B .1-C D .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“ ”的必要条件10.设是两个平面,是两条直线,且.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确;②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误;①③正确,故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32B C D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )故选C二、填空题13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙.15.已知1a >,115log log 42a -=-,则=a .16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析由223412(4)x y y k x ⎧+=⎨=-⎩可得(34+()(42Δ102443464k k k =-+21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;0f x ≥a.在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值.【答案】(1)221y x =+满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)见解析(2)见解析。

2022版新高考数学总复习真题专题--双曲线(解析版)

2022版新高考数学总复习真题专题--双曲线(解析版)

2022版新高考数学总复习--§10.2双曲线—五年高考—考点1双曲线的定义和标准方程1.(2020浙江,8,4分)已知点O(0,0),A(-2,0),B(2,0).设点P满足|PA|-|PB|=2,且P为函数y=3√4-x2图象上的点,则|OP|= ()A.√222B.4√105C.√7D.√10答案D2.(2020天津,7,5分)设双曲线C的方程为x 2a2-y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x 24-y24=1 B.x2-y24=1C.x 24-y2=1 D.x2-y2=1 答案D3.(2019课标Ⅲ文,10,5分)已知F是双曲线C:x 24-y25=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.32B.52C.72D.92答案B以下为教师用书专用(1—10)1.(2018天津理,7,5分)已知双曲线x 2a2-y2b2=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.x 24-y212=1 B.x212-y24=1C.x 23-y29=1 D.x29-y23=1答案C本题主要考查双曲线的方程、几何性质以及点到直线的距离公式的应用.∵双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,∴e2=1+b 2a2=4, ∴b 2a2=3,即b 2=3a 2,∴c 2=a 2+b 2=4a 2,由题意可设A (2a ,3a ),B (2a ,-3a ),∵b 2a 2=3,∴渐近线方程为y =±√3x ,则点A 与点B 到直线√3x -y =0的距离分别为d 1=|2√3a -3a |2=2√3-32a ,d 2=|2√3a+3a |2=2√3+32a ,又∵d 1+d 2=6,∴2√3-32a +2√3+32a =6,解得a =√3,∴b 2=9.∴双曲线的方程为x 23-y 29=1,故选C .解题关键 利用离心率的大小得出渐近线方程并表示出点A 与点B 的坐标是求解本题的关键. 方法归纳 求双曲线标准方程的方法(1)定义法:根据题目的条件,若满足双曲线的定义,求出a ,b 的值,即可求得方程.(2)待定系数法:根据题目条件确定焦点的位置,从而设出所求双曲线的标准方程,利用题目条件构造关于a ,b 的方程(组),解得a ,b 的值,即可求得方程.2.(2017课标Ⅲ理,5,5分)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =√52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为 ( )A.x 28-y 210=1B.x 24-y 25=1C.x 25-y 24=1D.x 24-y 23=1答案 B 本题考查双曲线的方程.由双曲线的渐近线方程可设双曲线方程为x 24-y 25=k (k >0),即x 24k -y 25k=1,∵双曲线与椭圆x 212+y 23=1有公共焦点,∴4k +5k =12-3,解得k =1,故双曲线C的方程为x 24-y 25=1.故选B .一题多解 ∵椭圆x 212+y 23=1的焦点为(±3,0),双曲线与椭圆x 212+y 23=1有公共焦点,∴a 2+b 2=(±3)2=9①,∵双曲线的一条渐近线为y =√52x ,∴b a =√52②,联立①②可解得a 2=4,b 2=5.∴双曲线C 的方程为x 24-y 25=1.3.(2017课标Ⅰ文,5,5分)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为 ( ) A.13 B.12 C.23 D.32答案 D 本题考查双曲线的几何性质. 易知F (2,0),不妨取P 点在x 轴上方,如图.∵PF ⊥x 轴,∴P (2,3),|PF |=3,又A (1,3), ∴|AP |=1,AP ⊥PF , ∴S △APF =12×3×1=32.故选D .4.(2015安徽理,4,5分)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是 ( )A.x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=1答案 C 由于焦点在y 轴上,故排除A 、B .由于渐近线方程为y =±2x ,故排除D .故选C .5.(2014天津理,5,5分)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为 ( )A .x 25-y 220=1 B .x 220-y 25=1 C .3x 225-3y 2100=1 D .3x 2100-3y 225=1答案 A由题意得ba=2且c =5.故由c 2=a 2+b 2,得25=a 2+4a 2,则a 2=5,b2=20,从而双曲线方程为x 25-y 220=1.6.(2014江西文,9,5分)过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A.若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为 ( ) A .x 24-y 212=1 B .x 27-y 29=1 C .x 28-y 28=1 D .x 212-y 24=1答案 A 由双曲线方程知右顶点为(a ,0),不妨设其中一条渐近线方程为y =ba x ,因此可设点A 的坐标为(a ,b ).设右焦点为F (c ,0),由已知可知c =4,且|AF |=4,即(c -a )2+b 2=16,所以有(c -a )2+b 2=c 2,得a 2-2ac +b 2=0,又知c 2=a 2+b 2,所以得a 2-2ac +c 2-a 2=0,即a =c2=2,所以b 2=c 2-a 2=42-22=12.故双曲线的方程为x 24-y 212=1,故选A .评析 本题考查双曲线的标准方程的求法、双曲线的几何性质以及圆的定义,考查学生的运算求解能力和逻辑推理能力.7.(2016课标Ⅰ,5,5分)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,√3)C.(0,3)D.(0,√3)答案 A 解法一:由题意可知:c 2=(m 2+n )+(3m 2-n )=4m 2,其中c 为半焦距,∴2c =2×2|m |=4,∴|m |=1,∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,∴-m 2<n <3m 2,∴-1<n <3.故选A .解法二:∵原方程表示双曲线,且焦距为4, ∴{m 2+n >0,3m 2-n >0,m 2+n +3m 2-n =4,①或{m 2+n <0,3m 2-n <0,-(3m 2-n )-(m 2+n )=4,②由①得m 2=1,n ∈(-1,3).②无解.故选A .知识拓展 对于方程mx 2+ny 2=1,若表示椭圆,则m 、n 均为正数且m ≠n ;若表示双曲线,则m ·n <0.8.(2016天津,6,5分)已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为 ( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1 D.x 24-y 212=1答案 D 设A (x 0,y 0),不妨令其在第一象限,由题意得{x 02+y 02=22,y 0=b2x 0, 可得x 02=164+b2,y 02=b 24×164+b2=4b 24+b 2,结合2x 0·2y 0=2b ,可得b 2=12.所以双曲线的方程为x 24-y 212=1.故选D .9.(2015课标Ⅰ文,16,5分)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,6√6).当△APF 周长最小时,该三角形的面积为 . 答案 12√6解析 由已知得双曲线的右焦点F (3,0).设双曲线的左焦点为F',则F'(-3,0).由双曲线的定义及已知得|PF |=2a +|PF'|=2+|PF'|.△APF 的周长最小,即|PA |+|PF |最小.