江苏省苏州市2014-八年级下期中数学试卷

合集下载

苏科版八年级数学下册2014—2015学年第二学期期中测试

苏科版八年级数学下册2014—2015学年第二学期期中测试

苏科版八年级数学下册2014—2015学年第二学期期中测试(初二数学试卷含答案)注意事项:1.本试卷共28题,满分l00分,考试用时100分钟;2.答题前,考生务必将自己的姓名、年级、学号填写在答题卷的相应位置上;3.考生答题必须答在答题卷上,答在试卷和草稿纸上无效. 一、选择题(本大题共10小题,每小题3分,共30分) 1. 反比例函数xy 2-=的图象位于( ▲ ) A .第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 2. 若分式21+-x x 的值为零,则x 的值是( ▲ ) A .0 B .1 C .-1 D .-23. 如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于 E 、F ,那么阴影部分的面积是矩形ABCD 面积的( ▲ )A .15 B .14 C .13 D .310(第3题) (第4题) (第8题)4. 如图,D 、E 分别是△ABC 的边AC 和BC 的中点,已知DE=2,则AB 为( ▲ )A .1B .2C .3D .4 5. 下列等式一定成立的是( ▲ )A =B =C 3±D .()992-=-6. 在菱形ABCD 中,两条对角线AC =6,BD =8,则此菱形的边长为( ▲ ) A .5 B .6 C .8 D .107. 若点(-3,1y )、(-2,2y )、(1,3y )在反比例函数2y x=的图像上,则下列结论正确的是( ▲ ) A .123y y y >> B .213y y y >> C .312y y y >> D .321y y y >>8. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠ACB =30°,AB =2,则BD 的长为( ▲ )A .4B .3C .2D .19. 某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x 个,可列方程为( ▲ )A .40050010x x =-B .40050010x x =+ C .40050010x x =+ D .40050010x x =-10. 如图,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( ▲ ) A .梯形 B .矩形 C .菱形 D .正方形二、填空题(本大题共10小题,每小题2分,共20分)11. x 的取值范围是 ▲ .12. 13.(第12题) (第13题) (第17题)14. 的结果是 ▲ .15. 若关于x 的分式方程2133m x x =+--有增根,则m = ▲ . 16. 若5=+b a ,3=ab ,则abb a +的值是 ▲ .17. 如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,18. 19. 如图,正方形ABCD 的边长为8,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值为 ▲ .(第18题) (第19题) ( 第20题)20. 如图,直线22y x =-+与x 轴、y 轴分别相交于点A 、B ,四边形ABCD 是正方形,曲线ky x=在第一象限经过点D .则k = ▲ .三、解答题(本大题共7小题,共50分,解答时应写出必要的过程)21. (本题10分)计算:(1)12118121-⎪⎭⎫⎝⎛+--; (2 22. (本题6分)解分式方程:231242-=+-x x x x . 23. (本题6分)已知x 是满足11x -≤≤的整数,请你先化简代数式2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭,再从中选取所有你认为符合题意....的x 的值代入,求出该分式的值. 24. (本题6分)如图.在△ABC 中,D 是AB 的中点.E 是CD的中点,过点C 作CF ∥AB 交AE 的延长线于点F ,连接BF .(1)求证:DB=CF ;(2)如果AC=BC .试判断四边形BDCF 的形状.并证明你的结论.25. (本题6分)如图,直线y kx b =+与反比例函数my x=(0x <)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式;(2)求△AOB 的面积.26. (本题8分)已知四边形ABCD 是正方形,M 、N 分别是边BC 、CD 上的动点,正方形ABCD的边长为4cm .(1)如图①,O 是正方形ABCD 对角线的交点,若OM ⊥ON ,求四边形MONC 的面积;(2)连接线段MN,探究当MN 取到最小值时,判断MN 与对角线BD 的数量关系和位置关系,并说明你的理由.27. (本题8分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数ky x =(k ≠0)在第一象限内的图象经过点D 、E ,且12AB OA =.(1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.( 第26题)( 第27题)附加题(共20分)28. (本题429. (本题4分)如图,边长为6的正方形ABCD 内部有一点P ,BP=4,∠PBC=60°,点Q 为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q 点有 ▲ 个.30. (本题44=的解是负数,则n 的取值31. (本题8分)如图1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线34y x =-经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=也经过A 点.(1)求点A 坐标;(2)求k 的值;(3)若点P 为x 正半轴上一动点,在点A 的右侧的双曲线上是否存在一点M ,使得△PAM 是以点A 为直角顶点的等腰直角三角形.若存在,求出点M 的坐标,若不存在,请说明理由;(4)若点P 为x 负半轴上一动点,在点A 的左侧的双曲线上是否存在一点N ,使得△PAN 是以点A 为直角顶点的等腰直角三角形.若存在,求出点N 的坐标,若不存在,请说明理由.初二数学期中考试答案一、选择题二、填空题11、 x≤2 12、 6 13、 45 1415、 2 16、19317、 60 18、 x>2或-1<x<0 19、 10 20、 3 三、解答题21、(1)= 1)2- …3分= 3 …5分22、解:4+(x-2)=3x …2分 x=1 …5分)经检验:x=1是原方程的解。

