热管技术
热管技术

7
2.3.热管的传热极限
热管虽然是一种传热性能极好的元件,但也不可能无限加大热负荷, 其传热能力的上限值会受到一种或几种因素的限制,如毛细力、声速、 携带、冷冻启动、连续蒸气、蒸气压力及冷凝等,因而构成热管的传 热极限(或叫工作极限)。这些传热极限与热管尺寸、形状、工作介质、 吸液芯结构、工作温度等有关,限制热管传热量的极限类型是由该热 管在某种温度下各传热极限的最小值所决定的。具体来讲,这些极限 主要有(如图所示):
热管技术及其应用
法
1
目录
一、背景 二、热管的特性 三、热管的分类 四、热管换热器 五、热管的应用
2
1.1背景
当今传热工程面临两大问题:研究高绝热材料和高导热 材料。具有良好导热性的材料有铝[(λ=202W/m•℃)]、柴 铜[λ=385W/ m•℃]、和银:λ=410W/ m•℃)],但其导热 系数只能达到 102W/m•℃的数量级,远不能满足某些工程中 的快速散热和传热需要,热管的发明就解决了这一问题。热 管的相当导热系数可达105W/m•℃的数量级.为一般金属材 料的数百倍乃至上千倍,因此被称为“超导热体”。它可将 大量热量通过很小的截面积远距离地传输而无需外加动力。
10
2.5热管的相容性及寿命
热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发 生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。 相容性在热管的应用中具有重要的意义。只有长期相容性良好的热管, 才能保证稳定的传热性能、长期的工作寿命及工业应用的可能性。影响 热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三 方面:
(1)产生不凝性气体
由于工作液体与管壳材料发生化学反应或电化学反应,产生不凝性气体,在热 管工作时,该气体被蒸汽流吹扫到冷凝段聚集起来形成气塞,从而使有效冷凝 面积减小,热阻增大,传热性能恶化。
热管技术在航空领域的应用研究

热管技术在航空领域的应用研究第一章:热管技术的概述1.1 热管技术的概念及基本原理热管技术是一种高效的热传输技术,通过利用液体在低温处蒸发后高温处重新凝结来完成热传递。
热管技术具有高热传导能力、无动力驱动、无噪声、无污染等优点。
1.2 热管技术的种类目前,热管技术主要包括传统热管、微热管、超细微热管、新型复合热管等。
1.3 热管技术在航空领域的应用前景随着现代航空技术的迅速发展和航天事业的不断推进,热管技术逐渐引起航空工程领域的密切关注。
热管技术在航空领域中的应用前景十分广阔。
第二章:热管技术在航空发动机中的应用2.1 热管技术在航空发动机冷却系统中的应用航空发动机是飞机的核心动力部件。
其热问题一直是一个难以解决的问题。
热管技术应用于航空发动机冷却系统可有效解决热平衡问题,提高发动机运行效率。
2.2 热管技术在航空发动机燃烧室中的应用航空发动机的燃烧室是发动机的能量转换区域,其热问题对发动机的稳定运行和寿命影响较大。
通过使用热管技术,可以实现燃烧室的高效散热和温度均衡控制。
第三章:热管技术在航空装备中的应用3.1 热管技术在航空电子设备中的应用航空电子设备是飞机中的关键部件之一,其高温环境会对设备的性能和寿命产生很大影响。
热管技术的应用可以有效解决这一问题,提高电子设备的可靠性,延长使用寿命。
3.2 热管技术在航空仪表中的应用航空仪表是机组人员在飞行中进行控制的重要工具。
在高速飞行过程中,仪表产生的高温可能导致其性能降低。
热管技术的应用可有效解决这一问题,延长仪表使用寿命。
第四章:热管技术在航空航天器中的应用4.1 热管技术在航空航天器温度控制系统中的应用航天器的温度控制是影响其性能和寿命的关键因素。
在太空中,温度升高会导致航天器表面温度达到上千摄氏度,而降温则会导致器件工作异常。
热管技术可实现温度控制和热平衡,保障航天器的正常工作。
4.2 热管技术在航空航天器控制系统中的应用航天器的控制系统对于确保任务的安全和准确执行至关重要。
热管技术及原理

