物理学下册波动作业答案
物理学(第五版)下册波动作业答案

答案: |
16.如果入射波的表达式是 ,在x= 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y2= _______________________________;在x= 处质点合振动的振幅等于______________________.
A. (%)
试题编号:E17549 25608
答案:{
解:反射波在x点引起的振动相位为
3分
反射波表达式为
(SI) 2分
或 (SI)
答案: | (k=±1,±2,…)
13.如图所示,一平面简谐波沿Ox轴负方向传播,波长为 ,若P处质点的振动方程是 ,则该波的表达式是_______________________________;P处质点____________________________时刻的振动状态与O处质点t1时刻的振动状态相同.
答案:125 rad/s|338 m/s | 17.0 m
11.图为t=T/ 4时一平面简谐波的波形曲线,则其波的表达式为________________________.
答案: (SI)
12.一平面简谐波沿Ox轴正方向传播,波长为 .若如图P1点处质点的振动方程为 ,则P2点处质点的振动方程为_________________________________;与P1点处质点振动状态相同的那些点的位置是___________________________.
谐波,其表达式为()
高中波动练习题及答案

高中波动练习题及答案高中物理波动练题及答案选择题1. 真空中,波速恒定不变,下列哪种波型的频率最高?A. 声波B. 电磁波C. 水波D. 弹性波答案:B2. 下列哪种波是纵波?A. 水波B. 声波C. 电磁波D. 横波答案:B3. 一束光线从空气射入玻璃中,表述正确的是:A. 速度降低,波长变短,频率不变B. 速度降低,波长不变,频率不变C. 速度较缓,波长变长,频率不变D. 速度较缓,波长不变,频率不变答案:B4. 下面哪些特性属于光的波动性?A. 光的直线传播B. 光的反射C. 光的干涉D. 光的光电效应答案:C填空题1. 声音的频率越高,波长越(shorter)______。
2. 球面内必有一点使其到三个等势面的距离相差($\lambda$ /2)__________。
3. 一束光在真空中的速度是( 3 $\times$ 10^8) _______。
4. 单色光干涉中,当相差为(n $\times$ λ)时,会出现(n-1)条明环,中央仍然为(n-1)条条纹。
但是在双色光干涉中,当相差为(n $\times$ λ)时,会出现明暗相间的(n-1)条条纹,无明环。
这是因为双色光的光色不同,波长不同,所以相差相等时,得到的光程差并不相等。
计算题1. 一束平行光射入光密介质,以折射角30°折射,则光的速度是光速的(inverse tangent)__________倍。
解:根据折射定律$\frac{sin i}{sin r}=\frac{v_1}{v_2}$可求出速度与入射角度的正切成反比。
$tan 30° = \frac{1}{\sqrt{3}}$ ,所以光的速度是光速的$\frac{1}{\sqrt{3}}$倍。
2. 一个长80cm,重8.0g的弹性细线用于悬挂一个质量为180g的砝码,当砝码沿竖直方向振动时,依次通过平衡位置时,其振动的周期是2.8s,求细线的劲度系数k(g=9.8m/s^2)。
大学物理第十章波动学习题答案

第十章 波动学习题10-1 有一平面简谐波0.02cos20030x y t π⎛⎫=- ⎪⎝⎭,x ,y 的单位为m ,t 的单位为s 。
(1)求其振幅、频率、波速和波长;(2)求x=0.1m 处质点的初相位。
解:(1)A=0.02m ,v=ω/2π=200π/2π=100s -1,u=30m/s ,λ=u/v=0.3m(2)02000.1200230303x πππφ⨯=-=-=- 10-2 一横波沿绳子传播时的波动方程为()0.05cos 104y t x ππ=-,x ,y 的单位为m ,t 的单位为s 。
(1)求其振幅、频率、波长和波速;(2)求绳子上各质点振动的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的相位?(4)分别画出t=1s ,1.25s ,1.5s 时的波形曲线。
解:(1)A=0.05m ,v=ω/2π=10π/2π=5s -1,λ=0.5m ,u=λv=2.5m/s(2)m A ω=v ,2m a A ω= (3)1041040.29.2t x φπππππ=-=-⨯= 10-3 一平面简谐波()x πt y π2-10sin 05.0=,x ,y 的单位为m ,t 的单位为s 。
(1)求其频率、周期、波长和波速;(2)说明x =0时方程的意义,并作图表示。
解:(1)v=ω/2π=10π/2π=5s -1,T=1/v=0.2s ,λ=1m ,u=λv=5m/s(2)0.05sin10y πt = 原点处质点的振动方程10-4 波源作简谐运动,振动方程为()m cos240100.43πt y -⨯=,它所形成的波形以30m·s -1的速度沿一直线传播。
(1)求波的周期及波长;(2)写出波动方程。
解:(1)T=2π/ω=2π/240π=1/120s ,λ=uT=30/120=0.25m(2)()34.010cos240m 30x y πt -⎛⎫=⨯- ⎪⎝⎭10-5 如图所示,一平面简谐波在介质中以速度u=20m/s 沿x 轴负方向传播,已知a 点的振动方程为y a =3cos4πt ,t 的单位为s ,y 的单位为m 。
大学物理下册波动光学习题解答

