模糊理论概述
模糊理论综述

模糊理论综述引言模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh(扎德)教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末康托尔的经典集合理论,奠定模糊理论的基础。
1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制,标志着模糊控制技术的诞生。
随之几十年的发展,至今为止模糊理论已经非常成熟,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。
模糊理论是以模糊集合为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决问题。
二、模糊理论的一般原理由于客观世界广泛存在的非定量化的特点,如拔地而起的大树,人们可以估计它很重,但无法测准它实际重量。
又如一群人,男性女性是可明确划分的,但是谁是“老年人”谁又算“中年人”;谁个子高,谁不高都只能凭一时印象去论说,而实际人们对这些事物本身的判断是带有模糊性的,也就是非定量化特征。
因此事物的模糊性往往是人类推理,认识客观世界时存在的现象。
虽然利用数学手段甚至精确到小数点后几位,实际仍然是近似的。
特别是对某一个即将运行的系统进行分析,设计时,系统越复杂,它的精确化能力越难以提高。
当复杂性和精确化需求达到一定阈值时,这二者必将出现不相容性,这就是著名的“系统不相容原理”。
由于系统影响因素众多,甚至某些因素限于人们认识方法,水准,角度不同而认识不足,原希望繁荣兴旺,最后导致失败,这些都是客观存在的。
这些事物的现象,正反映了我们认识它们时存在模糊性。
所以一味追求精确,倒可能是模糊的,而适当模糊以达到一定的精确倒是科学的,这就是模糊理论的一般原理。
模糊集理论

模糊集理论模糊集理论(Fuzzy Set Theory)是一种理论,主要关注定义和应用模糊(模糊)集合(fuzzy set)。
它由芬兰科学家Lotfi Zadeh在1965年提出,随后历经修正和扩展,今天已成为人工智能的重要研究概念。
它引入了模糊集合的概念,允许将不弱量化数据藉基于概率理论进行处理,以研究各种模式。
这种理论允许模糊集合随着数据流而变化,从而允许对诸如特征抽取、模式识别和对象识别等计算问题进行实例。
模糊集的一般定义是一组非常宽的概念,即这些概念可以模糊地概括其中的数据和事件。
典型的例子包括定义“热”时可以指的内容。
这可以指很热的水,但也可以指很热的空气,甚至指温度处于中间范围内的物体,如细砂沙。
由于我们通常在一种普通的处理方式中不能够构建这种多义性,因此出现了模糊集理论。
模糊集理论将条件分解成可被计算的成分,并提供了两种比较语句,以替代确定的相等和比较关系:“如果X属于Y”与“如果X不属于Y”。
模糊集理论和理论的一个重要舞台是节点(membership)函数。
节点函数将离散值链接到集合中,该集合可能建立在模糊集概念上,以及定义当值处于属性范围时,集合中元素的状态概念。
模糊集理论可以用来表示和处理有关诸如决策系统、专家系统、状态识别系统和控制系统等领域的许多模糊结构。
例如,模糊集理论可用来表示“暖”的语义,可以定义一个给定限度的暖度成分,用于计算属性范围内的暖度。
同样,你也可以定义一个语义表示“如果暖一点,就觉得很好”。
在其他方面,它也可以用来表示系统输入,以及它们之间的关系,以及它们到系统输出的影响。
因此,模糊集理论的应用范围非常广泛,被用于机器学习,数据挖掘,机器视觉,语音识别,建模和仿真,以及工业控制等计算机任务的解决方案。