最新苏州市中学2014-2015学年八年级下期中数学试题及答案

最新苏州市中学2014-2015学年八年级下期中数学试题及答案

苏州市中学2014-2015学年第二学期 初二年级数学学科期中考试试卷一、选择题:1、下列图形中,既是轴对称图形,又是中心对称图形的有 ( ▲ )A .1个B . 2个C . 3个D . 4个2、下列等式一定成立的是( ▲ )A =B . 1553=C 3±D .()992=-3、若式子21+-x x 在实数范围内有意义,则x 的取值范围是 ( ▲ ) A . x ≥1且0≠x B .1>x 且 2-≠x C .x ≥1 D .x ≥1 且 2-≠x4、下列约分结果正确的是 ( ▲ )A BC D 5、关于函数y =6x,下列说法错误的是( ) A .它的图像分布在第一、三象限 B .它的图像既是轴对称图形又是中心对称图形 C .当x>0时,y 的值随x 的增大而增大 D .当x<0时,y 的值随x 的增大而减小 6、如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y=kx(x>0)的图像经过顶点B ,则k 的值为 ( ▲ ) A .12B .20C .24D .327、已知()111,P x y 、()222,P x y 、()333,P x y 是反比例函数2y x=的图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( ▲ )A .321y y y <<B .123y y y <<C .213y y y <<D .231y y y << 8、如图,已知双曲线)0(>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若点B 的坐标是(6,4),则△OBC 的面积为( ▲ ) A .12B .9C .6D .4第6题 第8题 第10题9、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ▲ )A . 选①②B . 选②③C . 选①③D . 选②④10、我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(mi n )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( ▲ )A .7:00B .7:05C .7:10D .7:15 二、填空题:11、不改变分式的值,使ba b a 322122+-的分子分母中不含分数为 ▲12、计算:32234ba ab -∙= ▲ , 13、2)236(-= ▲14、若a>0____▲___15、在平行四边形ABCD 中,∠A 与∠B 的度数比是2:3,则∠C= ▲ ,∠D= ▲ 16、如图,在边长为12的正方形ABCD 中,点E 在边DC 上,AE = 14,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为 ▲17、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于 ▲第16题 第17题 第18题18、根据图象写出使一次函数的值小于反比例函数的值的x 的值取值范围是 ▲19、已知关于x 的分式方程32122x a x x =---的解是非负数,则a 的取值范围是_ ▲ __20、点A (x 1,y 1)、B (x 2,y 2)分别在双曲线y =x1-的两分支上,若y 1+y 2>0,则x 1+x 2的范围是 ▲ . 三、解答题: 21、计算:(1+ (2)baa b ab 1)122(18413÷-∙ ()0,0>>b a (3))252(23--+÷--x x x x 22、解方程23、已知:a 是2222214164821442a a a aa a a a a --++÷-+-+-,再求值.24、已知:图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(2)若该函数的图象与正比例函数y=2x 的图象在第一象限内的交点为A ,过点A 作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.(3)在题(2)的条件下,点(,)C x y 在反比例函数5m y x-=的图象上,求当31<≤x 时,函数值y 的取值范围;25、如图,在口ABCD 中,AB ⊥AC ,AB=1,BD 、AC 交于点O .将直线AC 绕点O 顺时针旋转分别交BC 、AD 于点E 、F .163104245--+=--x x x x(1)试说明在旋转过程中,AF 与CE 总保持相等;(2)证明:当旋转角为90°时,四边形A BEF 是平行四边形; (3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC 绕点O 顺时针旋转的角度.26、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.2万元,付乙工程队工程款0.5万元,工程领导小组根据甲、乙两队的投标书测算,列出如下方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定工期多用6天;③若甲、乙两队合做3天,则余下的工程由乙队单独做也正好如期完成. 那么在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由. 27、(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由. (2)结论应用:① 如图2,点M ,N 在反比例函数xky(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F . 试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行,为什么?28、已知:如图①,在矩形ABCD 中,AB=5,AD=,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF . (1)∠FAB ∠ADB (填>或<或=) (2)求AE 、BE 的值(2)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.ABDC图 ①苏州市景范中学2013-2014学年第二学期初二年级数学学科期中考试答题卷一、选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共10小题,每小题2分,共20分)11.____________;12.____ ___;13 14.;15.,_______;16._____________;17._______;18._____________;19.____________;20.三、解答题(本大题共8题,共60分)21.(本题12分)(1+(2)baabab1)122(18413÷-∙()0,0>>ba(3))252(23--+÷--xxxx考场号______________座位号____________班级__________姓名____________成绩____________————————————————————————装订线————————————————————————————22.(本题4分) 解方程:23.(本题5分)已知:a 是2的小数部分,222214164821442a a a a a a a a a --++÷-+-+-的值.163104245--+=--x x x x24.(本题7分)(1)(2)(3)25. (本题9分)(1)(2)(3)26. (本题6分)27.(本题8分)(1)(2)①②A BD C图①图③28.(本题9分)(1)∠FAB ∠ADB (2)(3)苏州市景范中学2014-2015学年第二学期初二年级数学学科期中考试答案一、选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共10小题,每小题2分,共20分)11.b a b a 3322+-; 12.b a 26-; 13.31224- 14.ab b -;15.72°,108°; 16.13212± 17.3.5; 18.04<<-x 或2>x ; 19.34-≥a 且31≠a ; 20.>0 三、解答题(本大题共8题,共60分) 21.(本题12分) (1)323223+ (2) 263a - (3) 31+x 22.(本题4分)无解23.(本题5分)a =12-,22211+=-a 24.(本题7分)(1)第三象限, 5>m (2)A(2,4),xy 8=(3)838≤<x25. (本题9分) (1)略 (2)略 (3)45° 26. (本题6分)设甲独做需x 天完成工程 ,则163=++x xx ,x =6,甲独做需工程款=7.2万元, 甲乙合做需工程款=6.6万元,则甲乙合做省工程款27.(本题8分) (1)略(2)①证明:连结MF ,NE设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2) ∵ 点M ,N 在反比例函数xky =(k >0)的图象上, ∴ k y x =11,k y x =22∵ ME ⊥y 轴,NF ⊥x 轴 ∴ OE =y 1,OF =x 2. ∴ S △EFM =k y x 212111=⋅S △EFN =k y x 212122=⋅∴S △EFM =S △EFN . 由(1)中的结论可知:MN ∥EF 多于 ②MN ∥EF ,略28.(本题9分) (1)=(2)AE=4,BE=3 (3)存在.理由如下:在旋转过程中,等腰△DPQ 依次有以下4种情形:①如答图3﹣1所示,点Q 落在BD 延长线上,且PD=DQ ,易知∠2=2∠Q , ∵∠1=∠3+∠Q ,∠1=∠2,∴∠3=∠Q ,∴A ′Q=A ′B=5,∴F ′Q=F ′A ′+A ′Q=4+5=9. 在Rt △BF ′Q 中,由勾股定理得:BQ===.∴DQ=BQ ﹣BD=﹣;②如答图3﹣2所示,点Q 落在BD 上,且PQ=DQ ,易知∠2=∠P , ∵∠1=∠2,∴∠1=∠P ,N图 3∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.。