|PA |+|PF |=|PA |+2+|PF'|≥|AF'|+2=17,即当A 、P 、F'三点共线时,△APF 的周长最小.设P点坐标为(x 0,y 0),y 0>0,由{x 0-306√6=1,x 02-y 028=1得y 02+6√6y 0-96=0,所以y 0=2√6或y 0=-8√6(舍去).所以当△APF 的周长最小时,该三角形的面积S =12×6×6√6-12×6×2√6=12√6.10.(2015课标Ⅱ文,15,5分)已知双曲线过点(4,√3),且渐近线方程为y =±12x ,则该双曲线的标准方程为 . 答案x 24-y 2=1 解析 根据渐近线方程为x ±2y =0,可设双曲线方程为x 2-4y 2=λ(λ≠0).因为双曲线过点(4,√3),所以42-4×(√3)2=λ,即λ=4.故双曲线的标准方程为x 24-y 2=1.考点2 双曲线的几何性质1.(2020课标Ⅱ,文9,理8,5分)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为 ( )A.4B.8C.16D.32 答案 B2.(2020课标Ⅲ理,11,5分)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为√5.P 是C 上一点,且F 1P ⊥F 2P.若△PF 1F 2的面积为4,则a = ( ) A.1 B.2 C.4 D.8 答案 A3.(2020课标Ⅰ文,11,5分)设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( )A.72B.3C.52D.2 答案 B4.(2019课标Ⅰ文,10,5分)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A.2sin 40°B.2cos 40°C.1sin50° D.1cos50° 答案 D5.(2019课标Ⅲ理,10,5分)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为 ( ) A.3√24B.3√22C.2√2D.3√2答案 A6.(2021新高考Ⅱ,13,5分)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),离心率e =2,则双曲线C 的渐近线方程为.答案 y =±√3x7.(2021全国乙理,13,5分)已知双曲线C :x 2m -y 2=1(m >0)的一条渐近线为√3x +my =0,则C 的焦距为 . 答案 4解题指导 根据题设,由双曲线方程写出其渐近线方程,再结合题设列出关于m 的方程,求解出m ,再求出焦距.8.(2020江苏,6,5分)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 25=1(a >0)的一条渐近线方程为y =√52x ,则该双曲线的离心率是 . 答案329.(2020课标Ⅰ理,15,5分)已知F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 . 答案 210.(2020北京,12,5分)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为 ;C 的焦点到其渐近线的距离是 . 答案 (3,0);√311.(2019课标Ⅰ理,16,5分)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ·F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为 . 答案 212.(2018北京理,14,5分)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 ;双曲线N 的离心率为 . 答案 √3-1;213.(2021新高考Ⅰ,21,12分)在平面直角坐标系xOy 中,已知点F 1(-√17,0),F 2(√17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C. (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |·|TB |=|TP |·|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.解题指导 (1)先判断出M 的轨迹C 为双曲线的右支,并设出双曲线的标准方程,然后结合双曲线的定义,利用待定系数法确定其标准方程;(2)设出T 点坐标和直线AB 的方程,然后联立方程并利用根与系数的关系表示|TA |·|TB |,同理得到|TP |·|TQ |,结合|TA |·|TB |=|TP |·|TQ |得到结果. 以下为教师用书专用(1—22) 1.(2019课标Ⅰ文,10,5分)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A.2sin 40°B.2cos 40°C.1sin50°D.1cos50°答案 D 本题主要考查双曲线的性质,同角三角函数的基本关系式及诱导公式;考查考生的运算求解能力和逻辑思维能力;考查的核心素养是数学运算.由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)可知渐近线方程为y =±ba x ,由题意知-b a=tan 130°, 又tan 130°=-tan 50°, ∴ba=tan 50°, ∴双曲线的离心率e =c a =√1+b 2a 2=√1+tan 250°=√1+sin 250°cos 250°=√1cos 250°=1cos50°,故选D .方法总结求双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率的常见方法:(1)定义法:e =2c 2a =c a ;(2)公式法:e =√1+b 2a2=√1+tan 2θ(θ为渐近线的倾斜角);(3)方程思想:利用题中条件得出关于a ,b ,c 的方程,利用b 2=c 2-a 2转化为关于a ,c 的方程,最后利用e =ca 转化为关于e 的方程,从而得出离心率e. 2.(2019北京文,5,5分)已知双曲线x 2a2-y 2=1(a >0)的离心率是√5,则a = ( ) A.√6 B.4 C.2 D.12答案 D 本题主要考查双曲线的几何性质,考查学生运算求解的能力以及方程的思想,考查的核心素养为数学运算. 由题意得e =ca =√5,又a 2+b 2=c2,∴b 2a 2=c 2-a 2a 2=e 2-1=4,∵b 2=1,∴a 2=14.∵a >0,∴a =12.易错警示 把双曲线的离心率错认为e =√1-b 2a2而出错. 3.(2018浙江,2,4分)双曲线x 23-y 2=1的焦点坐标是 ( )A.(-√2,0),(√2,0)B.(-2,0),(2,0)C.(0,-√2),(0,√2)D.(0,-2),(0,2)答案 B 本小题考查双曲线的标准方程和几何性质.∵a 2=3,b 2=1,∴c =√a 2+b 2=2.又∵焦点在x 轴上,∴双曲线的焦点坐标为(-2,0),(2,0).易错警示 求双曲线焦点坐标的易错点 (1)焦点在x 轴上还是y 轴上,容易判断错误;(2)双曲线与椭圆的标准方程中a ,b ,c 的关系式容易混淆.4.(2015课标Ⅰ理,5,5分)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ <0,则y 0的取值范围是 ( )A.(-√33,√33) B.(-√36,√36)C.(-2√23,2√23) D.(-2√33,2√33) 答案 A 若MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,则点M 在以原点为圆心,半焦距c =√3为半径的圆上,则{x 02+y 02=3,x 022-y 02=1,解得y 02=13.可知:MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ <0⇒点M 在圆x 2+y 2=3的内部⇒y 02<13⇒y 0∈(-√33,√33).故选A .5.(2015课标Ⅱ理,11,5分)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为 ( ) A.√5 B.2 C.√3 D.√2答案 D 设双曲线E 的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则A (-a ,0),B (a ,0),不妨设点M 在第一象限内,则易得M (2a ,√3a ),又M 点在双曲线E上,于是(2a )2a 2-(√3a )2b 2=1,解得b 2=a 2,∴e =√1+b2a 2=√2.6.(2015湖南文,6,5分)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为 ( )A.√73B.54C.43D.53答案 D双曲线x 2a 2-y 2b2=1的两条渐近线方程为y =±b a x ,则点(3,-4)在直线y =-b a x 上,即-4=-3b a ,所以4a =3b ,即b a =43,所以e =√1+b 2a 2=53.故选D .7.(2015重庆文,9,5分)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为 ( )A.±12 B.±√22 C.±1 D.±√2答案 C 不妨令B 在x 轴上方,因为BC 过右焦点F (c ,0),且垂直于x 轴,所以可求得B ,C 两点的坐标分别为(c ,b 2a ),(c ,-b 2a ),又A 1,A 2的坐标分别为(-a ,0),(a ,0),所以A 1B ⃗⃗⃗⃗⃗⃗⃗ =(c +a ,b 2a),A 2C ⃗⃗⃗⃗⃗⃗⃗ =(c -a ,-b2a), 因为A 1B ⊥A 2C ,所以A 1B ⃗⃗⃗⃗⃗⃗⃗ ·A 2C ⃗⃗⃗⃗⃗⃗⃗ =0,即(c +a )(c -a )-b 2a ·b 2a =0,即c 2-a2-b 4a2=0,所以b2-b 4a2=0, 故b 2a 2=1,即b a =1,又双曲线的渐近线的斜率为±ba,故该双曲线的渐近线的斜率为±1.