波动光学习题解答1-1 在杨氏实验装置中,两孔间的距离等于通过光孔的光波长的100倍,接收屏与双孔屏相距50cm 。
求第1 级和第3级亮纹在屏上的位置以及它们之间的距离。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,光波波长为λ,则有=100d λ. (1)第1级和第3级亮条纹在屏上的位置分别为-5150==510m 100D x d λ=⋅⨯ -42503==1.510m 100D x d λ=⋅⨯ (2)两干涉条纹的间距为-42=1.010m D x dλ∆=⋅⨯ 1-2 在杨氏双缝干涉实验中,用06328A =λ的氦氖激光束垂直照射两小孔,两小孔的间距为1.14mm ,小孔至屏幕的垂直距离为1.5m 。
求在下列两种情况下屏幕上干涉条纹的间距。
(1)整个装置放在空气中; (2)整个装置放在n=1.33的水中。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()x n r r ndDδ=-= 所以相邻干涉条纹的间距为D x d n λ∆=⋅ (1)在空气中时,n =1。
于是条纹间距为9431.5632.8108.3210(m)1.1410D x d λ---∆==⨯⨯=⨯⨯ (2)在水中时,n =1.33。
条纹间距为9431.5632.810 6.2610(m)1.1410 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯1-3 如图所示,1S 、2S 是两个相干光源,它们到P 点的距离分别为1r 和2r 。
路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径2S P 垂直穿过厚度为2t ,折射率为2n 的另一块介质板,其余部分可看做真空。
这两条路径的光程差是多少?解:光程差为 222111[r (n 1)t ][r (n 1)t ]+--+-1-4 如图所示为一种利用干涉现象测定气体折射率的原理性结构,在1S 孔后面放置一长度为l 的透明容器,当待测气体注入容器而将空气排出的过程中幕上的干涉条纹就会移动。
大学物理(第四版)课后习题及答案 波动(2020年7月整理).pdf

第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11−−−=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11−−−=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(−−⋅−=s m x t s m y π 与一般表达式()[]0cos ϕω+−=u x t A y 比较,可得0,5.2,20.001=⋅==−ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0−−−⋅−⋅−==s m x t s s m dt dy v ππ 则1max 57.1−⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(−−=ππ()[]x m m y 125cos )20.0(−−=ππ波形图如图14-1(a )所示。
大学物理-波动作业解

y
=
A cos[ (t
−
x) u
+
0]
y
=
A cos[a(t −
x a
)]
b
波速 u = a b
波动作业解
3.图示为一沿 X 轴正向传播的平面简谐波在 t = 0 时刻的
波形。若振动以余弦函数表示,且此题各点振动初相位取
- 到 之间的值,则: [ A ]
解:
y1
0, 4
2
根据波速方向,定出下一
时刻的波形图
2
解:
极大条件
Δ
=
( 2
− 1) −
2
r2 − r1
=
2k ,
k = 0,1, 2,
r2
−
r1
=
3 4
2
− 1
=
2k
+
3 2
波动作业解
4.(1)一列波长为λ的平面简谐波沿X轴正方向传播。已知
在x = λ/2 处质点振动的运动学方程为 y = Acost ,则该平
面简谐波的波函数为
。
(2)如果在上述波的波线上 x = L [L> λ/2 ]处放一如图所
OP x
② 写出反射波在x = 5.00m处的振动方程
x
5.00
y反
x=5.00 = 0.01 cos(4t − 5
−
1 2
+)=
0.01cos(4t − ) 2
=4
③ 写出反射波在o处的振动方程
y反
x=0 =
0.01cos(4t − 5
−
1)= 2
0.01cos(4t −
−) 2
u= 4
基础物理学下册【韩可芳】第10章习题答案