热管原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1•3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管的技术资料

五、均溫板與迴路式熱管
生產均溫板(Vapor Chamber)之設備 均溫板關鍵技術 迴路式熱管(Loop Heat Pipe)關鍵技術
生產均溫板之設備
☆.工件成型模具及設備 ☆. 潔淨清洗設備 ☆. 真空燒結爐設備 ☆. 真空焊接爐設備 ☆. 測漏儀器 ☆. 注料設備 ☆. 除氣、封焊設備 ☆. 拋光研磨設備
老化
彎壓
整型
பைடு நூலகம்
清洗
烘乾
包裝
出貨
品管流程及管制重點
進料
規格 數量 外觀
發料
規格 數量
切管
尺寸 外觀
縮頭
尺寸 外觀
清洗
外觀 PH 電阻
燒銲
尺寸 外觀
縮尾
尺寸 外觀
穿網
貼壁 尺寸 外觀
退火
真空 溫度 氣體 時間
充填
真空 溫度 水量 尺寸
整型
整直 外觀
烘乾
溫度 含水
OK
半成品測試
溫度差 熱傳量
彎管
尺寸 外觀
3 mm 4 mm 5 mm 6 mm 8 mm
2
2.5
3
3.5
4
Thickness (mm)
熱管應用:折彎、壓扁、段差
四、熱管信賴度測試
☆加速老化、 ☆冷熱循環、 ☆冷熱衝擊、 ☆洩漏率測試、 ☆強度(爆破)測試、 ☆壽命測試。
☆加速老化測試
Log2(MTBF Hours of operation at Top)
☆熱傳量
ΔT=(T1-T2)(℃)
Qmax Input Power(W)
☆熱反應
Temperature(℃)
T1 T2 Thermal response
热管技术

高温热管
高温热管的应用:高温热管换热器
高温热管
高温热管换热器的优点: 传热性能好:热管换热器任意一个腔体内的 流动都是垂直外掠流动,而且两个腔体内的 流形很容易实现纯逆流流动,可以在不改变 冷、热流体入口温度的条件下,增大平均温 差,提高传热效果。 冷、热流体两侧的传热面积可以自由扩展。 传热面局部破坏时,能确保两流体彼此不渗 混合。
脉动热管
脉动热管: Pulsating Heat Pipe(PHP),也叫振 荡热管(Oscillating Heat Pipe,OHP) 将管内抽成真空并充入部分工质后,由于管径足够小, 管内将形成不均匀分布的汽柱和液柱。 在蒸发端,工质吸热产生汽泡,气泡膨胀升压推动 液柱和汽柱从蒸发段流向冷凝段,汽柱到冷凝段后 遇冷收缩并破裂,被冷凝成液体。 在压差推动下,冷却液体从冷凝段回流到蒸发段, 从而实现热量从热端到冷端的传递。
渠氏热管
渠玉芝发明的渠氏超导热管技术,被国外称之为“渠氏理论 传热技术”,已应用于我国的部分炼油厂、钢铁厂的余热回 收、电脑CPU的散热器、青藏两路冻土地带的路基加固处理 等方面,其传热和节能效果十分明显,已引起国外关注。
渠氏热超导管与上世纪60年代发展起来的常规热管完全不 同。常规热管是靠管内介质液态和气态的相变传递汽化潜能, 它受到温度和循环相变速度的限制,有热损,寿命也不高; 而渠氏热超导管的传热介质是由多种无机元素组成,在外因 热的激发下利用微粒子的高频率振动(每秒2亿次以上)传 递热量,无相变,热阻为零,故称为热超导。
脉动热管
脉动热管可以作为一种高效的导热元件广泛应用于 电子元器件冷却,如下图用于冷却多芯片模块的脉 动热管散热翅和用于cpu散热的无风扇散热器。
热管技术的工作原理及在多领域中的应用

热管技术的工作原理及在多领域中的应用1、热管的基本组成及工作原理A、热管的组成:热管主要由主体(一根封闭的金属管)、充注工作介质的内腔和毛细结构(管芯)。
在制作时,管内的空气和其他杂物要清除干净,需为真空状态。
B、热管的工作原理:一个完成的热管,沿轴可分为蒸发段、绝热段和冷凝段三部分。
当热管在工作时,热管的蒸发段受到外界热量影响,此处的工作介质受热蒸发,蒸发后气压迅速升高,由于蒸发段与冷凝段气压不同,蒸发段的蒸汽沿着通道流向冷凝段,冷凝段温度低于蒸发段,于是蒸汽在此处释放热量并冷凝,回落到蒸发段,此时就完成了热量的传递。