故选C .8.(2014课标Ⅰ理,4,5分)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A.√3B.3C.√3mD.3m 答案 A由题意知,双曲线的标准方程为x 23m -y 23=1,其中a 2=3m ,b 2=3,故c =√a 2+b 2=√3m +3,不妨设F 为双曲线的右焦点,故F (√3m +3,0).其中一条渐近线的方程为y =1√mx ,即x -√m y =0,由点到直线的距离公式可得d =√3·√m+1|√1+(-√m )=√3,故选A .评析 本题考查双曲线的方程、性质以及点到直线的距离公式等基础知识,考查考生对知识的灵活运用能力和运算求解能力. 9.(2014课标Ⅰ文,4,5分)已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a = ( )A .2B .√62C .√52D .1答案 D 由双曲线方程知b 2=3,从而c 2=a 2+3,又e =2,因此c 2a 2=a 2+3a 2=4,又a >0,所以a =1,故选D .10.(2013课标Ⅰ理,4,5分)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为√52,则C 的渐近线方程为 ( )A.y =±14xB.y =±13xC.y =±12x D.y =±x答案 C ∵ba =√e 2-1=√54-1=12,∴C 的渐近线方程为y =±12x.故选C .11.(2011课标全国理,7,5分)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为 ( ) A.√2 B.√3 C.2 D.3 答案 B 不妨设双曲线C为x 2a 2-y 2b 2=1(a >0,b >0),并设l 过F 2(c ,0)且垂直于x轴,则易求得|AB |=2b 2a,∴2b 2a =2×2a ,b 2=2a 2,∴离心率e =c a =√1+b 2a 2=√3,故选B .12.(2016课标Ⅱ,11,5分)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为 ( ) A.√2 B.32 C.√3 D.2答案 A 解法一:不妨设M 在第二象限,由MF 1⊥x 轴,可得M (-c ,b 2a ),∴|MF 1|=b 2a .由sin ∠MF 2F 1=13,可得cos ∠MF 2F 1=√1-(13)2=2√23,又tan ∠MF 2F 1=|MF 1||F 1F 2|=b2a2c,∴b 2a2c=132√23,∴b 2=√22ac ,∵c 2=a 2+b 2⇒b 2=c 2-a 2,∴c 2-a 2-√22ac =0⇒e 2-√22e -1=0,∴e =√2.故选A .解法二:不妨设M 在第二象限,由MF 1⊥x 轴,得M (-c ,b 2a ),∴|MF 1|=b 2a ,由双曲线的定义可得|MF 2|=2a +|MF 1|=2a +b 2a ,又sin ∠MF 2F 1=|MF 1||MF 2|=b2a 2a+b2a=13⇒a 2=b 2⇒a =b ,∴e =√1+(b a )2=√2.故选A .13.(2016浙江,7,5分)已知椭圆C 1:x 2m2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则 ( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<1 答案 A 在椭圆中,a 1=m ,c 1=√m 2-1,e 1=√m 2-1m.在双曲线中,a 2=n ,c 2=√n 2+1,e 2=√n 2+1n.因为c 1=c 2,所以n 2=m 2-2.从而e 12·e 22=(m 2-1)(n 2+1)m 2·n 2=(m 2-1)2m 2·(m 2-2),令t =m 2-1,则t >1,e 12·e 22=t 2t 2-1>1,即e 1e 2>1.结合图形易知m >n ,故选A .思路分析 根据焦点重合可得m 2与n 2之间的关系,进而建立e 12e 22关于m 的解析式,然后判定范围即可.14.(2018上海,2,4分)双曲线x 24-y 2=1的渐近线方程为 . 答案 y =±12x解析 本题主要考查双曲线的渐近线方程. 解法一:由双曲线x 24-y 2=1知a 2=4,b 2=1,∴a =2,b =1,∴该双曲线的渐近线方程为y =±12x.解法二:令双曲线x 24-y 2=1中的“1”为“0”,即可得到双曲线的渐近线方程,即x 24-y 2=0,∴该双曲线的渐近线方程为y =±12x.15.(2018江苏,8,5分)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0)到一条渐近线的距离为√32c ,则其离心率的值是 . 答案 2解析 本题考查双曲线的性质.双曲线的一条渐近线方程为bx -ay =0,则F (c ,0)到这条渐近线的距离为√b 2+(-a )=√32c ,∴b =√32c ,∴b 2=34c 2,又b 2=c 2-a 2,∴c 2=4a 2,∴e =ca =2.16.(2017课标Ⅰ理,15,5分)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .答案2√33解析 本题考查双曲线的几何性质和圆的性质.不妨设点M 、N 在渐近线y =ba x 上,如图,△AMN 为等边三角形,且|AM |=b ,则A 点到渐近线y =b ax 的距离为√32b ,又将y =b ax 变形为一般形式为bx -ay =0,则A (a ,0)到渐近线bx -ay =0的距离d =√a 2+b =|ab |c ,所以|ab |c =√32b ,即a c =√32, 所以双曲线离心率e =c a =2√33. 17.(2017课标Ⅲ文,14,5分)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a = .答案 5解析 由题意可得3a =35,所以a =5. 18.(2017北京理,9,5分)若双曲线x 2-y 2m =1的离心率为√3,则实数m = .答案 2解析 本题考查双曲线的性质. 由题意知,a 2=1,b 2=m.∵e =c a =√1+b 2a 2=√1+m 1=√3,∴m =2. 19.(2016山东理,13,5分)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是 . 答案 2 解析由已知得|AB |=|CD |=2b 2a ,|BC |=|AD |=|F 1F 2|=2c.因为2|AB |=3|BC |,所以4b 2a =6c ,又b 2=c 2-a 2,所以2e 2-3e -2=0,解得e =2,或e =-12(舍去).评析 本题考查了双曲线的基本性质,利用2|AB |=3|BC |和b 2=c 2-a 2构造关于离心率e 的方程是求解的关键.20.(2016北京理,13,5分)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a = . 答案 2解析 由OA 、OC 所在直线为渐近线,且OA ⊥OC ,知两条渐近线的夹角为90°,从而双曲线为等轴双曲线,则其方程为x 2-y 2=a 2.OB 是正方形的对角线,且点B 是双曲线的焦点,则c =2√2,根据c 2=2a 2可得a =2.评析 本题考查等轴双曲线及其性质.21.(2015北京理,10,5分)已知双曲线x 2a2-y 2=1(a >0)的一条渐近线为√3x +y =0,则a = . 答案 √33解析由双曲线x 2a2-y 2=1(a >0)知其渐近线方程为y =±1a x ,又因为a >0,所以1a =√3,解得a =√33.22.(2014浙江理,16,4分)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B.若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是 .答案√52解析 由{x -3y +m =0,y =ba x得A (am 3b -a ,bm3b -a ), 由{x -3y +m =0,y =-ba x得B (-am 3b+a ,bm 3b+a ),则线段AB 的中点为M (a 2m 9b 2-a 2,3b 2m 9b 2-a 2).由题意得PM ⊥AB ,∴k PM =-3,得a 2=4b 2=4c 2-4a 2,故e 2=54,∴e =√52.— 三年模拟 — A 组 考点基础题组考点1 双曲线的定义和标准方程1.(2020山东百师联盟测试五,5)已知圆C 1:(x -4)2+y 2=25,圆C 2:(x +4)2+y 2=1,动圆M 与C 1,C 2都外切,则动圆圆心M 的轨迹方程为( )A.x 24-y 212=1(x <0) B.x 24-y 212=1(x >0)C.x 23-y 25=1(x <0)D.x 23-y 25=1(x >0) 答案 A 2.(2020广东湛江网络教学测试(二),5)椭圆x 26+y 24=1的两焦点分别为F 1,F 2,以椭圆短轴的两端点为焦点,|F 1F 2|为虚轴长的双曲线方程为 ( )A.x 2-y 2=2 B.y 2-x 2=2 C.x 2-y 2=√2 D.y 2-x 2=√2 答案 B3.(2021河北衡水中学全国高三第二次联考,6)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点F (c ,0)到渐近线的距离为√32c ,且点(2,√3)在双曲线上,则双曲线的方程为 ( )A.x 29-y 23=1 B.x 212-y 23=1 C.x 23-y 212=1D.x 23-y 29=1答案 D考点2 双曲线的几何性质1.(2020湖南长沙明德中学月考,10)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,M 为双曲线上一点,若cos ∠F 1MF 2=14,|MF 1|=2|MF 2|,则此双曲线的渐近线方程为 ( ) A.y =±√3x B.y =±√33x C.y =±x D.y =±2x 答案 A2.