第十章第十章第十章第十章 波动光学波动光学波动光学波动光学思考题思考题思考题思考题10-1 普通光源中原子发光有何特征?答答答:答:::因为普通光源是大量不同原子在不同时刻发的光,是自然光,因此不满足干涉条件,所以一 般普通光源观察不到干涉现象。
10-2 如何用实验检验一束光是线偏振光、部分偏振光还是自然光?答答答:答:::拿一块偏振片迎着这束光,转动偏振片,观察透射光。
(1)视场中光强有变化且有消光现象 的为线偏振光;(2)光强有变化但无消光现象的为部分偏振光;(3)光强无变化的为自然光。
10-3 自然光可以用两个独立的、相互垂直的、振幅相等的光振动表示。
那么线偏振光是否也可以用两个相互垂直的光振动表示?如果可以,则这两个相互垂直的光振动之间关系如 何?10-4 如何用实验测定不透明媒质的折射率?答答答:答:::光线入射到不透明的媒介上,改变入射角i ,并同时用偏振片测定反射光线的偏振化程度。
当反射光线为完全偏振光时,此时入射角i0 即为布儒斯特角,满足tan 可求得不透明介质的折射率n 。
10-5 如图(a)所示,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度;问将有几条光线从方解石透射 出来?如果把方解石切割成等厚的A 、B 两块,并平行地移 开很短一段距离,如图(b)所示,此时光线通过这两块方解石后有多少条光线射出来?如果把B 块沿沿沿沿光线转过一个角度, 此时将有几条光线从B 块射出来?为什么?i 0n ,测得 i0 即考思考思考思考题题题题10-5图图图图10-6 从普通光源获得两束相干光的一般方法是什么?在光的干涉中决定相遇点产生明纹或暗纹的因素是什么?答答答:答:::分波阵面法和分振幅法。
波源的相位差和波源到相遇点的光程差决定相遇点产生明纹或暗纹。
10-7 如图所示,设光线a 、b 从周相相同的A 、B 点传至P 点,试讨论:(1)在图中的三种情况下,光线a 、b 在相遇处P 是 否存在光程差?为什么?(2)若a 、b 为相干光,那么在相遇处的干涉情况怎 样?考题思考题思考题思考题 10-7 图图图图10-8 在杨氏双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。
《大学物理AII》作业 No.02 波动方程 参考答案