它高度重视“不确定性”,减少了我们在研究实例时常常面临的困难,允许用户在可以定义的模糊集上使用模糊逻辑来解决复杂问题。
今天,它已经成为人工智能领域及其它多学科间的流行工具,并被许多应用领域所采用。
人工智能中的模糊理论与模糊推理

人工智能中的模糊理论与模糊推理人工智能(Artificial Intelligence,AI)是计算机科学的一个重要分支,旨在让机器能够模仿和模拟人类的智能行为。
在AI的发展过程中,模糊理论(Fuzzy Theory)和模糊推理(Fuzzy Reasoning)是扮演着重要角色的两个概念。
模糊理论和模糊推理可以帮助我们解决那些具有不确定性和模糊性的问题,并且在模拟人类的智能过程中起到了关键作用。
本文将详细介绍,并讨论其应用领域。
1. 模糊理论模糊理论是由扎德(Lotfi A. Zadeh)于1965年提出的,它是一种能够处理现实世界中不确定性和模糊性问题的数学工具。
与传统的逻辑学不同,模糊理论引入了“模糊集合”的概念,用来表示不同程度的隶属度。
在传统的二值逻辑中,一个元素只能属于集合或者不属于集合,而在模糊集合中,一个元素可以同时属于多个集合同时也可以部分属于某个集合。
模糊集合的定义通常采用隶属度函数(membership function)来表示,这个函数将每个元素在0到1之间的值来表示其属于程度。
这种思想可以很好地应用到处理模糊性问题的场景中。
例如,当我们描述一个人的高矮时,可以定义一个“高”的模糊集合,然后通过隶属度函数来表示每个人对于“高”的隶属度。
2. 模糊推理模糊推理是一种基于模糊逻辑的推理方法,它是基于模糊集合的运算来实现推理的过程。
模糊推理通过模糊集合之间的关系来表示模糊规则,从而得到推理的结果。
通常,模糊推理过程包括模糊化、模糊规则的匹配、推理方法的选择以及解模糊化等步骤。
在模糊化的过程中,将输入转化为模糊集合,并通过隶属度函数给出每个输入值的隶属度。
在模糊规则的匹配阶段,将输入的模糊集合与模糊规则进行匹配,根据匹配程度得到相应的隶属度。
然后,根据推理方法的选择,确定输出值的隶属度。
最后,通过解模糊化的过程,将模糊输出转化为确定的输出。
模糊推理的一个重要特点是能够处理模糊和不确定性的信息。
模糊数学原理及应用

模糊数学原理及应用
模糊数学,也被称为模糊逻辑或模糊理论,是一种基于模糊概念和模糊集合的数学分析方法,用于处理不精确或不确定性的问题。
模糊数学允许将不明确的概念和信息进行量化和处理,以便更好地处理现实生活中存在的模糊性问题。
模糊数学的基本原理是引入模糊集合的概念,其中的元素可以具有模糊或不确定的隶属度。
模糊数学中的隶属函数可以用于刻画元素对于一个模糊集合的隶属程度。
模糊集合的运算可以通过模糊逻辑实现,模糊逻辑是概率逻辑和布尔逻辑的扩展,它允许使用连续的度量范围来推导逻辑结论。
模糊逻辑中的运算包括取补、交集和并集等,它们可以用来处理模糊概念之间的关系。
模糊数学在许多领域都有广泛的应用。
在控制系统中,模糊控制可以用于处理难以量化的问题,如温度、湿度和压力等。
在人工智能领域,模糊推理可以用于处理自然语言的不确定性和模糊性。
在决策分析中,模糊数学可以用于处理多个决策因素之间的不确定性和模糊性。
此外,模糊数学还在模式识别、图像处理、数据挖掘和人机交互等领域得到广泛应用。
通过使用模糊数学的方法,可以更好地处理现实世界中存在的不确定性和模糊性,从而提高问题解决的准确性和效率。
模糊数学理论

4)二元对比排序法
对于有些模糊集,很难直接给出隶属度,但通过
两两比较确定两个元素相应
隶属度的大小排出顺序, 再用数学方法加工得到隶属函数,其实是隶属函数矩阵 2.1 模糊关系与模糊矩阵的概念 1)模糊关系
2) 模糊矩阵
2.2模糊等价关系与模糊相似关系 1)模糊等价关系