江苏初二初中数学期中考试带答案解析

江苏初二初中数学期中考试带答案解析

江苏初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列四个图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.在实数,,-3.14,0,,2.161 161 161…,中,无理数有()A.1 个B.2个C.3个D.4个3.实数a、b在数轴上的位置如图所示,则化简代数式的结果是()A.B.C.D.4.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,35.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DCB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.BD=DC,AB=AC6.如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为2cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图(1)中的△ACB绕点C顺时针方向旋转到图(2)的位置,点E在AB边上,AC交DE于点G,则线段FG的长为()A. B. C. D.7.若式子有意义,则x的取值范围是.二、填空题1.的算术平方根是.2.近似数4.30万精确到位.3.已知直角三角形斜边长为12㎝,周长为30㎝,则此三角形的面积为 .4.如图,若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC= .5.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.6.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是12cm,当一段葛藤绕树干盘旋1圈升高为9cm时,那么这段葛藤的长是.7.如图,OP平分∠AOB,PB⊥OB,OA="8" cm,PB="3" cm,则△POA的面积等于.8.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为.9.如图在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、计算题(本题满分10分)(1)求式中x的值:(2)计算:四、解答题1.(本题满分10分)已知的平方根是,的立方根是3,求的平方根.2.(本题满分8分)在如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若C也是图中的格点,且使得△ABC为等腰三角形,在网格中画出所有符合条件的点C.3.(本题满分10分)如图,在△ABC中,∠B与∠C的平分线交于点O,过O作一直线交AB、AC于E、F,且BE=EO.设△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,求△OBC的面积.4.(本题满分10分)如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若AB=17,BD=12,(1)求证:△BCD≌△ACE;(2)求DE的长度.5.(本题满分10分)如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.6.(本题满分10分)已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上.(1)请问:AB、BD、DC有何数量关系?并说明理由.(2)如果∠B=60°,证明:CD=3BD.7.(本题满分10分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?(请画出示意图解答)8.(本题满分12分)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处(如图1).(1)若折叠后点D恰为AB的中点(如图2),求θ的度数;(2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,①点B落在点四边形OABC的边AB上的E处(如图3),求a的值;②若点E落在四边形OABC的外部,直接写出a的取值范围.9.(本题满分12分)问题解决(1)如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当时,求的值.类比归纳(2)在图(1)中,若则的值等于;若则的值等于;若(为整数),则的值等于.(用含的式子表示)联系拓广(3)如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设(),,则的值等于.(用含的式子表示)江苏初二初中数学期中考试答案及解析一、选择题1.下列四个图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】C.【解析】第一个图形是轴对称图形,第二个图形是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有3个.故选C.【考点】轴对称图形.2.在实数,,-3.14,0,,2.161 161 161…,中,无理数有()A.1 个B.2个C.3个D.4个【答案】C.【解析】在实数,,-3.14,0,,2.161 161 161…,中,无理数是:,,.故选C.【考点】无理数.3.实数a、b在数轴上的位置如图所示,则化简代数式的结果是()A.B.C.D.【答案】C.【解析】.故选C.【考点】1.二次根式的性质与化简;2.实数与数轴.4.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3【答案】B.【解析】A.,不可以构成直角三角形,故A选项.错误;B.,可以构成直角三角形,故B选项.正确;C.,不可以构成直角三角形,故C选项.错误;D.,不可以构成直角三角形,故D选项.错误.故选:B.【考点】勾股定理的逆定理.5.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DCB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.BD=DC,AB=AC【答案】A.【解析】A.∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;B.∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C.∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;D、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;故选A.【考点】全等三角形的判定.6.如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为2cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图(1)中的△ACB绕点C顺时针方向旋转到图(2)的位置,点E在AB边上,AC交DE于点G,则线段FG的长为()A. B. C. D.【答案】C.【解析】在△ACB和△DFE中,∠ACB=∠DFE=90°,∠A=∠D=30°,AB=DE=2,则∠B=∠DEF=60°,BC=EF=1,∵图(1)中的△ACB绕点C顺时针方向旋转到图(2)的位置,点E在AB边上,∴CB=CE=1,∠B=60°,∴△CBE为等边三角形,∴∠BCE=60°,∴∠ECG=∠BCA﹣∠BCE=30°,∵∠DEF=60°,∴∠CGE=90°,∴EG=FE=,∴FG=EG=.故选C.【考点】旋转的性质.7.若式子有意义,则x的取值范围是.【答案】.【解析】根据题意得:,解得:.故答案为:.【考点】二次根式有意义的条件.二、填空题1.的算术平方根是.【答案】.【解析】∵=6,故的算术平方根是.故答案为:.【考点】算术平方根.2.近似数4.30万精确到位.【答案】百.【解析】4.30万精确到0.01万,所以精确到百位.故答案为:百.【考点】近似数和有效数字.3.已知直角三角形斜边长为12㎝,周长为30㎝,则此三角形的面积为 .【答案】45.【解析】设一直角边为acm,另一直角边为bcm,依题意得:,整理得:,∴,则直角三角形的面积为:cm2.故答案为:45.【考点】1.勾股定理;2.三角形的面积.4.如图,若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC= .【答案】36°.【解析】∵AB=AC,AD=BD=BC,∴∠A=∠ABD,∠C=∠ABC=∠CDB,设∠A=x°,则∠ABD=∠A=x°,∴∠C=∠ABC=∠CDB=∠A+∠ABD=2x°,∵∠A+∠C+∠ABC=180°,∴x+2x+2x=180,解得x=36.故等腰三角形ABC的顶角度数为36°.故答案为:36°.【考点】等腰三角形的性质.5.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.【答案】27°或63°.【解析】在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.【考点】1.等腰三角形的性质;2.分类讨论.6.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是12cm,当一段葛藤绕树干盘旋1圈升高为9cm时,那么这段葛藤的长是.【答案】15㎝.【解析】如图所示:AC=cm,∴这段葛藤的长=15㎝.故答案为:15㎝.【考点】平面展开-最短路径问题.7.如图,OP平分∠AOB,PB⊥OB,OA="8" cm,PB="3" cm,则△POA的面积等于.【答案】12.【解析】过点P作PD⊥OA于点D,∵OP平分∠AOB,PB⊥OB,PB=3cm,∴PD=PB=3cm,∵OA=8cm,∴S=OA•PD=×8×3=12cm2.故答案为:12.△POA【考点】角平分线的性质.8.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为.【答案】45°.【解析】∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故填45°.【考点】1.线段垂直平分线的性质;2.等腰三角形的性质.9.如图在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【答案】.【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,∵BA=CA,∠BAD=∠CAD’,AD=AD’,∴△BAD≌△CAD′(SAS),∴BD=CD′.∵∠DAD′=90°,由勾股定理得DD′=,∵∠D′DA+∠ADC=90°,由勾股定理得CD′=,∴BD=CD′=,故答案为:.【考点】1.全等三角形的判定与性质;2.勾股定理;3.等腰直角三角形.三、计算题(本题满分10分)(1)求式中x的值:(2)计算:【答案】(1)或;(2).【解析】(1)先求得,再开方即可;(2)根据绝对值、零次方、算术平方根、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1),开方得:,∴或;(2)原式=.【考点】1.实数的运算;2.平方根.四、解答题1.(本题满分10分)已知的平方根是,的立方根是3,求的平方根.【答案】±10.【解析】先运用立方根和平方根的定义求出x与y的值,再求出的平方根.试题解析:∵的平方根是,的立方根是3,∴,,解得:,,∴,∴的平方根是±10.【考点】1.立方根;2.平方根.2.(本题满分8分)在如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若C也是图中的格点,且使得△ABC为等腰三角形,在网格中画出所有符合条件的点C.【答案】作图见试题解析.【解析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.试题解析:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.【考点】1等腰三角形的判定;2.网格型.3.(本题满分10分)如图,在△ABC中,∠B与∠C的平分线交于点O,过O作一直线交AB、AC于E、F,且BE=EO.设△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,求△OBC的面积.【答案】24.【解析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.试题解析:∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S=×12×4=24cm2.△OBC【考点】1.三角形的面积;2.三角形三边关系.4.(本题满分10分)如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若AB=17,BD=12,(1)求证:△BCD≌△ACE;(2)求DE的长度.【答案】(1)证明见试题解析;(2)13.【解析】(1)根据等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE即可.(2)求出AD=5,根据全等得出AE=BD=12,在Rt△AED中,由勾股定理求出DE即可.试题解析:(1)∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS).(2)由(1)知△BCD≌△ACE,则∠DBC=∠EAC,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°∵AB=17,BD=12,∴AD=17﹣12=5,∵△BCD≌△ACE,∴AE=BD=12,在Rt△AED中,由勾股定理得:DE=.【考点】1.全等三角形的判定与性质;2.等腰直角三角形.5.(本题满分10分)如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.【答案】8.【解析】根据直角三角形斜边上中线得到BM=CM,推出∠B=∠MCB,根据三角形外角性质求出∠D=∠DMC,推出DC=CM,即可求出答案.试题解析:连接CM,∵∠ACB=90°,M为AB的中点,∴CM=BM=AM=8cm,∴∠B=∠MCB=2∠D,∵∠MCB=∠D+∠DMC,∴∠D=∠DMC,∴DC=CM=8cm.故线段CD的长是8cm.【考点】1.直角三角形斜边上的中线;2.三角形的外角性质;3.等腰三角形的判定与性质.6.(本题满分10分)已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上.(1)请问:AB、BD、DC有何数量关系?并说明理由.(2)如果∠B=60°,证明:CD=3BD.【答案】(1)AB+BD=CD;理由见试题解析;(2)证明见试题解析.【解析】(1)由AD⊥BC,BD=DE,点E在AC的垂直平分线上,根据线段垂直平分线的性质,可得AE=EC,AB=AE,继而证得AB+BD=AE+DE=DC.(2)易得△ABE是等边三角形,则可得△ABC是直角三角形,且∠BAD=∠C=30°,然后由含30°角的直角三角形的性质,证得结论.试题解析:(1)AB+BD=DC.理由如下:∵AD⊥BC,BD=DE,∴AB=AE,BD=DE,∵点E在AC的垂直平分线上,∴AE=CE,∴AB+BD=AE+DE=DC.(2)∵AB=AE,∠B=60°,∴△ABE是等边三角形,∴∠AEB=∠B=∠BAE=60°,∵AE=EC,∴∠C=∠CAE=∠AEB=30°,∴∠BAC=90°,∠BAD=30°,在Rt△ABC中,BC=2AB,在Rt△AABD中,AB=2BD,∴BC=4BD,∴DC=3BD.【考点】1.线段垂直平分线的性质;2.等腰三角形的判定与性质.7.(本题满分10分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?(请画出示意图解答)【答案】20.【解析】根据题意画出图形,利用勾股定理建立方程,求出x的值即可.试题解析:画图解决,通过建模把距离转化为线段的长度.由题意得:AB=20,DC=30,BC=50,设EC为x肘尺,BE为(50﹣x)肘尺,在Rt△ABE和Rt△DEC中,,,又∵AE=DE,∴,解得:,答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.【考点】勾股定理的应用.8.(本题满分12分)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处(如图1).(1)若折叠后点D恰为AB的中点(如图2),求θ的度数;(2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,①点B落在点四边形OABC的边AB上的E处(如图3),求a的值;②若点E落在四边形OABC的外部,直接写出a的取值范围.【答案】(1)30°;(2)①,②.【解析】(1)延长ND交OA的延长线于M,根据折叠性质得∠CON=∠DON=θ,∠ODN=∠C=90°,由点D为AB的中点得到D点为MN的中点,所以OD垂直平分MN,则OM=ON,根据等腰三角形的性质得∠MOD=∠N OD=θ,则∠θ+∠θ+∠θ=90°,计算得到∠θ=30°;(2)①作ED⊥OA于D,根据折叠性质得AB⊥直线l,OD=OC=3,DE=BC=2,由于θ=45°,AB⊥直线l,即直线l平分∠AOC,则∠A=45°,所以△ADE为等腰直角三角形,则AD=DE=2,所以OA=OD+AD=3+2=5,即a=5;②若点E落在四边形OABC的外部,则.试题解析:(1)如图2,延长ND交OA的延长线于M,∵四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,∴∠CON=∠DON=θ,∠ODN=∠C=90°,∵点D为AB的中点,∴D点为MN的中点,∴OD垂直平分MN,∴OM=ON,∴∠MOD=∠NOD=θ,∴∠θ+∠θ+∠θ=90°,∴∠θ=30°;故答案为30°;(2)①如图3,作ED⊥OA于D,∵四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处,∴AB⊥直线l,OD=OC=3,DE=BC=2,∵θ=45°,AB⊥直线l,即直线l平分∠AOC,∴∠A=45°,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5;②若点E落在四边形OABC的外部,则.【考点】翻折变换(折叠问题).9.(本题满分12分)问题解决(1)如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当时,求的值.类比归纳(2)在图(1)中,若则的值等于;若则的值等于;若(为整数),则的值等于.(用含的式子表示)联系拓广(3)如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN,设(),,则的值等于.(用含的式子表示)【答案】(1);(2),,;(3).【解析】如图(1﹣1),连接BM,EM,BE.由题设,得四边形ABNM和四边形FENM关于直线MN对称.由轴对称的性质知MN垂直平分BE.有BM=EM,BN=EN.由于四边形ABCD是正方形,则有∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.由得,CE=DE=1;设BN=x,则NE=x,NC=2﹣x.在Rt△CNE中,由勾股定理知NE2=CN2+CE2.即x2=(2﹣x)2+12可解得x的值,从而得以BN的值,在Rt△ABM和在Rt△DEM中,由勾股定理知AM2+AB2=BM2,DM2+DE2=EM2,有AM2+AB2=DM2+DE2.设AM=y,则DM=2﹣y,y2+22=(2﹣y)2+12可求得y的值,得到AM的值从而得到;(2)先算当(为整数)时,的值,然后代入即可得到n=3,n=4时,的值;(3)先用含m,n代数式表示出AM,BN,然后求出的值即可.试题解析:(1)如图(1﹣1),连接BM,EM,BE.由题设,得四边形ABNM和四边形FENM关于直线MN对称,∴MN垂直平分BE,∴BM=EM,BN=EN,∵四边形ABCD是正方形,∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.∵,∴CE=DE=1.设BN=x,则NE=x,NC=2﹣x.在Rt△CNE中,.∴,解得,即BN=.在Rt△ABM和在Rt△DEM中,,,∴.设AM=y,则DM=2﹣y,∴,解得:,即AM=,∴.(2)如图1,当四边形ABCD为正方形时,连接BE,,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,,,;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,∴NH=EC=1,AM=BH=BN﹣NH=,则:.故当,则的值等于;若,则的值等于;(3)若四边形ABCD为矩形,连接BE,,不妨令CD=n,则CE=1;又,则BC=mn,同样的方法可求得:BN=,BE⊥MN,易证得:△MHN∽△BCE.故,,HN=,故AM=BH=BN﹣HN=,故.【考点】1.翻折变换(折叠问题);2.矩形的性质;3.正方形的性质.。

