北师大版七年级数学下册-----第二章知识点汇总(全)
北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。
北师大版七年级数学下册 第二章知识点汇总(全)

第二章 平行线与相交线余角余角补角补角角两线相交 对顶角同位角内错角尺规作图一、平行线与相交线1、平行线:在同一平面内,不相交的两条直线叫做平行线。
2、若两条直线只有一个公共点,我们称这两条直线为相交线。
二、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
即:(1)00001290(180),1390(180),∠+∠=∠+∠=则23∠=∠(同角的余角(或补角)相等)。
(2)00001290(180),3490(180),∠+∠=∠+∠=且14,∠=∠则23∠=∠(等角的余角(或补角)相等)。
三、对顶角1、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、对顶角的性质:对顶角相等。
4、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
四、垂线及其性质1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
2、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
五、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。
2、同位角:两个角都在两条直线(被截线)的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
3、内错角:两个角都在两条直线(被截线)之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
4、同旁内角:两个角都在两条直线(被截线)之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。
北师大版七年级数学下册知识点汇总

北师大版七年级数学下册知识点汇总第一章:整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n(m,n 都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方与积的乘方。
- 幂的乘方:幂的乘方,底数不变,指数相乘,即(a^m)^n=a^mn(m,n都是正整数)。
例如:(3^2)^3=3^2×3=3^6。
- 积的乘方:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘,即(ab)^n=a^nb^n(n为正整数)。
例如:(2×3)^2=2^2×3^2=4×9 = 36。
3. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减,即a^m÷ a^n=a^m - n(a≠0,m,n 都是正整数,且m>n)。
例如:5^6÷5^3=5^6 - 3=5^3。
- 零指数幂:a^0=1(a≠0)。
例如:3^0=1。
- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p是正整数)。
例如:2^-3=(1)/(2^3)=(1)/(8)。
4. 整式的乘法。
- 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:2x^2·3x^3=(2×3)(x^2·x^3) = 6x^5。
- 单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
例如:a(b + c)=ab+ac。
- 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(a + b)(c + d)=ac+ad+bc+bd。
5. 平方差公式。
- 公式:(a + b)(a - b)=a^2-b^2。
- 例如:(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。
北师大版七年级下册数学各章知识点总结

北师大版七年级下册数学各章知识点总结第一章:集合与函数在本章中,我们学习了集合和函数的概念及其相关性质。
集合是由一些确定的元素所组成的整体,可以用各种方式进行表示和描述。
函数是一种具有特定关系的元素对应规则,它可以将每一个元素都与唯一的另一个元素对应起来。
1.1 集合的基本概念- 元素:构成集合的个体或对象。
- 集合的含义:具有某种特定性质的元素的整体。
- 集合的表示方法:列举法、描述法、图形法等。
- 空集:不包含任何元素的集合,用符号{}表示。
1.2 集合的运算- 并集:包含两个或多个集合中的所有元素,用符号∪表示。
- 交集:同时属于两个或多个集合的元素,用符号∩表示。
- 差集:属于一个集合而不属于另一个集合的元素,用符号-表示。
1.3 函数与映射- 函数的概念:具有唯一对应关系的元素对应规则。
- 定义域与值域:函数中可输入的元素的全体构成的集合称为定义域,函数中对应的输出元素的全体构成的集合称为值域。
- 映射:通过函数规则将一个集合中的元素对应到另一个集合中的元素。
第二章:有理数与运算该章节主要介绍了有理数的概念及其运算法则,以及有理数之间的大小比较和约分等操作。
2.1 有理数的基本概念- 有理数:能够表示为两个整数之比的数,包括正整数、负整数和零等。
- 整数:自然数、0和负整数的统称。
- 分数:用一个整数除以另一个非零整数所得的数。
2.2 有理数的加减法- 加法法则:同号两数相加,异号两数相减。
- 减法法则:将减法问题转化为加法问题。
- 有理数的加法运算法则:相同/不同符号数相加,绝对值相加、符号不变。
2.3 有理数的乘除法- 乘法法则:同号得正,异号得负。
- 除法法则:除以一个非零有理数相当于乘以它的倒数。
第三章:代数式的定义与计算该章节主要讲解了代数式的概念及其计算方法,介绍了加法、减法、乘法和幂运算等代数式的性质和规则。
3.1 代数式的定义与基本运算- 代数式:用字母和数字表示数的式子。
北师大版《数学》(七年级下册)概念总结

北师大版《数学》(七年级下册)概念总结第一章整式的乘除1.同底数幂相乘,底数不变,指数相加。
2.幂的乘方,底数不变,指数相乘。
3.积的乘方等于积中每一个因式分别乘方。
4.同底数幂相除,底数不变,指数相加。
5.除0外的任何数的零次方都是一6.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
7.单项式与多项式相乘,就是根据分配侓用单项式去乘多项式的每一项,再把所得的积相加。
8.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
9.平方差公式:两数和与这两数差的积,等于与他们的平方差。
10.完全平方公式:11.单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只含在被除式里含有的字母,则连同他的指数作为商的一个因式。
12.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
第二章相交线与平行线1.在同一平面内,两条直线的位置关系有相交和平行。
2.在同一平面内,若两条直线只有一个公共点,我们称这两条直线为相交线。
3.在同一平面内,不相交的两条直线叫平行线。
4.对顶角相等。
5.如果两个角的和是180°,称这两个角互为补角。
6.如果两个角的和是90°,称这两个角互为余角。
7.同角或等角的余角相等,同角或等角的补角相等。
8.两条直线相交成四个角,如果有一个是直角,那么称这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
9,平面内,过一点有且只有一条直线与已知直线垂直。
10.垂线线段最短。
11、在同一平面内:同位角相等内错角相等两直线平行同旁内角互补.12.过直线外一点有且只有一条直线与已知直线平行。
平行于同一条直线的两只线平行。
13.平行线的定义:同位角相等两直线平行内错角相等同旁内角互补第三章三角形1三角形的内角和是180°。
2直角三角形的两个锐角互余。
北师大版七年级下册数学各章知识点总结复习整理