如此的周而复始,就完成了大量的热量的传递。
热管热量的传递是无外力自动发生的,利用工作介质的相变来进行的,通常只要有温差,就能产生热量的传递。
由于蒸发段与冷凝段之间是有绝热装置完全隔离开的,因此能够保证热管内的热量不会散失到外界,保证了热量的传递。
2、热管技术的应用由于热管技术具有很快的传热速度,因此被应用于各个领域。
而且在使用过程中,可根据实际使用情况,可通过热管将热源和冷源完全分离开来完成热量的传递,非常的灵活和便捷。
A、在航空航天中的应用热管技术最早是应用于航天航空中的。
航天器在天空中时,向着阳光的一面温度高,背阴面温度较低,温差较大,而利用热管技术,热管的蒸发段从向阳的一面吸收热量,传递到背阴的一面,以此来实现两侧温度的平衡,避免两侧的温差过大,导致航天器出现故障。
B、工业领域中的热回收应用在工业领域,余热资源非常多,但能够再次进行利用的却很有限,由于技术或资金的原因,导致一些余热资源被浪费掉了。
如很常见的烘干或类似的工序,需要先将环境中的空气(即新风)送进反应炉中,经过加温,加热到符合条件的热度后,在进行下一步作业,为保证炉内空气的新鲜和维持一定的压力,需要将作业完后的空气排出,此时排除的空气会带有一定的热量;通过热管技术,对这部分热量进行回收,对新风进行预热,就减少了能源的投入,降低了成本。
热管技术的应用研究与发展

热管技术的应用研究与发展热管技术是一种热传导技术,它利用物质的蒸发和冷凝原理,将热量从一个位置传输到另一个位置,被广泛应用于电子设备、军事、航空航天等领域。
随着科技的不断进步和应用需求的不断增加,热管技术的应用和研究得到了持续的推进和发展。
热管技术最早出现在1960年代后期,主要应用于太空技术中,用于控制卫星上电子设备的温度。
随着该技术的不断成熟和发展,其应用领域不断拓宽。
目前,热管技术已经应用于各种电子设备,例如笔记本电脑、手机、平板电脑等,通过热管技术的热导性能实现散热降温,提高设备稳定性和寿命。
同时,在军事、航空航天领域,热管技术也被广泛用于控制和维持各种设备的温度,提高设备性能和稳定性。
热管技术的基本原理是利用工作流体的液态和气态相变过程来传导热量。
工作流体的蒸发和冷凝是热传导的基本形式,热量从热源端向工作流体传递,利用蒸汽的扩散浸渍到蒸汽空腔壁面上,再通过冷凝放出潜热释放给冷源。
通过工作流体的流动达到传递热量的效果。
与其他传热技术相相比,热管技术具有以下优点:1.高热传导能力。
热管技术可以跨越较长距离传输热量,具有很强的热传导能力。
2.自控制效应。
热管在工作过程中,由于相变过程的自发控制,具有自控制效应,可以有效地控制热源温度。
3.可靠性高。
由于热管内无运动部件和润滑剂等机械结构,所以热管寿命长,可靠性高。
热管技术的应用越来越广泛,其优越的热传导性能和可靠性也引起了越来越多的研究和发展。
其中一个关键的发展方向是优化热管结构和材料,以达到更高的热传导性能和工作温度范围。
现代材料科学的发展为热管技术的进一步发展提供了重要的支撑。
例如,高温热管技术能够解决高温条件下热量传递的问题,提高了热管的工作温度范围。
有学者提出了高温热管技术的基础元件,包括压缩机、蒸发器、冷凝器和热管本体等。
在热管本体方面,研发团队采用了碳化硅纳米材料作为热管主体,大大提高了热传导速度和传导能力,极大地拓展了高温热管技术的应用领域。
热管技术及其工程应用z

热管的应用领域广泛,涉及到不同的行业和领域,需要针 对不同的应用场景进行定制化设计和优化,以满足多样化 的需求。
热管技术的发展趋势与前景
高效化
随着科技的发展,对热管传热效率的要求越来越高,未来 热管技术将不断向高效化方向发展,提高热管的传热性能 和效率。
长寿命化
热管的使用寿命是衡量其性能的重要指标之一,未来热管 技术将不断追求长寿命化,提高热管的使用寿命和稳定性 。
微型化
随着微型化技术的发展,未来热管技术将向微型化方向发 展,应用于更小规模和更高精度的领域,如微型电子器件 散热等。
智能化
随着智能化技术的发展,未来热管技术将与智能化技术相 结合,实现热管的自适应调节和智能控制,提高热管的传 热热的案例分析