苏科版八年级数学下册2014-2015学年第二学期期中试卷含答案

苏科版八年级数学下册2014-2015学年第二学期期中试卷含答案

苏科版2014-2015学年第二学期初二年级数学学科期中考试试卷含答案一、选择题:(本大题共8小题,每小题2分,共16分.) 1. 若分式32x -有意义,则x 的取值范围是 ( ) A .x ≠2 B .x >2 C .x >0且 x ≠2 D .x <2 2. 能判定四边形ABCD 为平行四边形的是 ( ) A .AB ∥CD ,AD =BC B .∠A =∠B , ∠C =∠D C .AB =CD ,AD =BCD .AB =AD , CB =CD3. 已知点M (-2,3)在双由线y =kx上,则下列各点一定不在该双曲线上的是( ) A .(3,-2) B .(-2,-3) C .(2,-3) D .(-3,2)4. 代数式45x ,42x y+, 122++πx ,52,1b ,12x x +中,是分式的有( )A .2个B .3个C .4个D .5个 5. 若分式xyx y+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大4倍 B .扩大2倍 C .不变 D .缩小2倍6. 反比例函数6y x =与3y x=在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A.32错误!未找到引用源。

B.2C.3D.1第6题 第8题7. 当 m = 时,分式22m m --的值为零. A .m=2 B .2m =- C .2m =± D .20m m =±≠且考场号______________ 座位号____________ 班级__________ 姓名____________ 成绩____________ ————————————————————————装订线————————————————————————————B二、填空题:(本大题共10小题,每小题2分,共20分.) 9. 点(2,a )在反比例函数6y x=图象上,则a = . 10.如图,在菱形ABCD 中,∠ABC =60°,AC =4,则菱形ABCD 的周长是___________. 11.若关于x 的方程222x mx x++--=2有增根,则增根x=_______.m =_______.第10题 第12题 第15题12.如图, ABCD 中, AD =5, AB =3,AE 平分∠BAD 交BC 边于点E ,则EC =_______.13.已知y kx =(0k >)与2y x=交于点11(,)A x y 、22(,)B x y ,则123x y = . 14.若点()13y -,、()22y -,、()31y ,在反比例函数3y x-=的图像上,则y 1、y 2、y 3的大小关系是 .(用>连接)15.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数y 6x=(x >0)的图象上,则点C 的坐标为_______. 16.三角形的三条中位线长分别是3cm ,4cm ,5cm ,那么这个三角形的周长是_____ cm ,面积是_______ cm 2.17.已知一次函数5y x =-+和反比例函数3y x-=交于点A (a ,b ),则11a b+=.18.如图, ABCD 中, 对角线AC 与BD 相交于点E ,∠AEB =45°,BD =2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为________________.第18题三、解答题:(本大题共9题,共64分)19.化简:(1)111xx x---(2)231124aa a+⎛⎫+÷⎪--⎝⎭20.解方程:(1).23611x x=--(2)221211239yy y y y-+=-+--21.先化简311x xxx⎛⎫-⎪-+⎝⎭·21xx-,再从1、-1、01四个数中选取你认为满意的数求分式的值.22.已知:如图,平行四边形ABCD的对角线AC、BD交于点O,点E、F在直线AC上,且AE=CF,求证:四边形EBFD是平行四边形.第22题第23题第24题23.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.24.已知:如图,一次函数y1=k1x+b与反比例函数y2=2kx的图象交于点A(4,m)和B(n,-2),与y轴交于点C.P是反比例函数图象上的点,PE垂直于x轴,△OPE的面积是8 .(1)求一次函数和反比例函数的解析式.(2)根据函数图象可知,求当y1>y2时,x的取值范围.25.如图:四边形ABCD中,AD//BC,AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P 以2cm/s 的速度由点A 向点D 运动,点Q 以1cm/s 的速度由点C 向点B 运动。