(多选题)(2021广东揭阳4月联考,9)已知一组直线x ±2y =0,则以该组直线为渐近线的双曲线有 ( ) A.x 2-4y 2=1 B.4y 2-x 2=1 C.x2-y 24=1D.x 24-y 2=1 答案 ABD3.(2021山东济南十一学校联考,6)椭圆与双曲线共焦点F 1,F 2,它们的交点P 对两公共焦点F 1,F 2的张角为∠F 1PF 2=2θ,椭圆与双曲线的离心率分别为e 1,e 2,则 ( )A.cos 2θe 12+sin 2θe 22=1B.sin 2θe 12+cos 2θe 22=1 C.e 12cos 2θ+e 22sin 2θ=1D.e 12sin 2θ+e 22cos 2θ=1答案 B4.(2021辽宁沈阳市郊联体一模,7)设F 1,F 2是双曲线C :x 24-y 28=1的两个焦点,O 为坐标原点,点P 在C 的左支上,且OF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗⃗ |OP⃗⃗⃗⃗⃗⃗ |+F 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ·OP ⃗⃗⃗⃗⃗⃗ |OP⃗⃗⃗⃗⃗⃗ |=2√3,则△PF 1F 2的面积为 ( )A.8B.8√3C.4D.4√3 答案 A5.(2019广东佛山二模,11)已知F 为双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右焦点,A ,B 是双曲线C 的一条渐近线上关于原点对称的两点,AF ⊥BF ,且AF 的中点在双曲线C 上,则C 的离心率为( ) A.√5-1 B.√3+12C.√5+12D.√3+1答案 A6.(2021河北二轮复习联考(一),6)已知双曲线C :x 22-y 2b2=1(b >0)的离心率为e ,若e ∈(√5,√10),则C 的焦点到一条渐近线的距离的取值范围为 ( )A.(1,3√2)B.(√2,+∞)C.(2√2,3√2)D.(√2,3√2) 答案 CB 组 综合应用题组时间:70分钟 分值:85分一、单项选择题(每小题5分,共35分)1.(2021百校大联考(六),8)若双曲线x 2a 2-y 2b 2=1的离心率等于√103,则该双曲线的渐近线方程为 ( )A.y =±3xB.y =±12xC.y =±13x D.y =±2x 答案 C2.(2021湘豫名校4月联考,10)已知双曲线C :x 216-y 29=1的右焦点为F ,过原点O 的直线与双曲线C 交于A ,B 两点,且∠AFB =60°,则△OBF 的面积为( ) A.92B.9√32C.32 D.3√32答案 D3.(2020河北衡水中学七调,4)已知双曲线C :x 212-y 24=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为P ,Q ,若△POQ 为直角三角形,则|PQ |= ( ) A.2 B.4 C.6 D.8答案 C4.(2021广东肇庆二模,8)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,O为坐标原点,在双曲线C 上存在点M ,使得2|OM |=|F 1F 2|,设△F 1MF 2的面积为S.若16S =(|MF 1|+|MF 2|)2,则该双曲线的离心率为 ( ) A.√62 B.√32 C.32 D.√3 答案 A5.(2019湖南岳阳二模,11)如图,设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,若双曲线及其渐近线上各存在一点Q ,P ,使得四边形OPFQ 为矩形,则其离心率为 ( )A.√3B.2C.√5D.√6 答案 A6.(2021辽宁沈阳二模,8)已知点F 1,F 2分别是双曲线C :x 2-y 2b2=1(b >0)的左,右焦点,O 为坐标原点,点P 在双曲线C的右支上,且满足|F 1F 2|=2|OP |,tan ∠PF 2F 1≥5,则双曲线C 的离心率的取值范围为 ( )A.(1,√173] B.(1,√264] C.(1,√5] D.(1,√2]答案 B7.(2021江苏南通如皋二模,7)在平面直角坐标系xOy 中,点F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,过点F 1且与直线l :y =-ba x 垂直的直线交C 的右支于点M ,设直线l 上一点N (N 在第二象限)满足F 1N ⊥F 2N ,且(F 1N ⃗⃗⃗⃗⃗⃗⃗ +F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ )·MN ⃗⃗⃗⃗⃗⃗⃗ =0,则双曲线C 的离心率为 ( ) A.√5 B.√3 C.√2+1 D.2 答案 A二、多项选择题(每小题5分,共15分)8.(2020全国统一模拟五,12)设F 1、F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过左焦点F 1且斜率为√157的直线l 与C 在第一象限相交于一点P ,则下列说法正确的是( ) A.直线l 倾斜角的余弦值为78B.若|F 1P |=|F 1F 2|,则C 的离心率e =43 C.若|PF 2|=|F 1F 2|,则C 的离心率e =2 D.△PF 1F 2不可能是等边三角形 答案 AD9.(2021山东烟台一模,10)已知双曲线C :x 2m -y 2m+7=1(m ∈R )的一条渐近线方程为4x -3y =0,则 ( )A.(√7,0)为C 的一个焦点B.双曲线C 的离心率为53C.过点(5,0)作直线与C 交于A ,B 两点,则满足|AB |=15的直线有且只有两条D.设A ,B ,M 为C 上三点且A ,B 关于原点对称,则MA ,MB 斜率存在时其乘积为169 答案 BD10.(2021广东梅州一模,10)下列关于圆锥曲线的命题中,正确的是 ( ) A.设A 、B 为两个定点,k 为非零常数,|PA⃗⃗⃗⃗⃗ |-|PB ⃗⃗⃗⃗⃗ |=k ,则动点P 的轨迹为双曲线 B.过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若OP ⃗⃗⃗⃗⃗ =12(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ),则动点P 的轨迹为椭圆 C.方程2x 2-5x +2=0的两根可分别作为椭圆和双曲线的离心率 D.双曲线x 225-y 29=1与椭圆x 235+y 2=1有相同的焦点 答案 CD三、填空题(每小题5分,共20分)11.(2020山东潍坊模拟,15)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1、F 2,直线y =√3b 与C 的右支相交于点P ,若|PF 1|=2|PF 2|,则双曲线C 的离心率为 ;若该双曲线的焦点到其渐近线的距离是√5,则双曲线的方程为 . 答案32;x 24-y 25=1 12.(2021广东广州一模,15)已知圆(x -1)2+y 2=4与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线相交于四个点,按顺时针排列依次记为M ,N ,P ,Q ,且|MN |=2|PQ |,则C 的离心率为 . 答案2√6313.(2021湖南永州二模,15)已知O 为坐标原点,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为3√55,从双曲线C 的右焦点F 引渐近线的垂线,垂足为A ,若△AFO 的面积为√5,则双曲线C 的方程为 .答案x 25-y 24=114.(2021山东日照一模,16)已知F 1,F 2分别为双曲线C :x 24-y 212=1的左,右焦点,E 为双曲线C 的右顶点,过F 2的直线与双曲线C 的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则|ME |-|NE |的取值范围是 . 答案 (-4√33,4√33)四、解答题(共15分)15.(2021湖南岳阳一模,21)已知双曲线C :x 2a 2-y 2b 2=1的离心率为√52,点P (4,√3)在C 上.(1)求双曲线C 的方程;(2)设过点(1,0)的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗⃗ 为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由. 解析 (1)由题意得,{ 16a 2-3b 2=1,c a =√52,a 2+b 2=c 2,解得a 2=4,b 2=1.∴双曲线C 的方程为x 24-y 2=1. (2)假设存在定点Q.设定点Q (t ,0), 当直线斜率不为0时,设直线l 的方程为x =my +1,联立{x 24-y2=1,x =my +1,得(m 2-4)y 2+2my -3=0. ∴m 2-4≠0,且Δ=4m 2+12(m 2-4)>0,解得m 2>3且m 2≠4. 设M (x 1,y 1),N (x 2,y 2), ∴y 1+y 2=-2mm 2-4,y 1y 2=-3m 2-4, ∴x 1+x 2=m (y 1+y 2)+2=-2m 2m 2-4+2=-8m 2-4,x 1x 2=(my 1+1)(my 2+1)=m 2y 1y 2+m (y 1+y 2)+1=-3m 2m 2-4-2m 2m 2-4+1=-4m 2+4m 2-4=-4-20m 2-4.QM⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗⃗ =(x 1-t ,y 1)·(x 2-t ,y 2)=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+y 1y 2=-4-20m 2-4+t ·8m 2-4-3m 2-4+t 2=-4+t 2+8t -23m 2-4, 由QM⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗⃗ 为常数, 得8t -23=0,即t =238,此时QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗⃗ =27364. 当直线l 斜率为0时,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗⃗ =27364. ∴在x 轴上存在定点Q (238,0),使得QM⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗⃗ 为常数. 方法总结 过x 轴上某一定点的直线方程的设法问题,常设其横截距式直线方程,需要针对其斜率是不是0进行分类讨论,若设其纵截距式直线方程,则需要针对其斜率是否存在进行分类讨论.— 一年原创 —1.(2021 5·3原创题)已知双曲线x 2m -y 2n =1,集合A ={x |x 2-2x -8<0,x ∈Z },若m ,n ∈A ,则焦点在x 轴上的双曲线条数是 ( )A.9B.8C.6D.12答案 A2.(2021 5·3原创题)已知A 1,A 2是椭圆C 1:x 24+y 2=1和双曲线C 2:x 24-y 2b 2=1(b >0)的左,右顶点,M ,N 分别为椭圆和双曲线上不同于A 1,A 2的动点,且O ,M ,N 三点共线,若直线A 1M ,A 2M ,A 1N ,A 2N 的斜率之和为0,则C 2的渐近线方程是( )A.y =±2xB.y =±12xC.y =±23xD.y =±32x答案 B3.(2021 5·3原创题)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别是F 1、F 2.过F 1的直线l分别交C 的两条渐近线于A ,B 两点(A 与B 不重合),且满足AB ⃗⃗⃗⃗⃗ ·(AF 2⃗⃗⃗⃗⃗⃗⃗ +BF 2⃗⃗⃗⃗⃗⃗⃗ )=0,则直线l 的斜率k = .答案 ±√1554.(2021 5·3原创题)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是x -2y =0,且双曲线C 过点(2√2,1).(1)求双曲线C 的方程;(2)如图,设直线l 与双曲线C 的右支相切于P 点(P 点不与右顶点重合),且l 分别交双曲线C 的两条渐近线于M 、N 两点,O 为坐标原点.问:△MON 的面积是不是定值?如果是,请求出该定值;如果不是,请说明理由.解析 (1)由题意得{b a =12,8a 2-1b 2=1,解得{a 2=4,b 2=1, 所以双曲线C 的方程为x 24-y 2=1. (2)由于直线l 与双曲线C 的右支相切于P 点(P 点不与右顶点重合),因此直线l 的斜率存在,设直线l 的方程为y =kx +m ,由{y =kx +m ,x 24-y 2=1消去y 得(4k 2-1)x 2+8kmx +4m 2+4=0, 由题意得Δ=64k 2m 2-4(4k 2-1)(4m 2+4)=0, 整理得4k 2=m 2+1,① 设l 与x 轴交于点D ,则|OD |=|m k|, S △OMN =S △MOD +S △NOD =12|OD |×|y M -y N |=|m 2k |·|k |·|x M -x N |,双曲线的两条渐近线方程为y =±12x ,联立{y =12x ,y =kx +m ⇒M (2m 1-2k ,m 1-2k ), 联立{y =-12x ,y =kx +m ⇒N (-2m 2k+1,m 2k+1), 则S △MON =|m 2k |·|k |·|2m 1-2k +2m 1+2k |=|m 2k |·|k |·|4m1-4k 2|=12·|m k |·|k |·|4m-m 2|=2(定值).所以△MON的面积为定值2.。

专题10 双曲线及其性质-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

专题10 双曲线及其性质-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】双曲线C:2242x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.4B.2C.D.【答案】A【解析】由2,,a b c===,2PPO PF x=∴=Q,又P在C的一条渐近线上,不妨设为在by xa=上,则222P Pby xa=⋅==,11224PFO PS OF y∴=⋅==△,故选A.【名师点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.【母题原题2】【2018年高考全国Ⅲ卷理数】设12F F,是双曲线22221x yCa b-=:(00a b>>,)的左,右焦点,O是坐标原点.过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为AB.2专题10 双曲CD【答案】B【解析】由题可知22,PF b OF c ==,∴||PO a =, 在2Rt POF △中,222cos PF bPF O OF c∠==, ∵在12PF F △中,22221212212cos 2PF F F PF b F PF F P O F c+-∠==,∴)222224322b c bc a b cc+-=⇒=⋅,∴e =,故选C . 【名师点睛】本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.【命题意图】高考对双曲线内容的考查以基础知识为主,重点考查双曲线的几何性质、方程思想及运算能力.2019年高考题考查了以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.【命题规律】主要考查双曲线的定义、标准方程和几何性质,其中离心率和渐近线问题是高考考查的重点,以选择题和填空题为主,难度中等. 【答题模板】1.求双曲线的离心率的值或范围一般考虑如下三步:第一步:将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式; 第二步:利用222b c a +=和ce a=转化为关于e 的方程或不等式; 第三步:通过解方程或不等式求得离心率的值或取值范围. 2.其他问题:(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c –a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为22b a;异支的弦中最短的为实轴,其长为2a .(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=2tan 2b θ,其中θ为∠F 1PF 2.(5)若P 是双曲线22x a22y b -=1(a>0,b>0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a . 【方法总结】1.双曲线定义的应用策略(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题. (3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置. 2.求双曲线的标准方程的方法 (1)定义法根据双曲线的定义确定a 2,b 2的值,再结合焦点位置,求出双曲线方程,常用的关系有: ①c 2=a 2+b 2;②双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a .求轨迹方程时,满足条件:|PF 1|–|PF 2|=2a (0<2a <|F 1F 2|)的双曲线为双曲线的一支,应注意合理取舍. (2)待定系数法 一般步骤为①判断:根据已知条件,确定双曲线的焦点是在x 轴上,还是在y 轴上,还是两个坐标轴都有可能; ②设:根据①中的判断结果,设出所需的未知数或者标准方程; ③列:根据题意,列出关于a ,b ,c 的方程或者方程组; ④解:求解得到方程. 常见设法有①与双曲线22x a –22y b =1共渐近线的双曲线方程可设为22x a –22y b=λ(λ≠0);②若双曲线的渐近线方程为y =±ba x ,则双曲线方程可设为22x a –22yb =λ(λ≠0);③若双曲线过两个已知点,则双曲线方程可设为2x m +2y n=1(mn <0);④与双曲线22x a –22y b =1共焦点的双曲线方程可设为22x a k -–22y b k+=1(–b 2<k <a 2);⑤与椭圆22x a +22y b =1(a >b >0)有共同焦点的双曲线方程可设为22x a λ-+22y b λ-=1(b 2<λ<a 2).注意:当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是如果已知中心在原点,但不能确定焦点的具体位置,可以设双曲线的方程为mx 2+ny 2=1(mn <0). 3.求双曲线离心率的值(1)直接求出c a ,,求解e :已知标准方程或a ,c 易求时,可利用离心率公式e =ca求解; (2)变用公式,整体求e :如利用e,e; 4.双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.已知渐近线方程时,可得b a的值,于是e 2=22c a =222a b a +=1+2()b a ,因此可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即b a个解.1.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),则双曲线C 的渐近线方程为A .y x =±B .y =C .y =D .2y x =±【答案】C【解析】因为双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),所以234a +=,故21a =,因此双曲线的方程为2213y x -=,所以其渐近线方程为y =.