地磁场及其基本要素

合集下载

地磁场要素

地磁场要素

地球本身是一个巨大的磁体,地磁北极在地理南极附近。

地磁南极在地理北极附近。

在地球周围的空间里存在着磁场,叫做地磁场,地磁场的磁感线从地磁北极出发到地磁南极。

磁针指南北,就是因为受到地磁场的作用。

地球磁场跟地球引力场一样,是一个地球物理场,它是由基本磁场与变化磁场两部分组成的。

基本磁场来源于地球内部,而变化磁场则与电离层的变化和太阳活动等有关。

地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。

偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。

非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。

地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关地磁场是由外源磁场和内源磁场共同组成的。

其中外源磁场由太阳磁场、宇宙射线等外部因素影响产生。

内源磁场由地球本身产生。

外源磁场在地磁场中占的比例极小。

因此在建立理想物理模型是就认为内源磁场就是地磁场。

地磁场的强弱叫地磁感(应)强度,地磁场的磁子午线与地理子午线间的夹角叫磁偏角,地球上某处地磁场方向与地面水平方向间的夹角叫磁倾角,这三个物理量称为“地磁三要素”。

但是从地球的一个地方到邻近的另一个地方,地磁要素的变化一般都十分微小。

高中物理“地磁场”教学要点

高中物理“地磁场”教学要点

高中物理“地磁场”教学要点
高中物理中,关于地磁场的教学要点可以包括以下几个方面:
1. 地磁场的概念:地磁场是指地球周围存在的一种磁场,它是由地球内部的磁场产生的。

地磁场的方向一般与地球自转轴的方向相似,但不完全一致。

2. 地磁场的性质:地磁场是一种矢量场,具有方向和大小。

地磁场的大小在地球不同区域有所差异,一般在地球表面的赤道附近场强最弱,在地极附近最强。

3. 地磁场的测量:通过使用地磁仪可以测量地磁场的强度和方向。

地磁仪的工作原理是基于电磁感应。

4. 地磁场的形成:地磁场是由地球内部的物理过程产生的,主要包括地球内部液态外核的对流和地球自转导致的科里奥利力。

5. 地磁场的应用:地磁场在导航和定位等方面有着广泛的应用,如地磁罗盘和地磁导航系统。

6. 地磁场与人类活动的关系:地磁场对人类的生物活动有一定的影响,如鸽子等动物可以利用地磁场进行导航。

在教学中,可以通过简单的实验和数学推导等方式,帮助学生理解地磁场的产生和性质,并引导学生思考地磁场的应用和与人类活动的关系。

同时,引导学生对地磁场的测量结果进行分析和讨论,培养学生的实验和科学思维能力。

地球的磁场.

地球的磁场.