北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
第2章章节复习-北师大版七年级数学下册(教案)

1.理论介绍:首先,我们要了解平行线的性质与判定的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中起着关键作用,可以帮助我们解决实际问题。
案例分析:接下来,我们来看一个具体的案例。这个案例展示了平行线在实际中的应用,以及如何利用平行线的性质来解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的性质与判定、组合图形的面积计算等基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上复习了第2章的内容,主要包括平行线的性质与判定、组合图形的面积计算等。回顾整个教学过程,我觉得有几个地方值得反思。
首先,关于平行线的性质与判定,我发现学生们在理解同位角、内错角等概念时还存在一定的困难。在今后的教学中,我需要更加注重引导学生通过实际操作,如折叠、画图等,来加深对这些概念的理解。此外,我还应设计更多有趣的例题,让学生在实践中掌握平行线的判定方法。
突破方法:引导学生发现图形的规律,运用所学知识解决实际问题。
(5)概率的计算:在实际问题中,如何正确求出事件的概率?
突破方法:通过大量练习,让学生掌握概率的计算方法。
(6)实数的运算:如何提高实数的运算速度和准确性?
突破方法:加强基本运算训练,提高学生的实数运算能力。
(7)数据的分析与处理:如何从数据中提取有价值的信息,进行简单数据分析?
突破方法:通过实际例题,让学生动手操作,加深对判定方法的理解。
北师大版七年级数学下册数学各章节知识点总结

北师大版七年级数学下册数学各章节知识点总结一、概述北师大版七年级数学下册的教材,按照学科体系与学生认知发展的规律,系统、全面地介绍了初中数学的重要知识点。
这一册教材主要涵盖了实数、代数式与方程、函数及其图象、平面几何等多个方面,为学生打下了坚实的数学基础。
通过本册的学习,学生不仅能够掌握基本的数学概念、公式和运算技巧,还能够逐渐培养起运用数学知识解决实际问题的能力,为其未来的学习与发展奠定基石。
在这一册的开头部分,我们首先学习了实数的相关知识,包括有理数和无理数的概念、运算及其性质。
教材引入了代数式的概念,包括单项式、多项式、整式与分式等,并通过解方程使学生进一步理解代数运算。
函数及其图象是这一册的重点内容之一,学生将学习一次函数、二次函数等基本函数及其图象,并通过函数与图象的关系,理解函数的概念和性质。
平面几何部分则包括线段、角、三角形等基础知识,以及基本的几何变换,如平移、旋转等。
这一册教材的学习,不仅是对数学知识的积累,更是对学生思维能力、逻辑能力、创新能力的培养。
通过系统的学习,学生将逐渐建立起完整的数学知识体系,为其未来的学习和职业发展奠定坚实的基础。
1. 简述七年级数学下册的重要性七年级数学下册作为整个中学数学教育的基础阶段,其重要性不言而喻。
这一学期的内容不仅是对小学数学知识的深化和拓展,更是为后续更高级别的数学学习奠定坚实基础。
七年级数学下册的知识点涵盖了代数、几何、概率统计等多个领域,这些知识点不仅在日常生活中有着广泛的应用,而且在未来的学习和职业发展中也发挥着至关重要的作用。
代数是七年级数学下册的重要组成部分,它帮助学生建立数学思维和解决问题的能力。
通过学习代数,学生可以掌握代数表达式、方程、不等式等基本概念,学会运用这些工具解决实际问题。
几何是七年级数学下册的另一大重点。
几何不仅帮助学生理解空间的概念,还培养学生的逻辑思维和想象力。
通过学习几何,学生可以掌握基本的图形性质和定理,学会运用几何语言描述和证明几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平行线与相交线
余角
余角补角
补角
角 两线相交
同位角
三线八角 内错角
同旁内角 平行线的判定 平行线
平行线的性质
尺规作图
一、平行线与相交线
1、平行线:在同一平面内,不相交的两条直线叫做平行线。
2、若两条直线只有一个公共点,我们称这两条直线为相交线。
二、余角与补角
1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
即:
(1)则(同角的余角(或补角)相等)。
(2)且则(等角的余角(或补角)相等)。
三、对顶角
1、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、对顶角的性质:对顶角相等。
4、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
四、垂线及其性质
1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
2、垂线的性质: 0000
1290(180),1390(180),∠+∠=∠+∠=23∠=∠00001290(180),3490(180),∠+∠=∠+∠=14,∠=∠23∠=∠
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
五、同位角、内错角、同旁内角
1、两条直线被第三条直线所截,形成了8个角。
2、同位角:两个角都在两条直线(被截线)的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
3、内错角:两个角都在两条直线(被截线)之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
4、同旁内角:两个角都在两条直线(被截线)之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。
六、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。
七、平行线的性质
1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补。
4、平行线的判定与性质具备互逆的特征,其关系如下:。