故选C .【名师点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的性质即可,属于基础题型.2.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点为1F 、2F ,双曲线上的点P 满足121243PF PF F F +≥u u u v u u u u v u u u u v恒成立,则双曲线的离心率的取值范围是A .312e <≤B .32e ≥C .413e <≤D .43e ≥【答案】C【解析】∵OP 是12F PF △的边12F F 上的中线,∴122PF PF PO+=u u u v u u u u v u u u v. ∵121243PF PF F F u u u v u u u u v u u u u v +≥,∴1283PO F F ≥u u u v u u u u v,当且仅当12,,F P F 三点共线时等号成立. 又PO a ≥u u u v ,122F F c =u u u u v ,∴86a c ≥,∴43c e a =≤,又1e >,∴413e <≤.故离心率的取值范围为41,3⎛⎤⎥⎝⎦.故选C . 【名师点睛】解答本题时注意两点:一是注意数形结合在解题中的应用,特别是由题意得到PO a ≥u u u v;二是根据题意得到,,a b c 间的关系,再根据离心率的定义求解,属于基础题.3.【四川省华文大教育联盟2019届高三第二次质量检测考试数学】已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限的交点为P ,线段2PF 的中点M ,则此双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】由题意知,双曲线的渐近线方程为b y x a =±,易求点P 的坐标为,bc c a ⎛⎫ ⎪⎝⎭,中点M 的坐标为,2bc c a ⎛⎫ ⎪⎝⎭,∵2222)2bc OM c a ⎛⎫=+= ⎪⎝⎭,∴224a b =,即2b a =.故选A . 【名师点睛】本题考查双曲线的方程与简单的几何性质,考查计算能力与转化能力,属于基础题. 4.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为340x y +=,则该双曲线的离心率是A .53 B .54C .43或53D .53或54【答案】D【解析】33404x y y x +=⇒=-,当焦点位于横轴时,2239416b b a a =⇒=,而222c a b =+,所以22295164c a c e a a -=⇒==; 当焦点位于纵轴时,22222222416165,,3993b bc a c c a b e a a a a -=⇒==+⇒=⇒==故选D . 【名师点睛】本题考查了通过双曲线的渐近线方程求离心率问题,解题的关键是对焦点的位置进行分类.5.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,抛物线()220=>y px p 与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且12sin PF F ∠=,则双曲线C 的离心率为AB或3 C .2D .2或3【答案】D【解析】不妨设P 在第一象限且()00,P x y ,则1,02p F ⎛⎫- ⎪⎝⎭,2,02p F ⎛⎫⎪⎝⎭, 过P 作直线2px =-(抛物线的准线)的垂线,垂足为E , 则112F PE PF F ∠=∠,故112sin sin 7F PE PF F ∠=∠=, 因1F PE △为直角三角形,故可设,2p E ⎛⎫- ⎪⎝⎭,()0P x , 且25PE PF k ==,17PF k =,所以02052242p x k k px ⎧+=⎪⎨⎪=⎩,解得043p k x k =⎧⎨=⎩或062p k x k =⎧⎨=⎩, 若043p k x k =⎧⎨=⎩,则124F F k =,22752ke k k ==-; 若062p k x k =⎧⎨=⎩,则126F F k =,33752ke k k ==-. 综上可得,选D .【名师点睛】离心率的计算关键在于构建,,a b c 的一个等量关系,构建时可依据圆锥曲线的几何性质来转化,有两个转化的角度:(1)利用圆锥曲线的定义转化为与另一个焦点;(2)利用圆锥曲线的统一定义把问题转化为与曲线上的点到相应准线的距离.6.【四川省成都七中2019届高三5月高考模拟测试数学】已知双曲线1C :22142-=x y ,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,则双曲线2C 的离心率为 A .3 B .2 CD .1【解析】由题意,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,设双曲线2C 的方程为22(0)24y x λλ-=>,则双曲线2C =A . 【名师点睛】本题主要考查了双曲线的离心率的求解,其中解答中根据双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,得出双曲线2C 的方程的形式,再根据离心率的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.【四川省华文大教育联盟2019届高三第二次质量检测数学】已知双曲线的左、右焦点分别为()1,0F c -,()2,0F c ,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限内的交点为P ,线段2PF 的中点M 到,则双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】设双曲线的渐近线方程为()0,0by x a b a=±>>, 根据题意可知P 点坐标,bc c a ⎛⎫ ⎪⎝⎭,M为2PF 中点,所以可得,2bc M c a ⎛⎫⎪⎝⎭, 所以222222bc OM c c a ⎛⎫=+= ⎪⎝⎭,所以224a b =,即2b a =, 所以双曲线的渐近线方程为2y x =±,故选A .【名师点睛】本题考查通过双曲线中,线段的几何关系求双曲线渐近线方程,属于简单题.8.【四川省雅安市2019届高三第三次诊断考试数学】双曲线2212x y -=的离心率为A BCD【解析】由双曲线的方程2212x y -=可得:222,1a b ==,所以2223c a b =+=,所以2c e a ===.故选D . 【名师点睛】本题主要考查了双曲线的简单性质,考查计算能力,属于基础题.9.【四川省内江市2019届高三第三次模拟考试数学】双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为34y x =,则该双曲线的离心率为 A .43 B .53C .54D .2【答案】C【解析】双曲线()2222100x y a b a b-=>>,的一条渐近线方程为34y x =,可得34b a =,即222916c a a -=,解得e 22516=,e 54=.故选C . 【名师点睛】本题考查双曲线的简单性质的应用,涉及双曲线的渐近线方程,离心率等知识,考查计算能力.10.【四川省双流中学2019届高三第一次模拟考试数学】已知M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,,A F 分别为双曲线C 的左顶点和右焦点,线段FA 的垂直平分线过点M ,60MFA ∠=︒,则双曲线C 的离心率为A B .2 C .3 D .4【答案】D【解析】设双曲线另一个焦点为F ',如下图所示.因为线段FA 的垂直平分线过点M ,60MFA ∠=︒,所以MFA △是等边三角形,边长为a c +,M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,所以有23MF MF a MF a c -=⇒='+',在MFF '△中,由余弦定理可得:'2222cos60MF MF FF MF FF ︒=+-'⋅', 即22430a ac c +-=,解得4a c =,即4ca=,双曲线的离心率为4,故选D . 【名师点睛】本题考查了双曲线的定义、离心率,考查了转化思想、数形结合思想.11.【四川省宜宾市2019届高三第三次诊断性考试数学】已知双曲线22213x y a -=的左右焦点分别为12,F F ,以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于,A B 两点,则四边形12F AF B 的面积为A .3B .4C .5D .6【答案】D【解析】因为双曲线22213x y a -=的左右焦点分别为()()12,0,0F c F c -,,双曲线的渐近线方程为y x a=±0ay -=, 以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于A ,B 两点, 根据焦点到渐近线的距离及双曲线中a b c 、、的关系,可得223a c a ==+⎪⎩,解得a c ==A ⎝⎭,则四边形12F AF B的面积为1212122622F AF B F AF S S ==⨯⨯=.故选D . 【名师点睛】本题考查双曲线的简单性质以及圆与双曲线的位置关系的应用,考查转化思想以及计算能力,属于中档题.12.【四川省成都市外国语学校2019届高三一诊模拟考试数学】过双曲线C :22221x y a b-=的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为A .221124x y -=B .22179x y -=C .22188x y -=D .221412x y -=【答案】D【解析】∵以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点), ∴半径4R c ==,则圆的标准方程为()22416x y -+=,(),0A a ,b y a b a=⋅=,即(),B a b ,则()22416a b -+=,即2281616a a b -++=,即280c a -=,即816a =,则2a =,216412b =-=,则双曲线C 的方程为221412x y -=,故选D .