模糊数学的基本思想是隶属程度的思想,应用模糊数学方法建立数学模型的关键是建立符合实 际的隶属函数,下面介绍几种常用的确定隶属函数的方法:
1)模糊统计方法 它可以算是一种比较客观的方法,主要是基于模糊统计实验的基础上,根据隶属度的客观存 在性来确定的。
模糊统计试验的四要素为:
假设我们做n次模糊统计试验,则可算出 当n不断增大时,其频率的稳定值称为x0对A的隶属度,即
• 3.1 模糊聚类分析理论: 1)
2)
3) 4)
3.2 基于模糊等价关系的动态聚类分析 例题
此例题可以用截矩阵的方法来实现
3.3 基于模糊相似关系的聚类分析 1)建立模糊相似矩阵
2)传递闭包法 此外,还有直接聚类法、最大树法、编网法等。
4 模糊模式识别
模式识别的问题就是已知事物的各种类别,然后来判断给定的对象是属于哪一个类 别的问题。这里的“模式”是指标准的样本、式样、样品、图形等。在实际问题中,有 些事物的类别,即模式是明确、清晰和肯定的。如识别英文字母时,其模式是印刷体英 文字母.这是清楚的,但也有很多事物的模式带有不同程度的模糊性。例如,疾病的类 型.图象等。对于被识别的对象则往往特征具有更大的模糊性。例如,手写的英文字母, 患者等我们很难说它们属于那种标准类型。因此,应用模糊数学的方法进行模式识别显 得十分必要。
1.2 模糊集与隶属函数
• 论域:如果将所讨论的对象限制在一定范围内,并记所讨论的对象全体构成的集合为U, 称之为论域。 •普通集合——特征函数 设U是论域,A是U的子集,定义如下映射为集合A的特征函数 :(集合A可由特征函数唯一 确定)
07(模糊理论)讲解

1921年2月生于苏联巴库。
1949年获哥伦比亚大学电机工程博士。任 伯克利加利福尼亚大学电机工程与计算机 科学系教授。
1965年,扎德在《信息与控制》杂志第8
期上发表《模糊集》的论文,引起了各国
数学家和自动控制专家们的注意。模糊集
(系边统界的不新明 方显 法的 。类 他) 提提 出供 用了语一言种变分量•析代复替杂数
集合
•模糊集合 C = “合适的可拥有的自行车数目”
•C=
(0,0.1),(1,0.3),(2,0.7),(3,1.0),(4,0.7),(5,0.3) ,(6,0.1)}(序偶表示法)
•2) 连续形式: •令X = R+ 为人类年龄的集合,
•模糊集合 B = “年龄在50岁左右”,则B可表示
为:
•模糊集合:
• 允许在一个集合部分隶属。即 对象在模 糊集合中的隶属度可为从0 - 1之间的任何值。
• 即可以从“不隶属”到“隶属”逐步过 渡。
机械故障诊断学
模糊诊断
举个例子:
将0,1二值逻辑推广为可取[0,1]闭区间中任意值的连续逻 辑。
例:秃子问题:
发数<500=秃子 则计算机会认为499根是秃子,501根不是秃子;我们人会 认为多一根也是秃子呀?
机械故障诊断学
模糊诊断
•(一)模糊逻辑的起源 • 模糊逻辑 --- Fuzzy Logic
• 模糊概念、模糊现象到处存在。
•天气冷热
•雨的大小
•风的强弱
•人的胖瘦
•年龄大小
•个子高低
机械故障诊断学
模糊诊断
•模糊逻辑与计算机
电脑和人脑差别: 电脑扩大并延伸了人脑的功能,但两者存
模糊理论总结

模糊理论总结简介模糊理论(Fuzzy Theory)是一种用于处理不确定性问题的数学方法,其背后的思想是模糊集合论。
模糊理论从模糊集合的角度对问题进行描述和处理,可以克服传统二值逻辑的限制,更符合人类思维的特点。
模糊理论主要应用于控制系统、人工智能、数据挖掘和模式识别等领域。
通过引入模糊概念,模糊理论能够有效处理模糊、不确定或不完全信息的问题,使得决策和系统设计更加灵活和适应实际应用。
模糊概念在模糊理论中,模糊概念是一个介于完全成员和完全非成员之间的概念。