2014年苏州市初中中考数学试卷含答案解析.docx

2014年苏州市初中中考数学试卷含答案解析.docx

2014 年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成.共29 小题,满分130 分.考试时间120分钟.一、选择题:本大题共10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1. (- 3)× 3 的结果是A .- 9B. 0C. 9D.- 62.已知∠ α和∠ β是对顶角,若∠α=30°,则∠ β的度数为A . 30°B. 60°C. 70°D. 150°3.有一组数据:1,3.3, 4,5,这组数据的众数为A . 1B. 3C. 4D. 54.若式子x 4 可在实数范围内有意义,则x 的取值范围是A . x≤- 4B. x≥- 4C. x≤ 4D. x≥ 45.如图,一个圆形转盘被分成6 个圆心角都为60°的扇形,任意转动这个转盘1 次,当转盘停止转动时,指针指向阴影区域的概率是1B.112A .C.D.43236.如图,在△ABC 中,点 D 在 BC 上, AB = AD = DC ,∠ B= 80°,则∠ C 的度数为A . 30°B. 40°C. 45°D. 60°7.下列关于 x 的方程有实数根的是A . x2-x+ 1= 0B. x2+ x+ 1= 0C. (x- 1)(x + 2)=0D. (x- 1)2+ l= 08.一次函数y= ax2+ bx- 1(a≠ 0)的图象经过点 (1, 1).则代数式1- a- b 的值为A .- 3B.- 1C. 2D. 59.如图,港口 A 在观测站 O 的正东方向, OA = 4km.某船从港口 A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为A . 4km B. 2 3 km C. 2 2 km D.( 3 +1)km10.如图,△ AOB 为等腰三角形,顶点 A 的坐标为( 2,5),底边 OB 在 x 轴上.将△AOB 绕点 B 按顺时针方向旋转一定角度后得△A'O'B ,点 A 的对应点 A' 在 x 轴上,则点 O'的坐标为A .(20,10)B.(16,45 )C.(20,45 )D.(16, 43 )3333333二、填空题:本大题共8 小题,每小题 3 分,共 24 分.把答案直接填在答题卡相应位置上.11.3的倒数是▲.212 已知地球的表而积约为510000000km 2.数 510000000 用科学记数法可以表示为▲.13.已知正方形ABCD 的对角线 AC = 2 ,则正方形ABCD的周长为▲ .14.某学校计划开设 A , B, C, D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学牛中随机抽取了部分学牛进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200 名,由此可以估计选修 C 课程的学生有▲ 人.15.如图,在△ ABC 中,AB = AC = 5,BC = 8.若∠ BPC=1∠ BAC ,则 tan∠ BPC =▲.216.某地准备对一段长120m 的河道进行清淤疏通,若甲工程队先用 4 天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9 天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要 3 天,设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym ,则( x+ y)的值为▲ .17.如图,在矩形 ABCD 中,AB3,以点 B 为圆心, BC 长为半径画弧,交边AD 于点BC5E,若 AE ·ED =4,则矩形 ABCD 的面积为▲ .318.如图,直线 l 与半径为 4 的⊙ O 相切于点 A ,P 是⊙ O 上的一个动点(不与点 A 重合),过点 P 作 PB ⊥l ,垂足为 B,连接 PA.设 PA= x, PB= y,则( x- y)的最大值是▲ .三、解答题:本大题共11 小题,共 76 分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分 5 分)计算:221 4 .20.(本题满分5 分)x12解不等式组:x .2 2 x 1 21.(本题满分5 分)先化简,再求值:x112 1 .21,其中 x=x x122.(本题满分6 分)x 2 解分式方程:3.x 1 1 x23.(本题满分 6 分)如图,在 Rt△ ABC 中,∠ ACB = 90°,点 D, F 分别在 AB ,AC 上,CF =CB .连接 CD ,将线段 CD 绕点 C 按顺时针方向旋转 90°后得 CE,连接 EF.(1)求证:△ BCD ≌△ FCE;(2)若 EF ∥CD .求∠ BDC 的度数.24.(本题满分7 分)如图,已知函数y=-1x+ b 的图象与x 轴、 y轴分别交于点 A , B,2与函数y= x的图象交于点M ,点M的横坐标为2.在x 轴上有一点P (a, 0)(其中a>2),过点P 作 x轴的垂线,分别交函数y=-1x+ b 和y=x的图象于点C, D .2(1) 求点 A 的坐标;(2) 若 OB = CD ,求 a 的值.25.(本题满分7 分)如图,用红、蓝两种颜色随机地对 A ,B, C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求 A ,C两个区域所涂颜色不相同的概率.26(本题满分8 分)如图,已知函数y=k( x>0 )的图象经过点 A , B,点 A 的坐标为x(1,2).过点 A 作 AC∥ y 轴, AC = 1(点 C 位于点 A 的下方),过点数的图象交于点 D,过点 B 作 BE⊥CD ,垂足 E 在线段 CD 上,连接C作 CD ∥ x 轴,与函OC, OD.(1)求△ OCD 的面积;1(2)当 BE = AC 时,求 CE 的长.227.(本题满分8分)如图,已知⊙O 上依次有 A ,B,C,D 四个点,AD BC ,连接AB,AD , BD ,弦 AB 不经过圆心 O.延长 AB 到 E,使 BE = AB ,连接 EC, F 是 EC 的中点,连接BF.(1)若⊙ O 的半径为 3,∠ DAB = 120°,求劣弧BD的长;(2)求证: BF =1BD ;2(3)设 G 是 BD 的中点探索:在⊙ O 上是否存在点 P(小同于点 B ),使得 PG= PF?并说明PB 与 AE 的位置关系.28.(本题满分9分)如图,已知 l 1⊥ l2,⊙O 与 l 1,l2都相切,⊙ O 的半径为2cm.矩形 ABCD 的边AD ,AB分别与l ,l 重合, AB =4123cm ,AD = 4cm.若⊙O 与矩形ABCD沿 l 同1.时向右移动,⊙O .的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接 OA , AC ,则∠ OAC 的度数为▲ °;(2) 如图②,两个图形移动一段时间后,⊙ O到达⊙ O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1, A 1,C1恰好在同一直线上,求圆心O 移动的距离 (即 OO 1的长);(3)在移动过程中,圆心O 到矩形对角线 AC 所在直线的距离在不断变化,设该距离为d(cm) .当 d<2 时,求 t 的取值范围.(解答时可以利用备用图画出相关示意图)29.(本题满分 10 分)如图,一次函数 y= a(x2- 2mx - 3m2)(其中 a, m 是常数,且 a>0,m>0)的图象与 x 轴分别交于点 A , B(点 A 位于点 B 的左侧),与 y 轴交于点 C(0 ,- 3),点 D 在二次函数的图象上, CD ∥ AB ,连接 AD .过点 A 作射线 AE 交二次函数的图象于点E, AB 平分∠ DAE .(1)用含 m 的代数式表示 a;(2)求证:AD为定值;AE(3) 设该二次函数图象的顶点为F.探索:在x 轴的负半轴上是否存在点G,连接 CF,以线段 GF、 AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点 G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.。

2014年江苏省苏州市中考试题(word版含答案)

2014年江苏省苏州市中考试题(word版含答案)

苏州市2014年中考数学试卷 (满分:130分 时间:120分钟)本试卷由选择题、填空题和解答题三大题组成。

共29小题,满分130分。

考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符。

2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须要0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题。

3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、 选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

) 1. (2014江苏省苏州市,1,3分)(-3)×3的结果是 ( )A. -9B. 0C. 9D. -62. (2014江苏省苏州市,2,3分)已知∠α和∠β是对顶角.∠α=30°,则∠β的度数为( )A. 30°B. 60°C. 70°D. 150°3. (2014江苏省苏州市,3,3分)有一组数据:1,3,3,4,5,这组数据的众数为( )A. 1B. 3C. 4D. 54. (2014江苏省苏州市,4,3分)若式子x -4在实数范围内有意义,则x 的取值范围是( )A. x ≤-4B. x≥-4C. x≤4D. x≥45. (2014江苏省苏州市,5,3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形.任意转动这个转盘1次,当转盘停止转动时,指针指向阴影的概率是 ( )A. 14B. 13C. 12D. 23第5题6. (2014江苏省苏州市,6,3分)如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B =80°,则∠C的度数为( )A. 30°B. 40°C. 45°D. 60°第6题7. (2014江苏省苏州市,7,3分)下列关于x 的方程有实数根的是 ( )A. x 2-x +1=0 B. x 2+x +1=0 C. (x-1)(x +2)=0 D. (x-1)2+1=08. (2014江苏省苏州市,8,3分)二次函数y=ax 2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )A. -3B. -1C. 2D. 59. (2014江苏省苏州市,9,3分)如图,港口A 在观测站O 的正东方向,OA=4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )A. 4 kmB. 2 3 kmC. 2 2 kmD. ()3+1km第9题10. (2014江苏省苏州市,10,3分)如图,△AOB 为等腰三角形,顶点A 的坐标为()2,5,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点A的对应点A′在x轴上,则点O′的坐标为( ) A. ⎝⎛⎭⎫203,103 B. ⎝ ⎛⎭⎪⎫163,453 C. ⎝ ⎛⎭⎪⎫203,453 D. ⎝⎛⎭⎫163,43第10题二、 填空题(本大题共8小题,每小题3分,共24分。

2014年江苏省苏州市中考数学试题(含答案)