【名师点睛】本题主要考查双曲线方程的求解,根据圆的性质先求出半径4c =是解决本题的关键.属于简单题.13.【四川省成都市2019届高三毕业班第二次诊断性检测数学】已知双曲线()222:10y C x b b-=>的焦距为4,则双曲线C 的渐近线方程为 A.y =B .2y x =±C .3y x =± D.y =【答案】D【解析】双曲线C :()22210y x b b-=>的焦距为4,则2c =4,即c =2,∵1+b 2=c 2=4,∴b =C 的渐近线方程为y =x ,故选D .【名师点睛】本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.14.【四川省2019届高三联合诊断数学】已知双曲线()222:103x y C a a -=>的右焦点为F ,则点F 到C的渐近线的距离为 A .3 BC .a D【答案】B【解析】因为双曲线()222:103x y C a a -=>的右焦点为()0F c ,,渐近线y x =, 所以点F到渐近线y x ===B . 【名师点睛】本题主要考查利用双曲线的方程求焦点坐标与渐近线方程,以及点到直线距离公式的应用,属于基础题.若双曲线方程为22221x y a b-=,则渐近线方程为b y x a =±.15.【四川省广安、眉山、内江、遂宁2019届高三第一次诊断性考试数学】若双曲线221x y m-=的一条渐近线为20x y -=,则实数m = A .2 B .4 C .6 D .8【答案】B【解析】∵双曲线的方程为221x y m-=,∴双曲线的渐近线方程为yx ,又∵一条渐近线方程为y =12x ,∴m =4.故选B . 【名师点睛】本题给出双曲线的方程和一条渐近线方程,求参数m 的值,属于基础题.16.【四川省高2019届高三第一次诊断性测试数学】中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆()2221x y -+=都相切,则双曲线C 的离心率是A .2B .2C2D.3或2【答案】A【解析】设双曲线C 的渐近线方程为y =kx,∴k =,得双曲线的一条渐近线的方程为3y =,∴焦点在x 、y 轴上两种情况讨论: ①当焦点在x轴上时有:b c e a a ==②当焦点在y轴上时有:23a c e b a ===.∴求得双曲线的离心率2A . 【名师点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案. 17.【贵州省遵义航天高级中学2019届高三第十一模(最后一卷)数学】设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1290F PF ︒∠=,c =2,213PF F S =△,则双曲线的两条渐近线的夹角为 A .5π B .4πC .π6D .π3【答案】D【解析】由题意可得22121216132PF PF PF PF ⎧+=⎪⎨=⎪⎩,可得212)4PF PF -=(, 可得1222PF PF a -==,可得a =1,b所以双曲线的渐近线方程为y =,可得双曲线的渐近线的夹角为π3,故选D . 【名师点睛】本题主要考察双曲线的性质及渐近线的方程,熟练掌握其性质是解题的关键.18.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知抛物线2y =的焦点为双曲线2221(0)x y a a-=>的一个焦点,那么双曲线的渐近线方程是A.3y x =±B.y =C.2y x =± D.y =【答案】C【解析】抛物线2y =的焦点为),所以双曲线中c =,由双曲线方程2221x y a-=,222+=a b c,所以a =因此双曲线的渐近线方程为2y x =±,故选C . 【名师点睛】本题考查抛物线的焦点,根据焦点求双曲线的方程和渐近线方程,属于简单题. 19.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知A 为双曲线22221(0,0)x y a b a b-=>>的右顶点,P 为双曲线右支上一点,若点P 关于双曲线中心O 的对称点Q 满足AP k ⨯14AQ k =,则双曲线的离心率为 A1BCD1【答案】B【解析】设(,),(,),P x y Q x y --∵AP k ⨯14AQ k =, ∴222000014y y y y y x a x a x a x a x a -----⋅=⋅==----+-, ∵22221x y a b -=,∴22222=()b y x a a-,∴222222()14b x a ax a -=-, ∴a =2b ,∴222244()a b c a ==-,∴2254a c =,∴2e =.故选B . 20.【云南省昆明市2019届高三高考模拟(第四次统测)数学】已知双曲线C的一个焦点坐标为0),渐近线方程为2y x =±,则C 的方程是 A .2212y x -=B .2212x y -=C .2212y x -=D .2212x y -=【答案】B【解析】因为双曲线C的一个焦点坐标为),所以c =又因为双曲线C的渐近线方程为2y x =±,所以有2b a=a ⇒=,c =而c =1a b ==,因此双曲线方程为2212x y -=,故选B .【名师点睛】本题考查了求双曲线的标准方程,考查了解方程、运算能力.21.【云南省2019届高三第一次毕业生复习统一检测数学】双曲线M 的焦点是1F ,2F ,若双曲线M 上存在点P ,使12PF F △是有一个内角为23π的等腰三角形,则M 的离心率是 A1B1C D 【答案】C【解析】不妨设P 在第一象限,由于12PF F △是有一个内角为23π的等腰三角形,故()2P c ,代入双曲线方程得2222431c c a b -=,化简得4224480c a c a -+=,42810e e -+=,解得2e =,故e =C . 【名师点睛】本小题主要考查双曲线离心率的求法,考查等腰三角形的知识,属于基础题.22.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】已知椭圆22221x y a b+=左右焦点分别为12,F F ,双曲线22221x y m n-=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,已知椭圆的离心率为134e =,则双曲线的离心率2e =AB .8C .4D .2【答案】B【解析】椭圆22221x y a b+=左右焦点分别为12,F F ,椭圆的离心率为134e =,不妨令4,3a c ==,则b =221167x y +=,双曲线22221x y m n-=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,可设(),,0,0P s t s t >>,可得()13,PF s t =---u u u r ,()23,PF s t =--u u u u r ,则222291167s t s t ⎧+=⎪⎨+=⎪⎩,解得22329499s t ⎧=⎪⎪⎨⎪=⎪⎩, 代入双曲线方程渐近线方程n y x m =±,可得224932n m =,双曲线的离心率为:28e ===.故选B . 【名师点睛】本题考查椭圆的简单性质以及双曲线的简单性质的应用,利用垂直关系和点在椭圆上建立方程组,求得双曲线,a b 之间满足的关系是解题关键.23.【广西柳州市2019届高三毕业班1月模拟考试高三数学】已知双曲线()2222100x y C a b a b-=>>:,的离心率为2,左焦点为1F ,点()0Q (c 为半焦距).P 是双曲线C 的右支上的动点,且1PF PQ +的最小值为6.则双曲线C 的方程为___________.【答案】2213y x -=【解析】设双曲线右焦点为2F ,则122PF PF a -=,所以122PF PQ a PF PQ +=++, 而2PF PQ +的最小值为22QF c ==,所以1PF PQ +最小值为226a c +=,又2c a =,解得12a c ==,,于是23b =,故双曲线方程为2213y x -=. 【点睛】本题考查了双曲线的方程,双曲线的定义,及双曲线的离心率,考查了计算能力,属于中档题.24.【西藏拉萨市2019届高三第三次模拟考试数学】已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点为1F 、2F ,过1F 且斜率为2的直线l 与C 的一条渐近线在第一象限相交于A 点,若21AF AF ⊥,则该双曲线的离心率为___________. 【答案】3【解析】∵21AF AF ⊥,∴12AF F △是直角三角形,又O 是12F F 中点,∴AO c =,又A 在双曲线渐近线上,∴(,)A a b ,∴12tan AF F ∠=2b ac =+, 变形可得:22230c ac a --=,()(3)0c a c a +-=,∴3c a =,3ce a==.故答案为:3. 【点睛】本题考查双曲线的几何性质,解题关键是掌握双曲线的性质:即过双曲线22221x y a b -=(0,0)a b >>的右顶点A 作x 轴垂线,交渐近线于点P ,则OP c =,AP b =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题九 解析几何第二十七讲 双曲线2019年1.(2019全国III 理10)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A B C .D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019全国I 理16)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ⋅=uuu r uuu r,则C 的离心率为____________.4.