与传统的二值逻辑相比,模糊概念允许元素有一定程度的隶属度。
模糊集合是由一系列隶属度在[0,1]范围内的元素组成的。
模糊概念的隶属函数描述了元素与模糊集合的关系。
常见的隶属函数包括三角函数、高斯函数和sigmoid函数等。
通过对隶属度的计算和操作,可以对元素进行模糊化处理,从而更好地表达和处理不确定性问题。
模糊推理模糊推理是模糊理论的核心。
与传统的逻辑推理相比,模糊推理能够处理模糊或不确定的条件和结论。
模糊推理根据输入的模糊规则和模糊事实,通过模糊逻辑运算得出模糊结论。
模糊推理的过程包括模糊化、模糊规则匹配和模糊合成三个步骤。
模糊化将输入的模糊事实转换为模糊集合,模糊规则匹配对输入的模糊事实和模糊规则进行匹配,模糊合成根据匹配结果和隶属度计算得出最终模糊结论。
模糊推理可以应用于各种决策问题,如模糊控制系统中的规则推理、模糊分类和模糊聚类等。
模糊控制模糊控制是模糊理论的一种重要应用,用于处理带有模糊或不确定性信息的控制问题。
传统的控制方法通常基于精确的模型和确定性的输入,而模糊控制则能够应对系统模型不确定或难以建立的情况。
模糊控制系统由模糊控制器和模糊规则库组成。
模糊控制器负责对输入模糊事实进行模糊推理,得出模糊控制命令。
模糊规则库包含了一系列模糊规则,用于将输入模糊事实映射到输出模糊命令。
模糊控制系统的设计包括确定模糊集合、编写模糊规则和确定隶属函数等步骤。
第22章模糊理论

❖本章的學習主題 ❖ 1.認識模糊理論 2.模糊合成 3.模糊綜合評判 4.模糊運算 5.模糊推論 6.模糊控制 7.模擬理論之應用範例
企業研究方法 第 22 章 1
22.1 前言
一般可將資訊分為「可量化的資訊」與「不可量 化的資訊」,其中不可量化的資訊又稱為質化的 資訊,如:「這家公司總經理能力很強」、「這項 產品的品牌形象很好」等口語化的描述。 模糊理論(Fuzzy Theory)乃是積極承認主觀性問 題的存在,進而以模糊集合理論來處理不易量化 的問題,以便能適當而可靠的處理人們主觀評估 問題的方法。 模糊理論是為解決真實世界中普遍存在的模糊現 象而發展的一門學問,1965年美國自動控制學家 Lotfi. A. Zadeh首先提出的一種定量表達工具。
企業研究方法 第 22 章 3
22.2 模糊理論發展歷史
3.人類知識可說是用語言來表達的,而語言中存 在的模糊性,特別是因人而異所產生的主觀 性,也各不相同,這些模糊現象無法使用傳統 的數學工具例如機率等解決,故必須尋找另外 的替代途徑。
企業研究方法 第 22 章 4
22.3 模糊理論的基本概念
表 22-1 傳統集合與 Fuzzy 集合基本精神的比較
傳統集合 使用特徵函數 強調非此即彼的關係 只接受精確不模糊的資訊 硬性二分類法
Fuzzy 集合 (fuzzy set) 使用隸屬函數 接受亦此亦彼的關係 可接受精確不模糊的資訊 軟性的分類法
企業研究方法 第 22 章 5
22.3 模糊理論的基本概念
企業研究方法 第 22 章 6
在模糊集合的定義中,對某一元素X而言,是以μ(x) 來表示X屬於某集合的程度,即將X對應到[0,1]的 函數中,等級愈接近1,則表示該集合包合X元素的 程度愈大,此值稱為(degree of membership),所 以μ(x)稱為隸屬函數(membership function)。 隸屬函數的值只有0與1兩種時,該集合就是傳統的 明確集合(crisp set)。以圖22 - 1為例,來說明模糊 集合與明確集合間的不同。μ(x)表示「中年」的模 糊集合,而C (X)則表示傳統的明確集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊理论概述
在我们的日常生活中有许多的事物,或多或少都具有模糊性和混淆不清的特性。