4 地球的磁场4.1 地球磁场的基本特征和地磁要素固体地球是一个磁性球体,有自身的磁场。

根据地磁力线的特征,地球外磁场类似于偶极子磁场,即无限小基本磁铁的特征(图3-14a)。

但其磁轴与地球自转轴并不重合,而是呈11.5°的偏离。

地磁极的位置也不是固定的,它逐年发生一定的变化。

例如磁北极的位置,1961年在74°54′N,101°W,位于北格陵兰附近地区。

1975年已漂移到了76.06°N,100°W的位置。

地磁力线分布的空间称作地磁场,磁力线的分布情况可由磁针的理想空间状态表现出来(图3-14b)。

由磁针指示的磁南、北极,为磁子午线方向,其与地理子午线之间的夹角称磁偏角(D)。

磁针在地磁赤道上呈水平状态,由此向南或向北移动时,磁针都会发生倾斜,其与水平面之间的夹角称作磁倾角(I)。

磁倾角的大小随纬度增加,到磁南极和磁北极时,磁针都会竖立起来。

地磁场以代号F表示,它的强度单位为(A/m)。

地磁场强度是一个矢量,可以分解为水平分量H和垂直分量Z。

地磁场的状态则可用磁场强度F,磁偏角D和磁倾角I这三个要素来确定。

地磁场的偶极特征也取决于磁力线从一个磁极到另一个磁极的闭合特征。

在地球表层,这一闭合结构形成了一个磁捕获系统,捕获了大气圈上层形成的带电粒子而构成一个环绕地球的宇宙射线带,称作范艾伦带。

范艾伦带的影响范围可达离地面65000km以上。

由大气层上部约100~150km处气体发光而形成的极光,就是范艾伦带中的气体分子受电磁扰动的产物。

沿着范艾伦带,极光可以在不到1秒钟的时间内,从一个受扰动的极区于瞬间传到另一个扰动极区,因此极光的爆发在北极区和南极区几乎是同时发生的。

将地磁场比作偶极子磁场的说法中,隐含着地磁场是永久不变的这一假定。

但实际上不仅磁极在不断发生摆动,从发现地磁场以来,人们还逐渐发现了磁偏角在几十到几百年内,大致沿着纬线方向平稳地向西移动,这一性质被称作地磁场的向西漂移。

地球的磁场地磁场的形成与功能

地球的磁场地磁场的形成与功能

地球的磁场地磁场的形成与功能地球的磁场——地磁场的形成与功能地球的磁场是地球特有的一种物理现象,它是由地球内部的磁性物质运动所产生的。

地磁场的形成和功能对地球和地球上的生物具有重要的影响。

在本文中,我们将探讨地球磁场的形成原因以及它对地球和生物的功能。

一、地磁场的形成原因地球的磁场是由地球内部的液态外核产生的。

地球内部有一个巨大的液态外核层,以及一个固态的内核层。

外核层主要由铁和镍组成,并且由于地球自转的运动,外核层的液态金属会形成环流。

这种液态外核的环流运动,造成了电流的产生。

而电流会产生磁场,这个磁场就是地球的磁场。

简单来说,地球内部的液态金属在运动时形成了环流,这个环流产生的电流又产生了磁场,最终形成了地球的磁场。

二、地磁场的功能地球的磁场对地球和地球上的生物具有多种功能,下面我们将介绍其中的几个重要功能。

1.导航功能地球的磁场对于导航具有至关重要的作用。

动物和一些微生物能够感知地磁场,并利用地磁场来定位和导航。

比如,候鸟能够根据地磁场的变化来进行季节性迁徙,而蜜蜂则利用地磁场来找到归巢的路线。

人类也利用地磁场来进行导航。

指南针就是基于地磁场的原理制作而成的,利用指南针可以确定方向,使得人们能够在陆地或海洋上找到正确的方向。

2.防护功能地球的磁场对我们的生物体和地球上的大气层具有防护功能。

地球的磁场可以阻挡太阳风和宇宙射线等带电粒子的进入,这些粒子如果直接接触到地球或人体,会对生物和电子设备产生严重的影响。

磁场能够将这些带电粒子引导到地球的两极附近,形成极光,保护地球上的生命免受宇宙辐射的伤害。

3.地质演化功能地球的磁场对地质演化过程也具有重要的影响。

地磁场的翻转是地球磁极从地理极点一个方向移动到另一个方向的过程。

这个过程可以帮助地质学家研究地球的演化。

通过对地磁场的变化进行测量和分析,可以得出地质构造的信息,推断地球内部的变化以及板块运动等地壳活动的细节。

因此,地磁场对于理解地球的演化过程和地壳运动具有重要作用。

地球磁场是怎么产生的

地球磁场是怎么产生的

地球磁场由基本磁场、外源磁场和磁异常三部分组成。

基本磁场也叫正常场。

占地球磁场的99%以上。

基本磁场主要由地核内电流的对流形成.它是一种内源磁场。

外源磁场是起源于地球外部并叠加在基本磁场上的各种短期磁变化。

主要有:与太阳黑子活动周期一致的磁变化;日变化,日变化与太阳辐射对高空电离层的影响有关;磁暴。

磁异常是地下岩矿石或地质构造受地球磁场磁化后,在其周围空间形成并叠加在地球磁场上的次生磁场。

按照物理学研究的结果,高温,高压中的物质,其原子的核外电子会被加速而向外逃逸,所以,地核在6000K的高温和360万个大气压的环境中会有大量的电子逃逸出来,地幔间会形成负电层.按照麦克斯韦的电磁理论,可以总结出这样一句话:电动生磁,磁动生电.所以,要形成地球南北极式的磁场,必然需要形成旋转的电场,而地球自转必然会造成地慢负电层旋转,即旋转的负电场磁场由此而生.。

地磁三要素及地磁场的效应

地磁三要素及地磁场的效应

地磁三要素及地磁场的效应
地磁场的强弱叫地磁感(应)强度,地磁场的磁子午线与地理子午线间的夹角叫磁偏角,地球上某处地磁场方向与地面水平方向间的夹角叫磁倾角,这三个物理量称为“地磁三要素”。