(2019年全国II 理11)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是A B .1CD .26.(2019天津理5)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为C.22010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅰ)已知双曲线C :2213-=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若∆OMN 为直角三角形,则||MN =A .32B .3C .D .43.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .=y xD .=y 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD5.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=6.(2017新课标Ⅱ)若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为A .2BC D7.(2017新课标Ⅲ)已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=8.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -= 9.(2016天津)已知双曲线222=1(0)4x y b b->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为A .22443=1y x -B .22344=1y x -C .2224=1x y b -D .2224=11x y - 10.(2016年全国I)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–1,3)C .(0,3)D .(0,3)11.(2016全国II)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为A B .32C D .2 12.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则AB =A B . C .6 D .13.(2015福建)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A .11B .9C .5D .314.(2015湖北)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 15.(2015安徽)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2214y x -= D .2214x y -= 16.(2015新课标1)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(B .(C .(D .( 17.(2015重庆)设双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a ,则该双曲线的渐近线斜率的取值范围是A .(1,0)(0,1)-∪B .(,1)(1,)-∞-+∞∪C .∪D .(,1))-∞-∞∪18.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m19.(2014广东)若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等20.(2014天津)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 21.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .322.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为A .14y x =± B .13y x =± C .12y x =± D .y x =± 23.(2013湖北)已知04πθ<<,则双曲线1C :22221cos sin x y θθ-=与2C :22sin y θ2221sin tan y θθ-=的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D . 离心率相等 24.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .2]B .2)C .)+∞D .)+∞ 25.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4326.(2012湖南)已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1B .25x -220y =1C .280x -220y =1 D .220x -280y =1 27.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .28.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 29.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .130.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1)--,则双曲线的焦距为A .B .C .D .31.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 32.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C .2 D .233.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为A .2B .3C .6D .8 二、填空题34.(2018上海)双曲线2214x y -=的渐近线方程为 . 35.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为2c ,则其离心率的值是 . 36.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .37.(2017新课标Ⅰ)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若MAN ∠=60°,则C 的离心率为________.38.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .39.(2017北京)若双曲线221y x m-=m =_________.40.(2016年北京)双曲线22221(0,0)x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =______.41.(2016山东)已知双曲线E :22221x y a b-=(0,0)a b >>,若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是 .42.(2015北京)已知双曲线()22210x y a a-=>0y +=,则a = .43.(2015江苏)在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 .44.(2015山东)平面直角坐标系xOy 中,双曲线1C :22221x y a b-=(0,0)a b >>的渐近线与抛物线2C :22x py =(0p >)交于,,O A B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为_______.45.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .46.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.47.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.48.(2013陕西)双曲线221169x y -=的离心率为 .49.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.50.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .51.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .52.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .53.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .54.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .55.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题56.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y axx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.57.(2011广东)设圆C 与两圆2222(4,(4x y x y ++=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点M (,55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.。

相关文档
最新文档