热管内部的相变过程
总结词
相变过程是热管内部传热的关键环节。
详细描述
在热管内部,工作液体在加热条件下发生相变,由液态变为气态,产生蒸汽流动 。这个相变过程伴随着大量热量的吸收和释放,是热管实现高效传热的关键。
热管的传热过程分析
总结词
热管的传热过程涉及多个物理现象。
详细描述
热管的传热过程包括工作液体的汽化、蒸汽的流动、蒸汽的冷凝和回流等环节。这些环节相互作用, 共同实现高效的热量传递。此外,热管内部的传热还受到管壁导热、蒸汽与管壁的对流换热等因素的 影响。
热管在余热回收和热能利用中的应用
总结词:节能环保
详细描述:热管技术广泛应用于余热回收和热能利用,将废弃的热量转化为可利用的能源,提高能源 利用效率,降低能耗和排放,符合节能环保的理念。
热管在新能源领域的应用
总结词:创新驱动
详细描述:随着新能源技术的不断发展,热管技术在太阳能 、风能等新能源领域得到广泛应用。热管能够高效地转换和 利用新能源产生的热能,推动新能源技术的创新和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从传热状况看,热管沿轴向可分为 蒸发段,绝热段和冷凝段三部分。
2.2. 热Байду номын сангаас的工作过程
如图:当热管的一端受热时毛细芯中的液 体蒸发汽化,蒸汽在微小的压差下流向另 一端放出热量凝结成液体,液体在沿多孔 材料靠毛细力的作用流回蒸发段。如此循 环往复,热量便从一端传到了另一端!
(1)热管换热设备较常规设备更安全、可靠,可长期连续运行 这一特点对连续性生产的工程,如化工、冶金、动力等部门具有特别重要的意义。 常规换热设备一般都是间壁换热,冷热流体分别在器壁的两侧流过,如管壁或器壁有 泄漏,则将造成停产损失。由热管组成的换热设备,则是二次间壁换热,即热流要通 过热管的蒸发段管壁和冷凝段管壁才能传到冷流体,而热管一般不可能在蒸发段和冷 凝段同时破坏,所以大大增强了设备运行的可靠性。 (2)热管管壁的温度可调性 热管管壁的温度可以调节,在低温余热回收或热交换中是相当重要的,因为可以通 过适当的热流变换把热管管壁温度调整在低温流体的露点以上,从而可防止露点腐蚀, 保证设备的长期运行。这在电站锅炉尾部的空气预热方面应用得特别成功,设置在锅 炉尾部的热管空气预热器,由于能调整管壁温度不仅能防止烟气结露,而且也避免了 烟灰在管壁上的粘结,保证锅炉长期运行,并提高了锅炉效率。 (3)冷、热段结构和位置布置灵活 由热管组成的换热设备的受热部分和放热部分结构设计和位置布置非常灵活,可适 应于各种复杂的场合。由于结构紧凑占地空间小,因此特别适合于工程改造及地面空 间狭小和设备拥挤的场合,且维修工作量。 (4)热管换热设备效率高,节能效果显著。
2.5热管的相容性及寿命
热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发 生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。 相容性在热管的应用中具有重要的意义。只有长期相容性良好的热管, 才能保证稳定的传热性能、长期的工作寿命及工业应用的可能性。影响 热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三 方面:
2.3.热管的传热极限
热管虽然是一种传热性能极好的元件,但也不可能无限加大热负荷, 其传热能力的上限值会受到一种或几种因素的限制,如毛细力、声速、 携带、冷冻启动、连续蒸气、蒸气压力及冷凝等,因而构成热管的传 热极限(或叫工作极限)。这些传热极限与热管尺寸、形状、工作介质、 吸液芯结构、工作温度等有关,限制热管传热量的极限类型是由该热 管在某种温度下各传热极限的最小值所决定的。具体来讲,这些极限 主要有(如图所示):
1984年Cotter较完整地提出了微型热管的理论及展望,为微 型热管的研究与应用奠定了理论基础。
我国于1970年开始的热管研制工作.首先是为航天技术发 展的需要而进行的。
1976年12月7日,在卫星上首次应用热管取得了成功;我