江苏省苏州市2014年中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•苏州)(﹣3)×3的结果是()A.﹣9 B.0C.9D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.2.(3分)(2014•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°考点:对顶角、邻补角分析:根据对顶角相等可得∠β与∠α的度数相等为30°.解答:解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.点评:本题主要考查了对顶角相等的性质,比较简单.3.(3分)(2014•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.5考点:众数分析:根据众数的概念求解.解答:解:这组数据中3出现的次数最多,故众数为3.故选B点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.4.(3分)(2014•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4 B.x≥﹣4 C.x≤4 D.x≥4考点:二次根式有意义的条件分析:二次根式有意义,被开方数是非负数.解答:解:依题意知,x﹣4≥0,解得x≥4.故选:D.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2014•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率.分析:设圆的面积为6,易得到阴影区域的面积为4,然后根据概率的概念计算即可.解答:解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选D.点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积n,再计算出其中某个区域的几何图形的面积m,然后根据概率的定义计算出落在这个几何区域的事件的概率=.6.(3分)(2014•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.(3分)(2014•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=0考点:根的判别式.专题:计算题.分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D进行判断.解答:解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2014•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2D.5考点:二次函数图象上点的坐标特征.分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.9.(3分)(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.10.(3分)(2014•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)考点:坐标与图形变化-旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.二、填空题(共8小题,每小题3分,共24分)11.(3分)(2014•苏州)的倒数是.考点:倒数.分析:根据乘积为1的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.12.(3分)(2014•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为:5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.(3分)(2014•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.考点:正方形的性质.分析:根据正方形的对角线等于边长的倍求出边长,再根据正方形的周长公式列式计算即可得解.解答:解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.点评:本题考查了正方形的性质,比较简单,熟记正方形的对角线等于边长的倍是解题的关键.14.(3分)(2014•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.考点:用样本估计总体;条形统计图.分析:根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C占总体的比例,根据总人数乘以C占得比例,可得答案.解答:解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.点评:本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.15.(3分)(2014•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.16.(3分)(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.考点:二元一次方程组的应用.分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.解答:解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.17.(3分)(2014•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为5.考点:矩形的性质;勾股定理.分析:连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.解答:解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.点评:本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.18.(3分)(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是2.考点:切线的性质.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x ﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴=,∵PA=x,PB=y,半径为4∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.三、解答题(共11小题,共76分)19.(5分)(2014•苏州)计算:22+|﹣1|﹣.考点:实数的运算.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4+1﹣2=3.点评:此题考查了实数的运算,熟练掌握运算法则解本题的关键.20.(5分)(2014•苏州)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(5分)(2014•苏州)先化简,再求值:,其中.考点:分式的化简求值.分析:分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.解答:解:=÷(+)=÷=×=,把,代入原式====.点评:此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.22.(6分)(2014•苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(6分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.(7分)(2014•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a﹣(﹣a+3)=3,然后解方程即可.解答:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.(7分)(2014•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出A与C中颜色不同的情况数,即可求出所求的概率.解答:解:画树状图,如图所示:所有等可能的情况有8种,其中A、C两个区域所涂颜色不相同的有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(8分)(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.分析:(1)根据待定系数法,可得函数解析式,根据图象上的点满足函数解析式,可得D 点坐标,根据三角形的面积公式,可得答案;(2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.解答:解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,∴点B的横坐标是,纵坐标是.∴CE=.点评:本题考查了反比例函数k的几何意义,利用待定系数法求解析式,图象上的点满足函数解析式.27.(8分)(2014•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.考点:圆的综合题.分析:(1)利用圆心角定理进而得出∠BOD=120°,再利用弧长公式求出劣弧的长;(2)利用三角形中位线定理得出BF=AC,再利用圆心角定理得出=,进而得出BF=BD;(3)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF(SAS),求出PG=PF.解答:(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.点评:此题主要考查了圆的综合应用以及全等三角形的判定与性质和弧长公式以及圆心角定理等知识,正确作出辅助线是解题关键.28.(9分)(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).考点:圆的综合题.分析:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.点评:此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.29.(10分)(2014•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a >0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.考点:二次函数综合题.分析:(1)由C在二次函数y=a(x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与c的关系式.(2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值.(3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且(2)中=,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G 在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可.解答:(1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2),解得a=.(2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a(x2﹣2mx﹣3m2)=0,解得x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(x,),∴=,∴x=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH ⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.点评:本题考查了二次函数性质、勾股定理及利用直角三角形性质求解边长等知识,总体来说本题虽难度稍难,但问题之间的提示性较明显,所以是一道质量较高的题目.。

江苏省苏州市工业园区2014-2015学年八年级下学期期中教学调研数学试题苏科版


括最初全等的一对)。
A、2
B、3
C、 4
D 、5
A α
第8题
第 9题
B
F
C G
D
第 10 题
E
二、填空题(本大题共 8 小题,每小题 2 分,共 16 分)
11.某同学的身高为 1.6 米,某一时刻他在阳光下的影长为
为 3.6 米,则这棵树的高度为

1.2 米,与他相邻的一棵树的影长
12.掷一颗普通的正方体骰子 ,点数为偶数的概率为
D ,则直线 CD 即为所求。连结 AC , BC, AD ,BD ,根据她的作图
方法可知,四边形 ADBC 一.定.是.(.
).
A. 矩形
B. 菱形
C. 正方形
D. 等腰梯形
8、如图, P 是 RtΔ ABC的斜边 BC上异于 B、C的一点,过点 P 作直线截 Δ ABC,使截得的三角
形与 ΔABC相似,满足这样条件的直线共有(


____________
— —
— — — — —
绩—
成—
____________
— — — — — — —
名—
姓—
__________
— — — — —
线
级订
班装
____________
— — — —
— — —
号—
位—
座—
______________

— — — — — —

号—
场—
考—



园区 2014-2015 学年第二学期
10.如图,已知:△ ABC 、△ DEA 是两个全等的等腰直角三角形,∠ BAC =∠ D =90°,

2014江苏苏州中考数学试卷

苏州市2014年中考数学试卷 (满分:130分 时间:120分钟)本试卷由选择题、填空题和解答题三大题组成。

共29小题,满分130分。

考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符。

2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须要0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题。

3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、 选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

) 1. (2014江苏省苏州市,1,3分)(-3)×3的结果是 ( )A. -9B. 0C. 9D. -6【答案】A2. (2014江苏省苏州市,2,3分)已知∠α和∠β是对顶角.∠α=30°,则∠β的度数为( )A. 30°B. 60°C. 70°D. 150°【答案】A3. (2014江苏省苏州市,3,3分)有一组数据:1,3,3,4,5,这组数据的众数为( )A. 1B. 3C. 4D. 5【答案】B4. (2014江苏省苏州市,4,3分)若式子x -4在实数范围内有意义,则x 的取值范围是( )A. x ≤-4B. x≥-4C. x≤4D. x≥4【答案】D5. (2014江苏省苏州市,5,3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形.任意转动这个转盘1次,当转盘停止转动时,指针指向阴影的概率是 ( )A. 14B. 13C. 12D. 23第5题6. (2014江苏省苏州市,6,3分)如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B =80°,则∠C的度数为( )A. 30°B. 40°C. 45°D. 60°第6题【答案】B7. (2014江苏省苏州市,7,3分)下列关于x 的方程有实数根的是 ( )A. x 2-x +1=0 B. x 2+x +1=0 C. (x-1)(x +2)=0 D. (x-1)2+1=0【答案】C8. (2014江苏省苏州市,8,3分)二次函数y=ax 2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )A. -3B. -1C. 2D. 5【答案】B9. (2014江苏省苏州市,9,3分)如图,港口A 在观测站O 的正东方向,OA=4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )A. 4 kmB. 2 3 kmC. 2 2 kmD. ()3+1km第9题【答案】C10. (2014江苏省苏州市,10,3分)如图,△AOB 为等腰三角形,顶点A 的坐标为()2,5,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点A的对应点A′在x轴上,则点O′的坐标为( ) A. ⎝⎛⎭⎫203,103 B. ⎝ ⎛⎭⎪⎫163,453 C. ⎝ ⎛⎭⎪⎫203,453 D. ⎝⎛⎭⎫163,43第10题二、 填空题(本大题共8小题,每小题3分,共24分。