但是从地球的一个地方到邻近的另一个地方,地磁要素的变化一般都十分微小。

地磁场图记录了地球表面各点的地磁场的基本数据和它们的变化规律,它是航海、航空、军事以及地质工作不可缺少的工具。

船舶和飞机航行时,用磁罗盘测得的是地磁方位角,因此只有知道了当时当地的磁偏角数值,才能确定地理方位和航行路线。

一般来说,地磁要素的变化是很小的,但是跟太阳活动有密切联系的磁暴现象,却发生得十分突然。

这是因为太阳黑子活动剧烈的时候,放出的能量相当于几十万颗氢弹爆炸的威力,同时喷射出大量带电粒子(电子或离子)。

这些带电粒子射到地球上形成的强大磁场迭加到地磁场上,使正常情况下的地磁要素发生急剧变化,引起“磁暴”。

发生磁暴时,地球上会发生许多奇异的现象。

在漆黑的北极上空会出现美丽的极光。

指南针会摇摆不定,无线电短波广播突然中断,依靠地磁场“导航”的鸽子也会迷失方向,四处乱飞。

地磁场能阻挡宇宙射线和来自太阳的高能带电粒子,使生物体免遭危害的天然保护伞。

地球上某些地区的岩石和矿物具有磁性,地磁场在这些埋藏矿物的区域会发生剧变,利用这种地磁异常可探测矿藏,寻找铁、镍、铬、金以及石油等地下资源。

在发生强烈地震之前,地磁的三要素也都会发生改变,造成地磁局部异常的“震磁效应”。

这是由于地壳中的岩石,有许多是具有磁性的,当这些岩石受力变形时,它们的磁性也要跟着变化,从而可以较正确地作出“震前预报”。

1 / 1。

九年级物理地磁场知识点

九年级物理地磁场知识点

九年级物理地磁场知识点地磁场是物理学中一个重要的概念,在九年级物理中也是一项必修内容。

地磁场的概念、特点以及影响因素都是我们需要了解的知识点。

本文将以九年级物理地磁场知识点为主题,逐一讲解相关概念,并探讨其应用和意义。

一、地磁场的概念和特点地磁场是地球周围的磁场,其产生是由地球内部的地核、外核和大气中的电离层等物质的磁性和运动产生的。

地磁场的特点主要表现在以下几个方面。

1. 方向性:地磁场是一个矢量场,其方向从地球南极指向地球北极,并与地球表面的经线和经线之间的夹角有关。

这一特点使得地球上的磁针指向北方,成为导航和定位的重要依据。

2. 不均匀性:地磁场在地球表面并不是均匀分布的,受到地球内部结构和地壳磁性物质的影响,不同地方的磁场强度和磁场方向都会有所差异。

3. 变化性:地磁场的强度和方向并非恒定不变的,而是会随着时间和空间的改变而发生变化。

这种变化可通过地磁观测站的观测数据得到,从而揭示地球内部的变化和活动。

二、地磁场的应用地磁场对我们生活和科学研究都具有重要的应用价值。

1. 导航和定位:地磁场的方向性使得我们能够利用磁罗盘进行导航和定位。

在没有GPS等技术之前,航海和探险等活动都离不开地磁场的引导,现如今磁罗盘在航海、航空和军事等领域仍然具有重要地位。

2. 地磁探测:地球内部的磁性物质分布情况和变化会对地磁场产生影响,通过地磁探测可以了解地下的物质构造和矿产资源分布。

这对于地质勘探和资源开发有着重要的指导作用。

3. 空间科学研究:地磁场的变化与太阳风、地球磁层和宇宙射线等有关,通过对地磁数据的分析,我们可以研究地球与宇宙的相互作用以及太阳活动对地球环境的影响。

这对于了解宇宙的起源和演化具有重要意义。

三、地磁场的影响因素地磁场的形成和变化受到多种因素的影响,主要包括以下几个方面。

1. 地球内部:地磁场的主要来源是地球内部的地核和外核。

地核是由铁、镍等物质组成,通过热对流产生涡旋状电流,形成了地球的磁场。

地磁场物理

地磁场物理

一、引言地球是一个巨大的磁场,它的磁场被称为地磁场。

地磁场是由地球内部的铁磁性物质在地球自转和地核运动的作用下产生的。

地磁场对地球上的生物和人类活动有着重要的影响,同时也是地球科学研究的重要领域之一。

本文将介绍地磁场的物理特性、产生原理、分布规律以及应用价值。