国气象卫星也应用了热管,取得了预期的效果。
1973年在德国斯图加特召开了第一届国际热管会议后,到 目前为止,已经举行了16届
第二章 热管及其特性
2.1热管的组成
图2.1 热管示意图 1—管壳;2—管芯;3—蒸汽腔;4—工作液
热管:是一种传热性极好的人工构 件。常用的热管由三部分组成:主 体为一根封闭的金属管(管壳), 内部空腔内有少量工作介质(工作 液)和毛细结构(管芯),管内的 空气及其他杂物必须排除在外。热 管工作时利用了三种物理学原理:
由于热管具有导热性能好、结构简单、工作可靠、温度 均匀等良好性能.热管是传热领域的重大发明和科技成果, 给人类社会带来巨大的实用价值。
1.2简历
1942年美国通用发动机公司的R.S.Gaugler首先提出热管的 原理并于1944年获得专利。
1962年L.Trefethen再次提出类似于Gaugler的传热元件用于 宇宙飞船,但因这种建议并未经过实验证明,亦未能付诸实 施。
(6)恒温特性
普通热管的各部分热阻基本上不随着热量的变化而变化,因此热管各部分的温度随加热量变 化。但可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这 样热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的 恒温特性。
(7)环境的适应性
热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、 手术刀等等,热管也可做成分离式的以适应长距离或冷热流体不能混合的情况下的换热;热 管既可以用于地面(重力场),也可用于空间(无重力场)。
两相闭式热虹吸管
对于两相闭式热虹吸管,所可能发生的传热极限主要是干涸极限、沸腾极
限(又称烧毁极限)和携带极限。干涸极限一般发生在充液量过小时。 为了避免热管工作时达到这些传热极限,并强化热管的换热,目前行之有
效的方法有:在热虹吸管的蒸发段内同心放置开孔抑泡管抑制该段气泡的脱离; 在冷凝段内设置溢流同心导管降低该段的凝结热阻;将热虹吸管的内壁加工成 为轴向槽道表面提高热虹吸管的换热系数等。
第三章 热管的分类
由于热管的用途、种类和型式较多,再加上热管在结构、材质和 工作液体等方面各有不同之处,故而对热管的分类也很多,常用的 分类方法有以下几种。
按照工作液体回流动力区分有芯热管、两相闭式热虹吸管(又称 重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体 动力热管、渗透热管等等。
(3)管壳材料的腐蚀、溶解
工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生 溶解和腐蚀,流动阻力增大,使热管传热性能降低。当管壳被腐蚀后,引起强 度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。
2.6总结:热管技术的重要特点
与常规换热技术相比,热管技术之所以能不断受到工程界欢迎,是因其具有如下的 重要特点。
热管技术及其应用
法
目录
一、背景 二、热管的特性 三、热管的分类 四、热管换热器 五、热管的应用
1.1背景
当今传热工程面临两大问题:研究高绝热材料和高导热 材料。具有良好导热性的材料有铝[(λ=202W/m•℃)]、柴 铜[λ=385W/ m•℃]、和银:λ=410W/ m•℃)],但其导热 系数只能达到 102W/m•℃的数量级,远不能满足某些工程中 的快速散热和传热需要,热管的发明就解决了这一问题。热 管的相当导热系数可达105W/m•℃的数量级.为一般金属材 料的数百倍乃至上千倍,因此被称为“超导热体”。它可将 大量热量通过很小的截面积远距离地传输而无需外加动力。
(1)产生不凝性气体
由于工作液体与管壳材料发生化学反应或电化学反应,产生不凝性气体,在热 管工作时,该气体被蒸汽流吹扫到冷凝段聚集起来形成气塞,从而使有效冷凝 面积减小,热阻增大,传热性能恶化。
(2)工作液体物性恶化
有机工作介质在一定温度下,会逐渐发生分解,或与壳体材料发生化学反应, 使工作介质改变其物理性能。