江苏省苏州市八年级数学第二学期期中试卷 苏科版

1一、选择题:(每小题2分,共20分。

请把答案填写在答题卡上)1.代数式34x ,y x +4,x+y ,122++πx ,85,m 1,xx x 122++中,是分式的有( )A .2个B .3个C .4个D .5个2.下列二次根式中,最简二次根式是( )A .15B . 0.5C .5D .50 3.下列四组线段中,不构成比例线段的一组是( )A .1cm ,2cm ,3cm ,6cmB .2cm ,3cm ,4cm ,6cmC .1cm ,2cm ,3cm ,6cmD .1cm ,2cm ,3cm ,4cm4.矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )5.下列运算正确的是( )A .525±=B .12734=-C .9218=÷D .62324=•6.若线段AB=10,点C 是AB 上靠近点B 的黄金分割点,则AC 的值(精确到百分位)为 ( ) A .0.618 B .6.18 C . 3.82 D .6.18或3.82 7.如下图,小正方形的边长均为1,则图中的三角形(阴影部分)与△ABC 相似的是( )8.对于函数6y x=,下列说法错误..的是 A . 它的图像分布在一、三象限 B .它的图像既是轴对称图形又是中心对称图形 C . 当x >0时,y 的值随x 的增大而增大 D . 当x <0时,y 的值随x 的增大而减小A B AB C D 考场号______________ 座位号____________ 班级__________ 姓名____________ 成绩____________ ————————————————————————装订线————————————————————————————29.点A (1x ,1y )、B(2x ,2y )、C(3x ,3y )都在反比例函数xy 3-=的图象上,且1x <2x <0<3x ,则1y 、2y 、3y 的大小关系是( )A .3y <1y <2yB .1y <2y <3yC .3y <2y <1yD .2y <1y <3y 10.如图:等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x轴、y 轴,若双曲线ky x=(k ≠0)与ABC ∆有交点,则k 的取值范围是( )A .12k <<B .13k ≤≤C .14k ≤≤D .14k <≤二、填空题:(每小题2分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年江苏省苏州市八年级(下)期末数学模拟试卷一、选择题(每题2分,共20分)1.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的2.如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)3.下列命题:①任何数的平方都大于0;②若a>1,b>1,则a+b>2;③同位角相等;④直角三角形的两个锐角互余,其中是真命题的有()A.1个B.2个C.3个D.4个4.两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm5.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.6.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.37.如图,正比例函数y=x与反比例函数y=的图象交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积为()A.1 B.2 C.3 D.48.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.B.C.D.9.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.10.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,则点C2坐标为()A.B.C.D.二、填空题(每题3分,共30分)11.当x=时,分式的值为零.12.反比例函数y=的图象的两个分支分别在第二、四象限,则m.13.若两个等边三角形的边长分别为a与3a,则它们的面积之比为.14.经验表明,长与宽的比为黄金比的物体一般都符合人们的审美观,一位建筑师在图纸上设计的某建筑物的窗户的高是3.24m,那么这个窗户的宽约是m.(注:通常建筑物的窗户的高度大于宽度,结果保留两位小数)15.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为.18.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为.19.如图,已知反比例函数y=(k1>0),y=(k2<0).点A在y轴的正半轴上,过点A作直线BC∥x轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB.若△BOC的面积为,AC:AB=2:3,则k1=,k2=.20.如图所示,△ABC的面积为1,取BC边中点E作DE∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1,再取BE中点E1,作E1D1∥BF,E1F1∥EF得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,S2013=.三、解答题(共50分)21.解方程:.22.已知a=﹣,求[﹣]的值.23.小峰与小月进行跳绳比赛,在相同的时间内,小峰跳了100个,小月跳了110个,如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个.24.如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD,交AD的延长线于点E,BF=EF.求证:EF∥AC.25.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.26.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数与反比例函数的解析式;(3)在x>0的条件下,根据图象说出反比例函数的值大于一次函数值的x的取值范围.27.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.28.在▱ABCD中,点E从点B开始沿BC方向向C点运动,如图①所示,连接AE交BD于点O,得到△AOD与△BOE始终相似.(1)当E点运动到何处时,△AOD与△BOE的相似比为2:1?(2)当E点运动到何处时,△AOD与△BOE全等?(3)若E点到达C点后,继续沿着BC的方向向右运动,如图②所示,这时AE与CD的交点为F,且△ADF∽△ECF.试说明:当E点运动到某一点,使△ADF与△ECF全等时,点F在CD的什么位置?并求出这时△AOD与△BOE的相似比.(4)在图②中,=的值是否一定?若一定,请求出这个值;若不一定,请说明理由.29.已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.(1)如图1,当四边形EFGH为正方形时,求AE的长和△FCG的面积;(2)如图2,设AE=x,△FCG的面积=S1,求S1与x之间的函数关系式与S1的最大值;(3)在(2)的条件下,如果矩形EFGH的顶点F始终在矩形ABCD内部,连接BF,记△BEF的面积为S2,△BCF的面积为S3,试说明6S1+3S2﹣2S3是常数.2014-2015学年江苏省苏州市八年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(每题2分,共20分)1.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的数分式的值不变,可得答案.解答:解:若把分式中的x、y都扩大3倍,则分式的值不变,故选:C.点评:本题考查了分式的基本性质,利用了分式的性质.2.如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)考点:反比例函数图象上点的坐标特征.分析:将(3,﹣4)代入y=即可求出k的值,再根据k=xy解答即可.解答:解:因为点(3,﹣4)在反比例函数y=的图象上,k=3×(﹣4)=﹣12;符合此条件的只有C:k=﹣2×6=﹣12.故选C.点评:本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.3.下列命题:①任何数的平方都大于0;②若a>1,b>1,则a+b>2;③同位角相等;④直角三角形的两个锐角互余,其中是真命题的有()A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据非负数的性质对①进行判断;根据不等式的性质对②进行判断;根据平行线的性质对③进行判断;根据三角形内角和定理和互余的定义对④进行判断.解答:解:何数的平方都大于或等于0,所以①错误;若a>1,b>1,则a+b>2,所以②正确;两直线平行,同位角相等,所以③错误;直角三角形的两个锐角互余,所以④正确.故选B.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm考点:相似多边形的性质.分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解答:解:两个相似多边形的面积比是9:16,面积比是周长比的平方,∴大多边形与小多边形的相似比是4:3.∴相似多边形周长的比是4:3.设大多边形的周长为x,则有=,解得:x=48.即大多边形的周长为48cm.故选A.点评:本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,面积之比等于相似比的平方.5.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.考点:列表法与树状图法.专题:计算题;压轴题;数形结合.分析:列举出所有情况,看在同一辆车的情况数占总情况数的多少即可.解答:解:设3辆车分别为A,B,C,共有9种情况,在同一辆车的情况数有3种,所以坐同一辆车的概率为,故选A.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到在同一辆车的情况数是解决本题的关键.6.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.3考点:分式方程的增根;解一元一次方程.专题:计算题.分析:根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.解答:解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0,当m=0,方程无解,∴m=3.故选:D.点评:本题主要考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解此题的关键.7.如图,正比例函数y=x与反比例函数y=的图象交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积为()A.1 B.2 C.3 D.4考点:反比例函数与一次函数的交点问题.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,点A,C关于原点对称,则△ABC的面积为△AOB面积的2倍,即S=|k|.解答:解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,依题意有S△ABC=2S△AOB=2××|k|=1.故应选为A.点评:此题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.8.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.B.C.D.考点:位似变换.分析:根据位似变换的性质得出△ABC的边长放大到原来的2倍,FO=a,CF=a+1,CE=(a+1),进而得出点B的横坐标.解答:解:∵点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.点B的对应点B′的横坐标是a,∴FO=a,CF=a+1,∴CE=(a+1),∴点B的横坐标是:﹣(a+1)﹣1=﹣(a+3).故选D.点评:此题主要考查了位似变换的性质,根据已知得出FO=a,CF=a+1,CE=(a+1),是解决问题的关键.9.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.考点:菱形的性质;勾股定理.分析:根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.解答:解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.点评:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.10.