“模模糊糊”的概念,是最微妙且难以捉摸,但却又是常見最重要的,但在近代数学中却有了很清晰的定义。
但是所为“模糊”有两种含义,一是佛似关系、一是恍似关系。
模糊理论的观念在强调以模糊逻辑来描述现实生活中事物的等級,以弥补古典逻辑(二值逻辑)无法对不明确定义边界事物描述的缺点。
人类的自然語言在表达上具有很重的模糊性,难以“对或不对”、“好或不好”的二分法来完全描述真实的世界问题。
故模糊理论将模糊概念,以模糊集合的定义,将事件(event)属于这集合程度的归属函数(Membership grade),加以模糊定量化得到一归属度(Membership grade),来处理各种问题。
随着科学的发展,研究对象越加复杂,而复杂的东西难以精确化,这是一个突出的矛盾,也就是说复杂性越高,有意义的精确化能力越低,有意义性和精确性就变成两个互相排斥的特性。
而复杂性却意味着因素众多,以致使我们无法全部认真地去进行考察,而只抓住其中重要的部分,略去次要部分,但这有时会使本身明确的概念也会变得模糊起来,从而不得不采用“模糊的描述”。
1 模糊理论的产生
1.1 模糊数学的背景
精确数学是建立在经典集合论的基础之上,一个研究的对象对于某个给定的经典集合的关系要么是属于(记为“”),要么是不属于(记为“”),二者必居其一。
19世纪,由于英国数学家布尔(Bool)等人的研究,这种基于二值逻辑的绝对思维方法抽象后成为布尔代数,它的出现促使数理逻辑成为一门很有适用价值的学科,同时也成为计算机科学的基础。
但是,二值逻辑无法解决一些逻辑悖论,如著名的罗素(Russell)“理发师悖论”、“秃头悖论”、“克利特岛人说谎悖论”等等悖论问题。
传统数学所赖以存在的基石是普通集合论,是二值逻辑,而它是抛弃了事物的模糊性而抽象出来的,将人脑思维过程绝对化了,数学中普通集合描述的是“非此即彼”的清晰对象,而人脑还要识别那些“亦此亦彼”的模糊现象。
日常生活中各种“模糊性”现象比比皆是,逻辑悖论的发现以及海森堡(Heisenberg)测不准原理的提出导致了多值逻辑在20世纪二三十年代的诞生。
罗素在说到“所有的二值都习惯上假定使用精确符号,因此它仅适用于虚幻的存在,而不适用于现实生活,逻辑比其他学科使我们更接近于天堂”时就认识到了二值逻辑的不足。
波兰逻辑学家卢卡塞维克兹(Lukasiewicz)首次正式提出了三值逻辑体系,把逻辑真值的值域由{0,1}二值扩展到{0,1/2,1}三值,其中1/2表示不确定,后来他又把真值范围从{0,1/2,1}进一步扩展到[0,1]之间的有理数,并最终扩展为[0,1]区间。
1.2模糊数学的发展
1965年,美国加州大学伯克利分校扎德教授发表了关于模糊理论的第一篇论文,从集合论的角度首次提出表述模糊性事值的模糊集合概念,以模糊逻辑推理仿似人类的思考模式,描述日常生活中之事物,以弥补明确的值来描述事物的缺点。
1978年L.Zadeh提出了可能性理论,阐述了随机性和可能性的差别,这被认为是模糊数学发展的第二个里程碑。
可能性理论的出现为模糊数学更为广泛地应用于模式识别和其他领域提供了强有力的理论基础和有效工具。
1986年贝尔实验室研制出第一块基于模糊逻辑的晶片。
1988年由日本京都MYCOM株式会社发表世界最高速推论晶片(每秒六千万次),解決了模糊推理速度不快的限制,使其应用的范畴更加宽广。
量子哲学家马克思·布莱克(Max Black)利用连续逻辑为集合中的成员赋值,在历史上第一个构造了模糊集的隶属函数。
布莱克称结构的不确定性为“模糊性(Vagueness)”。
理论研究主要是经典数学概念的模糊化。
由于模糊集自身的层次结构,使得这种理论研究更加复杂,当然也因而更具吸引力。