二、地磁场的物理特性1. 地磁场的强度地磁场的强度在不同地区有所不同,其平均值约为0.5高斯(Gs)。

在地球的两极附近,地磁场强度较大,可达5~7高斯;而在赤道附近,地磁场强度较小,约为0.3~0.4高斯。

2. 地磁场的方向地磁场的方向在地球表面是不断变化的。

在地球表面,地磁场大致垂直于地面,指向地理北极。

然而,由于地磁场的复杂分布,地磁北极和地理北极并不完全重合,它们之间存在一个角度,称为磁偏角。

3. 地磁场的分布规律地磁场的分布规律表现为磁力线从地理南极指向地理北极,形成一个闭合的磁力线系统。

在地球内部,地磁场的分布受到地核、地幔和地壳的影响,呈现出复杂的分布形态。

三、地磁场的产生原理1. 地核运动地核主要由铁、镍等金属组成,其运动产生地磁场。

地核的流动速度和方向不同,导致地磁场的强度和方向发生变化。

2. 地幔和地壳的影响地幔和地壳中的岩石含有磁性物质,这些物质在地磁场的作用下发生磁化,进一步影响地磁场的分布。

3. 地球自转地球自转导致地磁场的产生和变化。

地球自转的速度和方向稳定,使得地磁场在长时间尺度上保持相对稳定。

四、地磁场的分布规律1. 地磁场的纬度分布地磁场的纬度分布呈现规律性变化。

在低纬度地区,地磁场强度较大,磁偏角较小;在高纬度地区,地磁场强度较小,磁偏角较大。

2. 地磁场的经度分布地磁场的经度分布受到地核运动的影响。

在地球的某些区域,地磁场经度分布较为均匀;而在其他区域,地磁场经度分布则较为复杂。

3. 地磁场的垂直分布地磁场的垂直分布表现为磁力线从地心向外辐射,形成一个圆锥形结构。

在地磁极附近,磁力线几乎垂直于地面。

五、地磁场的应用价值1. 地球物理勘探地磁场在地球物理勘探中具有重要应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节地磁场及其基本要素
地磁场:地球周围存在的磁场。

地磁场三要素: 磁感应强度磁偏角磁倾角
磁感应强度
为某地点的磁力大小的绝对值,(磁场强度)
是一个具有方向(磁力线方向)和大小的矢量
一般在磁两极附近磁感应强度大(约为60μT(微特拉斯);在磁赤道附近最小(约为30μT )
磁偏角
是磁力线在水平面上的投影与地理正北方向之间形成的夹角,即磁子午线与地理子午线之间的夹角。

磁偏角的大小各处都不相同。

在北半球,如果磁力线方向偏向正北方向以东称为东偏,偏向正北方向以西称为西偏。

我国东部地区磁偏角为西偏,甘肃酒泉以西地区为东偏。

磁轴与地球自转轴的夹角现在约为11.5度,1980年实测的磁北极位于北纬78.2度、西经102.9度(加拿大北部),磁南极位于南纬65.5度,东经139.4度(南极洲)。

长期观测证实,地磁极围绕地理极附近进行着缓慢的迁移。

磁倾角
是指磁针北端与水平面的交角。

通常以磁针北端向下为正值,向上为负值。

地球表面磁倾角为零度的各点的连线称为地磁赤道;由地磁赤道到地磁北极,磁倾角由0°逐渐变为+90°;由地磁赤道到地磁南极,磁倾角由0°变成-90°。

地球的磁场强度矢量余地磁要素
地磁倾角
(二)地磁场的组成
地磁场由基本磁场、变化磁场和磁异常三个部分组成。

在地球中心假定的磁柱被称为磁偶极子,由它产生的偶极子磁场占地磁场成分的95%以上,是构成稳定地磁场的主体,即地球的基本磁场。

基本地磁场的强度在地表附近较强,向上在空气中逐渐减弱。

说明它主要为地内因素所控制。

变化磁场
表现为日变化、年变化、多年(短周期或长周期)变化以及突发性变化
主要由于来自地球外部的带电粒子的作用(非偶极磁场,叠加在基本磁场上)
太阳是这些带电粒子流的主要来源,而当它的表面出现黑子、耀斑(活动特别强烈的区域)并正对着地球时,便会把大量带电的粒子抛向地球,使迭加在基本磁场上的变化磁场突然增强,使地磁场发生大混乱,出现磁暴。