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,则点C2坐标为()A.B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质.分析:证明△DOA∽△ABA1,则可求出A1B,由△ABA1∽△A1B1A2,可得出B1A2,从而可得出第一、第二、第三个正方形的边长,过点DE作x轴的平行线,过点C2作C2F⊥DE于点F,在Rt△DC2F 中求出DF,C2F,从而可得出C2坐标.解答:解:∵OD=2,OA=1,∴AD==,∵∠BAA1+∠OAD=90°,∠ODA=∠BAA1,∴∠BAA1=∠ODA,∴△DOA∽△ABA1,∴=,即=,解得:BA1=,∴CA1=CB+BA1=,由△ABA1∽△A1B1A2,可得=,即=,解得:B1A2=,∴C1A2=CB1+B1A2=,过点DE作x轴的平行线,过点C2作C2F⊥DE于点F,则易得∠C2DF=∠ODA,∴sin∠C2DF=sin∠ODA===,解得:C2F=,∴tan∠C2DF=tan∠ODA===,解得:DF=,∴可得C2的横坐标为,纵坐标为+2=.即点C2的坐标为(,).故选D.点评:本题考查了相似三角形的判定与性质,解答本题的关键是根据相似三角形的对应边成比例,求出前三个正方形的边长,有一定难度,注意耐心思考.二、填空题(每题3分,共30分)11.当x=1时,分式的值为零.考点:分式的值为零的条件.分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:x2﹣1=0,解得:x=±1,当x=﹣1时,x+1=0,因而应该舍去.故x=1.故答案是:1.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.反比例函数y=的图象的两个分支分别在第二、四象限,则m<5.考点:反比例函数的性质.分析:根据反比例函数的性质可得m﹣5<0,再解不等式即可.解答:解:∵反比例函数y=的图象的两个分支分别在第二、四象限,∴m﹣5<0,解得:m<5,故答案为:<5.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数y=的性质:(1)反比例函数y=xk(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.13.若两个等边三角形的边长分别为a与3a,则它们的面积之比为1:9.考点:相似三角形的判定与性质;等边三角形的性质.分析:根据相似三角形的性质即可推出面积比等于边长平方的比,据此求出答案.解答:解:∵两个等边三角形的边长分别为a与3a,∴两个等边三角形为相似三角形,∴面积比等于边长的平方的比即为1:9.故答案为1:9.点评:本题主要考查相似三角形的判定和性质,关键在于掌握相似三角形的面积比与相似比的关系.14.经验表明,长与宽的比为黄金比的物体一般都符合人们的审美观,一位建筑师在图纸上设计的某建筑物的窗户的高是3.24m,那么这个窗户的宽约是 2.00m.(注:通常建筑物的窗户的高度大于宽度,结果保留两位小数)考点:黄金分割.分析:设这个窗户的宽为xm,根据窗户的宽与高的比为黄金比,列出比例式:=,解此比例即可.解答:解:设这个窗户的宽为xm,根据题意,得=,解得x≈2.00.即这个窗户的宽约是2.00m.故答案为2.00.点评:本题主要考查了黄金分割的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值≈0.618叫做黄金比.本题以生活中的问题为模型,提出了生活中存在的相等关系,可以转化为方程解决,难度适中.15.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是.考点:几何概率.分析:确定黑色方格的面积在整个方格中占的比例,根据这个比例即可求出小鸟停在黑色方格中的概率.解答:解:图上共有15个方格,黑色方格为5个,小鸟最终停在黑色方格上的概率是,即.故答案为:.点评:此题主要考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比.16.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.考点:命题与定理.分析:先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.解答:解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.点评:根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.17.如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为2.考点:相似三角形的判定与性质;平行四边形的性质.分析:由四边形ABCD是平行四边形,即可得BC=AD=4,AB∥CD,继而可证得△FEC∽△FAB,由相似三角形的对应边成比例,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=4,AB∥CD,∴△FEC∽△FAB,∴==,∴=,∴CF=BC=×4=2.故答案为:2.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.18.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为(3,6).考点:反比例函数图象上点的坐标特征.分析:设B、D两点的坐标分别为(1,y)、(x,2),再根据点B与点D在反比例函数y=(x>0)的图象上求出xy的值,进而可得出C的坐标.解答:解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),∴设B、D两点的坐标分别为(1,y)、(x,2),∵点B与点D在反比例函数y=(x>0)的图象上,∴y=6,x=3,∴点C的坐标为(3,6).故答案为:(3,6).点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.19.如图,已知反比例函数y=(k1>0),y=(k2<0).点A在y轴的正半轴上,过点A作直线BC∥x轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB.若△BOC的面积为,AC:AB=2:3,则k1=2,k2=﹣3.考点:反比例函数系数k的几何意义.专题:压轴题.分析:根据反比例函数系数的几何意义可得,|k1|+|k2|的值以及|k1|:|k2|的值,然后联立方程组求解得到|k1|与|k2|的值,然后即可得解.解答:解:∵△BOC的面积为,∴|k1|+|k2|=,即|k1|+|k2|=5①,∵AC:AB=2:3,∴|k1|:|k2|=2:3②,①②联立,解得|k1|=2,|k2|=3,∵k1>0,k2<0,∴k1=2,k2=﹣3.故答案为:2,﹣3.点评:本题考查了反比例函数系数的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|,根据题意得到两个关于反比例函数系数的方程是解题的关键.20.如图所示,△ABC的面积为1,取BC边中点E作DE∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1,再取BE中点E1,作E1D1∥BF,E1F1∥EF得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,S2013=.考点:相似三角形的判定与性质.专题:规律型.分析:根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2013的值.解答:解:∵E是BC的中点,ED∥AB,∴DE是△ABC的中位线,∴DE=AB,∴S△DCE=S△ABC.同理,S△BEF=S△ABC.∴S1=S△ABC﹣S△DCE﹣S△BEF=×S△ABC,同理求得S2=×S△ABC,…Sn=×,S2013×S△ABC=,故答案为:.点评:本题考查了三角形中位线定理、等边三角形的性质.三角形的中位线平行于第三边,并且等于第三边的一半.三、解答题(共50分)21.解方程:.考点:解分式方程.专题:方程思想.分析:观察可得最简公分母是(x﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣2)(x+3),得10﹣2(x+3)=(x+3)(2﹣x),整理得:x2+3x﹣10=0解得x1=﹣5,x2=2.检验:当x=﹣5时,(x﹣2)(x+3)=14≠0.当x=2时,(x﹣2)(x+3)=0,是增根.∴原方程的解为:x=﹣5.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.22.已知a=﹣,求[﹣]的值.考点:分式的化简求值.专题:计算题.分析:原式中括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=[﹣]•=•=﹣,当a=﹣时,原式=2.点评:此题考查了分式方程化简求值,熟练掌握运算法则是解本题的关键.23.小峰与小月进行跳绳比赛,在相同的时间内,小峰跳了100个,小月跳了110个,如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个.考点:分式方程的应用.分析:首先设小峰每分钟跳绳x个,则小月每分钟跳绳(x+20)个,根据题意可得等量关系:小峰跳了100个的时间=小月跳了110个的时间,根据等量关系列出方程,再解即可.解答:解:设小峰每分钟跳绳x个,由题意得:=解得:x=200,经检验x=200是分式方程的解.答:小峰每分钟跳绳200个.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.24.如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD,交AD的延长线于点E,BF=EF.求证:EF∥AC.考点:三角形中位线定理;等腰三角形的判定与性质.专题:证明题.分析:根据等边对等角可得∠BEF=∠EBF,再根据等角的余角相等求出∠EAF=∠AEF,然后根据角平分线的定义可得∠EAF=∠CAD,从而得到∠AEF=∠CAD,再根据内错角相等,两直线平行证明即可.解答:证明:∵BF=EF,∴∠BEF=∠EBF,∵BE⊥AD,∴∠EAF+∠EBF=∠AEF+∠BEF,∴∠EAF=∠AEF,∵AD平分∠BAC,∴∠EAF=∠CAD,∴∠AEF=∠CAD,∴EF∥AC.点评:本题考查了等腰三角形的判定与性质,平行线的判定,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.25.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.考点:一元一次不等式组的应用.专题:应用题.分析:(1)根据某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元,分别求出a和b即可;(2)根据“该用户六月份的水费支出不少于60元,但不超过90元”列一元一次不等式组求解即可.解答:解:(1)根据题意得:a=22.5÷15=1.5;b=(50﹣20×1.5)÷(30﹣20)=2;(2)根据题意列不等式组得:60≤20×1.5+2(x﹣20)≤90,解得:35≤x≤50,即该用户六月份的用水量x的取值范围为35≤x≤50.点评:本题考查一元一次不等式组的实际应用,难度适中,解题关键是根据题意准确列出不等式组.26.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数与反比例函数的解析式;(3)在x>0的条件下,根据图象说出反比例函数的值大于一次函数值的x的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.(3)由函数的图象即可得出反比例函数的值大于一次函数值的x的取值范围.解答:解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.(3)由函数的图象可知当0<x<1时反比例函数的值大于一次函数值;点评:本题主要考查用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.27.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,注意要不重不漏;(2)注意点M在直线y=x上,即点M的横、纵坐标相等,求得符合要求的点的个数,利用概率公式求解即可求得答案;(3)依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.解答:解:(1)∵1 2 31 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)∴点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)P(点M在直线y=x上)=P(点M的横、纵坐标相等)==.(3)∵1 2 31 2 3 42 3 4 53 4 5 6∴P(点M的横坐标与纵坐标之和是偶数)=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。

相关文档
最新文档