目前已形成了模糊拓扑、模糊代数、模糊分析、模糊测度及模糊计算机等模糊数学分支。
应用研究主要是对模糊性之内在规律的探讨,对模糊逻辑及模糊信息处理技术的研究。
模糊数学的应用范围已遍及自然科学与社会科学的几乎所有的领域。
特别是在模糊控制、模式识别、聚类分析、系统评价、数据库、系统决策、人工智能及信息处理等方面取得了显著的成就。
1965年算起,模糊集与系统理论(或简单地说成模糊理论)已走过了40多年的风雨路程,如今已发展成一门独立的学科。
参与这个学科研究的专家遍布全球,研究人员与日俱增,模糊新产品不断问世,模糊技术不断应用到高精尖领域。
因此,可以毫不夸张地说,全球性的“模糊热”已经形成。
模糊数学目前正沿着理论研究和应用研究两个方向迅速发展着。
中国虽然在70年代才开始研究模糊理论,但进步神速。
我国对模糊数学最感兴趣,其研究水平已处于国际领先地位,如刘应明及王国俊在模糊拓扑学方面的研究,汪培庄及王光远在模糊集论应用方面的研究,吴丛忻在模糊线性拓扑空间方面的研究,张广权在模糊测度方面的研究等,都居于世界领先水平。
2 模糊理论基本概念
2.1 模糊数学
以数学手段分析与处理模糊性事物的学科。
模糊数学是研究和处理模糊性现象的数额学。
所谓模糊性,意指客观事物的差异在中介过度时所呈现的“亦此亦彼”的特性。
模糊数学中,归属度是建立模糊集合的基础,归属函数是描述模糊性的关键。
2.2模糊集合(Fuzzy Set)
表示界限或边界不明确的特定集合,以特征函数来表示元素与集合间之归属程度,一般特征函数又称为归属函数(membership-function),其值界于﹝0,1﹞区间。
在自然和社会现象中,绝对性、两极化的突变是不存在的,两极化间的差异往往要经由一个“中介过度形式”來表征,即具“亦此亦彼”性。
需要定义集合与集合之间的基本运算和关系,以便日后将模糊集合应用于各种领域之中,所不同的只是因為,绝大多数的事物是无法以明确的二分逻辑法加以切割的。
2.2模糊关系
在人们的实际生活与工作中,模糊性是无法避免的,现实世界存在元素间的关系,并非是简单的“是与否”或“有与无”的关系,而是有着不同程度的关系存在。
例如某家庭子女与父母外貌得相似关系,就很难以绝对地“像”与“不像”来表明或定义,只能评论他们“相像”的程度。
3 模糊理论的应用
模糊理论一产生就在数学领域本身及其他领域得到了广泛的应用到世纪年代,已经形成了具有完整体系和鲜明特点的“模糊拓扑学”,框架日趋成熟的“模糊随机数学”,“模糊分析学”,“模糊逻辑理论”以及专著虽少但相关论
文却非常丰富的“ 模糊代数理论”等。
这些理论的形成与发展极大地丰富和完善了模糊数学的内容。
模糊逻辑是模糊理论中的重要研究方向,它的最大成功是其在控制论中的应用。
但是,模糊逻辑在理论上的研究还远远不够深人,也没有形成自身独有的理论体系,其研究的思路基本上还是沿着二值逻辑的体系来展开的,所以难免要受到一些学者的怀疑或疑惑。
展开这类讨论无论是对模糊逻辑还是对模糊数学本身的发展都是非常有益的,这是模糊逻辑强大生命力的表现,同时也进一步促进这一领域学者从理论上更深人系统地研究相关的论题。
模糊技术已渗透到自然科学、社会科学及工程技术的几乎全部领域,像电力、电子、核物理、石油、化工、机械、冶金、能源、材料、交通、医疗、卫生、林业、农业、地质、地理、地震、建筑、水文、气象、环保、管理、法律、教育、心理、体育、军事和历史等领域,都有其成功应用的范例。
模糊技术将成为21世纪的核心技术。
5 总结与展望
自提出模糊理论以来,模糊理论己经成为一种重要的智能信息处理方法。
其应用已经遍及自然科学、社会科学和工程技术的各个领域,各种模糊技术成果和模糊产品也逐渐从实验室走向社会并取得显著的社会效益在当今社会,模糊技术对于人类社会的进步必将发挥其更加巨大的作用。