在这一热量转移的过程中,具体包含了以 下六个相互关联的过程: (1)热量从热源通过热管管壁和充满工作 液的吸液芯传递到液-气分界面; (2)液体在蒸发段的液-气分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流向冷凝段; (4)蒸汽在冷凝段内的液-气分界面上凝 结; (5)热量从液-气分界面通过吸液芯、液 体和管壁传给冷源; (6)在吸液芯内由于毛细作用(或重力等) 是冷凝后的工作液回流到蒸发段。
3.1两相闭式热虹吸管
两相闭式热虹吸管简称热虹吸管,又称为重力热 管。其结构和原理如右图所示。与普通热管原理一 样,但不同的是热管内没有吸液芯,冷凝液的回流 主要是靠自身的重力作用,因此,热虹吸管的作用 有一定的方向性:冷凝段位置必须高于蒸发段。其 结构简单、制造方便、成本低廉、而且传热性能优 良、工作可靠,因此他在地面上的各类传热设备中 都可以作为高效传热元件,其应用领域非常广泛。
2.4.热管的基本特性
(1)很高的导热性
热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。
(2)优良的等温性
热管内腔的蒸汽是处于饱和状态,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,温降亦 很小,因而热管具有优良的等温性。
(3)热流密度可变性
热管可以独立改变蒸发段或冷却段的加热面积,这样即可以改变热流密度。
3.2旋转热管
2.3.热管的传热极限
热管工作中当其蒸发段径向热流密 度很大时,将会使管芯内工作液体 沸腾。当径向热流密度达到某一临 界值时,对于吸液芯的热管,由于 所发生的大量汽泡堵塞了毛孔,减 弱或破坏了毛细抽吸作用,致使凝 结液回流量不能满足蒸发要求。
冷凝极限是指通过冷凝 段汽-液交界面所能传递 热管中蒸汽与液体的流动方向的最大热量。热管最大 相反,在交界面上二者相互作传热能力可能受到冷凝 在蒸 支用由波蒸配汽,于动汽 ,在阻受,热温即当止逆度热管对向蒸内低管汽方蒸时中的流汽速流, 蒸度动 流工 汽动。 的高受作 流到液 作粘流 动能体 用性体 的把表 产力的 粘液面 生段 凝冷冷 性凝却气段能体的力的冷的存却限在效制降率,低。不了 能 热蒸滞而面带带从 使力管发阻与上到走热而。长热段从防力吸的冷,管造粘度管去图止液限成液凝使停性 和的的中 出形制芯体段应止蒸极蒸携液可 现对以热于真的了式发剪时当工限汽带体以毛无空于 及 管 自热几切,通作段只通传不看 细关小 工 内 由状何管毛成 液 过 ,与 道热足出 极热 作 的 分态。的形细 体 毛 这细工 直极在 中 能 次 段 蒸: 限甚状最管 温 蒸 子。芯滴 被 细 就质 径限从 , 在 冷 来 发当 及至和大, 度 气 状这干并 大 芯 达物 有。冷 蒸 绝 冻 的 段工 沸中结传如 很 流 态时涸把 量 返 到性 关冻 发 热 , 工 干作 腾断构热微 低 动 或,,它 携 回 了、 ,状 端 段 这 作 涸温 极,型 的 可 稀由态 来 或 将 介 ,度限热热能薄于启得冷耗质热低。管管处、不当凝传段一再声加声动蒸凝尽,管时故,,蒸段热出步使速,速过气段蒸导无,热发温量口降蒸,这的程可再发致法最管段度因汽低发因时极易的温可而速冷段而热限出工度使加达凝出传管。现作一蒸大到段口热的粘点定汽。声温处量工性必,流但速度汽也作极须降速当时也速不达限选低加蒸,不超再到及择在的压就量抽需的冷大发进能过增了声在热循头达和回干要,速包管环达到冷到涸的极络量运压到了凝蒸和限线行 力 平 最 量 发 过,高。 的以中 降 衡 大 , 段 热,下, 与 时 值 则 的 。致甚而方会当 所 , 。 会 液 导至在。热 能 该 如 因 体 致发“高生管 提 热 果 毛 不 壳烧温蒸中 供 管 这 细 能 壁毁下发的 的 的 时 压 满 温”则段汽 最 传 加 头 足 度应吸体 大 热 大 不 蒸 剧液液 毛 量 蒸 足 发 烈芯体 细 也 发 使 所 升 能获得连续的正蒸常气启流动,工传作。