地球两极常在随后出现奇异的极光,这也是太阳抛射来的带电粒子流为地磁极吸引。

地球磁层
仪器探测证实了地磁场形成一个在高层大气之外,形状类似慧星的磁性包层,这就是地球磁层。

太阳风与地磁场相持不下所形成的曲面是磁层的边界,叫做磁层顶.在朝太阳的一侧,磁层顶离地心约有5万多到7万多km远;背着太阳的一侧,可能是这些数字的100倍以上。

磁层的形成,使地球磁场拦截了太阳辐射来的带电粒子,还有来自宇宙的射线,使它们
未能冲到地面,而是留在高空,环绕地球流动,这对于生物的生存与繁衍具有重要的作用。

地磁场中的非偶极子磁场,主要就由这种流动的电磁感应作用而产生
磁异常
地壳浅部具有磁性的岩石或矿石所引起的局部磁场,叠加在基本磁场之上。

一个地点的磁异常可以首先通过对实测磁场强度进行变化磁场的校正,然后再减去基本
磁场的正常值来求得。

如所得值为正值称正异常,为负值称负异常。

地壳内含铁较多的岩石和富含铁族元素(Fe、Ti、Cr等)的矿体常可引起正磁异常。

而膏盐
矿床,石油、天然气储层,富水地层或富水的岩石破碎带则常引起负磁异常。

Top
第二节地球历史上的磁场
居里点:磁性材料失去磁性的温度临界点。

当磁性材料的温度达到居里点后,材料失去磁性,但温度降低后磁性又出现。

图8-4 磁性材料的磁性特征
不同的物质各有自己的居理点
地壳岩石的居里点温度一般为500~600℃。

地壳内达到此温度的深度一般在20~30km(近代火山活动或喷泉地区,达到居里点的深度仅为5km左右)。

在居里点深度之下,地内温度越来越高,因而岩石磁性消失。

在地质时期中,地表附近的岩石(处在居里点温度之下)都被当时的古地磁场所永久磁化。

岩石中的这种磁性就称为剩余磁性。

借助于各地质时期的岩石剩余磁性,我们就可能恢复不同时期的古地磁场。

利用岩石在形成时期所产生的剩余磁化方向就可以用来大致确定古经线方向,用古磁倾角就可确定当时所处的古纬度。

地磁极翻转
在测定岩石的剩余磁场时,发现相当一批岩石的磁化方向与现在的地磁场方向相反,于是认为地磁场发生了180°的改变,这种现象被称为地磁极翻转或地磁场翻转。

事实证明,这种变化一再地发生。

从20世纪40年代开始,进行了系统的观测,发现以大洋脊为中心,两侧对称地交替分布着正磁极性(磁极与现代的一致)与反磁极性(磁极与现代相反)的两类岩石;离扩张中心越远,岩石年龄
越老。

由此得到了海底在不同的时期以不同的速度在扩张的认识。

以不同时期地磁极翻转为主要特征建立了地磁年代表。

在磁化岩石中具正极性的与反极性的大致各占一半。

一种地磁极性期平均可持续22万年(短的仅持续3万年,长的可达(500万年)。

每次磁极倒转过程仅持续数百年到上千年。

此时表现为磁场强度大幅度减弱,磁极缓慢转动,直到完全翻转,才达到稳定。

Top
第三节地磁场的成因
地核的外部是液态,给地球中心具有电磁场的假设带来了新的希望,因为只要地核内原
来存在着微弱的磁场,这些液态铁的非均匀运动就会发生扰动、旋涡,产生感应电流,不断
增强原有电磁场,逐渐形成较稳定的地电磁场。

铁质的地核固然不能成为一块磁铁,但可以
相当于一个发电机系统。

这个“非稳定磁流体发电机”假说在二十世纪四十至五十年代形成,并
成为现今占主导地位的地磁成因假说。

按照这个假说,“发电机”在地核内还可能有好多部。


而,地磁场不大稳定。

“双耦合发电盘”模

70年代初,许多学者用“双耦合发电盘”作出了解释:两部线路联通的直流发电机,在运行过程中旋转角速度不同,便会产生扰动、系统电流也将发生变化当电流扰动加大到一定程度时,系统电流就可反向流动,从而造成磁场的翻转。

相关文档
最新文档