《大学物理AII 》作业No.02波动方程班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解波动产生的条件、传播的特性及波的分类。
2、掌握描述波的特征量:周期、频率、波长、波速的物理意义及其相互关系,并能与振动的特征量相区分。
3、掌握相位传播、波形传播意义,并能根据质点简谐运动方程或振动曲线建立平面简谐波的波函数。
理解波函数与波形曲线、振动曲线和行波的关系。
4、理解波的能量密度、能流、能流密度及波的强度等概念。
行波的传播过程就是能量的传播过程。
5、理解多普勒效应产生的机制及应用。
-------------------------------------------------------------------------------------------------------一、填空题1、波动是振动的传播,其中机械振动在弹性介质中的传播称为机械波,它的传播需要介质(选填:需要,不需要)。
由于带电粒子的运动引起周围空间电磁场交替变化而形成的波称为电磁波,它的传播不需要介质(选填:需要,不需要)。
根据质点振动方向与波的传播方向之间的关系(垂直或平行),波又可以分为横波和纵波。
2、描述波时间周期性的特征量是周期T ,描述波空间周期性的特征量是波长λ振动状态(相位)在介质中传播速度称为波速(相速)u ,三者之间的关系为T u λ=。
3、某时刻t 的波形曲线如图所示,图中B 点的y 坐标By 表示的是t 时刻B x 处质元离开平衡位置的位移,若为纵波,图中A 、C 分别对应纵波的密部中心和疏部中心(填:密部中心或疏部中心)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一平面简谐波沿Ox轴正方向传播,t= 0时刻的波形图如图所示,则P处介质质点的振动方程是()
}
A.(SI)
B.(SI)
C.(SI)
D.(SI)
答案:A
2.如图所示,S1和S2为两相干波源,它们的振动方向均垂直于图面,发出波长为的简谐波,P点是两列波相遇区域中的一点,已知,,两列波在P点发生相消干涉.若S1的振动方程为,则S2的振动方程为()
}
A.
B.
C.
D.
答案:D
3.两相干波源S1和S2相距,(为波长),S1的相位比S2的相位超前,在S1,S2的连线上,S1外侧各点(例如P点)两波引起的两谐振动的相位差是()
}
B.
C.
D.
答案:C
4.在弦线上有一简谐波,其表达式为
(SI)
为了在此弦线上形成驻波,并且在x= 0处为一波腹,此弦线上还应有一简
谐波,其表达式为()
}
A.(SI)
B.(SI)
C.(SI)
D.(SI)
答案:D
5.沿着相反方向传播的两列相干波,其表达式为
和.
在叠加后形成的驻波中,各处简谐振动的振幅是()
}
C.
D.
答案:D
6.{
一平面余弦波在t= 0时刻的波形曲线如图所示,则O点的振动初相为()
}
B.
C.
D.(或)
答案:D
7.{
如图所示,有一平面简谐波沿x轴负方向传播,坐标原点O的振动规律为),则B点的振动方程为()
}
A.
B.
答案:D
8.{
如图,一平面简谐波以波速u沿x轴正方向传播,O为坐标原点.已知P点的振动方程为,则()
}
点的振动方程为
B.波的表达式为
C.波的表达式为
点的振动方程为
答案:C
9.一声波在空气中的波长是 m,传播速度是340 m/s,当它进入另一介质时,波长变成了 m,它在该介质中传播速度为______________.
答案:503 m/s
10.一平面简谐波的表达式为(SI),其角频率=_____________,波速u=_______________,波长= _________________.答案:125 rad/s|338 m/s | m
11.图为t=T/ 4 时一平面简谐波的波形曲线,则其波的表达式为________________________.
答案:(SI)
12.一平面简谐波沿Ox轴正方向传播,波长为.若如图P1点处质点的振动方程为,则P2点处质点的振动方程为
_________________________________;与P1点处质点振动状态相同的那些点的位置是___________________________.
答案:|(k=±1,±2,…)
13.如图所示,一平面简谐波沿Ox轴负方向传播,波长为,若P处质点的振动方程是,则该波的表达式是
_______________________________;P处质点____________________________时刻的振动状态与O处质点t1时刻的振动状态相同.
答案:|,k= 0,±1,±2,…[只写也可以]
14.如图所示,波源S1和S2发出的波在P点相遇,P点距波源S1和S2的距离分别为和,为两列波在介质中的波长,若P点的合振幅总是极大值,则两波在P点的振动频率___________,波源S1的相位比S2的相位领先_______.
答案:相同.|.
15.在固定端x= 0处反射的反射波表达式是.设反射波无能量损失,那么入射波的表达式是y1=
________________________;形成的驻波的表达式是y= ________________________________________.
答案:|
16.如果入射波的表达式是,在x= 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y2= _______________________________;在x=处质点合振动的振幅等于______________________.
答案:|A
17.如图,一平面波在介质中以波速u=20 m/s沿x轴负方向传播,已知A点的振动方程为(SI).
(1) 以A点为坐标原点写出波的表达式;
(2) 以距A点5 m处的B点为坐标原点,写出波的表达式.
答案: 解:(1)坐标为x点的振动相位为
2分
波的表达式为(SI) 2分
(2)以B点为坐标原点,则坐标为x点的振动相位为
(SI) 2分
波的表达式为(SI) 2分
18.如图所示,两相干波源在x轴上的位置为S1和S2,其间距离为d=30 m,S1位于坐标原点O.设波只沿x轴正负方向传播,单独传播时强度保持不变.x1=9 m和x2=12 m处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.
答案:{
解:设S1和S2的振动相位分别为和.在x1点两波引起的振动相位差
即① 2分
在x2点两波引起的振动相位差
即② 3分
②-①得
m 2分
由①2分
当K=-2、-3时相位差最小1分
19.设入射波的表达式为,在x= 0处发生反射,反射点为一固定端.设反射时无能量损失,求
(1)反射波的表达式; (2)合成的驻波的表达式;
(3)波腹和波节的位置.
答案:{
解:(1)反射点是固定端,所以反射有相位突变,且反射波振幅为A,因此反
射波的表达式为3分
(2)驻波的表达式是
3分
(3)波腹位置:, 2分
,n= 1, 2, 3, 4,…
波节位置:2分
,n= 1, 2, 3, 4,…
20.在弹性媒质中有一沿x轴正向传播的平面波,其表达式为(SI).若在x= m处有一媒质分界面,且在分界面处反射波相位突变,设反射波的强度不变,试写出反射波的表达式.
A. (%)
试题编号:E17549 25608
答案:{
解:反射波在x点引起的振动相位为
3分
反射波表达式为
(SI) 2分
或(SI)。