图像识别技术的现状和未来
基于深度学习的图像识别技术研究

基于深度学习的图像识别技术研究图像识别技术已经成为如今人工智能领域中的研究热点之一。
其中,基于深度学习的图像识别技术更是备受关注,因其能够实现更为准确、高效的图像识别与分类。
本文将围绕基于深度学习的图像识别技术展开讨论,探讨其研究现状、发展趋势及未来展望。
1. 深度学习技术在图像识别领域的应用现状深度学习技术是近年来人工智能领域中最为热门的技术之一,其在图像识别领域的应用也越来越广泛。
深度学习技术的兴起得益于神经网络的发展,尤其是卷积神经网络(CNN),它被广泛应用于图像识别领域。
如今,在图像分类、目标检测、人脸识别、自然语言处理等领域,深度学习技术都取得了显著的成绩。
其中,在图像识别领域,深度学习技术已经超越了传统的机器学习方法,取得了更为精确的结果。
比如,2017年ImageNet数据集的图像分类比赛中,各个团队都采用了深度学习技术,并在取得了很高的分类正确率。
2. 深度学习图像识别技术的研究进展基于深度学习的图像识别技术发展迅速,一系列方法和技术已经被提出和实践。
在深度学习图像识别技术的研究中,有四种最为重要的技术,分别是卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)和深度强化学习(DRL)。
其中,最为重要的当属卷积神经网络(CNN)。
CNN最初是由Yann LeCun等人提出,是一种具有深度结构、局部连接和权值共享特性的神经网络。
该技术主要用于图像识别、语音识别等领域,并在图像识别方面取得了巨大的成功。
此外,生成对抗网络(GAN)也是当前深度学习图像识别技术中的重要技术之一。
该技术由Ian Goodfellow等人提出,其主要思想是通过一个生成器网络与一个判别器网络对抗地训练,让生成器网络逐渐生成更加逼真的图像。
GAN在图像生成与重建方面发挥重要作用,如图像去噪、图像增强等。
3. 基于深度学习的图像识别技术的未来展望随着深度学习技术在图像识别领域的不断推广与应用,其未来发展前景广阔。
关于人工智能的图像识别技术分析

关于人工智能的图像识别技术分析人工智能的快速发展正在改变我们的生活方式,其中图像识别技术作为人工智能的一个重要应用领域,正在得到越来越广泛的应用。
图像识别技术是利用计算机对图像进行分析和识别的一种技术手段,它可以实现对图像中的各种元素进行识别和分类,从而实现对图像所含信息的理解和分析。
本文将针对图像识别技术进行分析,探讨其发展现状、技术原理以及未来发展方向。
一、图像识别技术的发展现状图像识别技术是人工智能领域的重要分支之一,随着计算机技术和数据处理能力的不断提升,图像识别技术也在不断取得突破性进展。
目前,图像识别技术已经应用到各个领域,例如人脸识别、车牌识别、物体识别等。
随着深度学习技术的不断成熟和发展,图像识别技术的准确性和稳定性不断提升,使其在实际应用中更加可靠和高效。
当前,图像识别技术已经在日常生活中得到了广泛应用,例如手机的人脸识别解锁、自动驾驶汽车的道路识别、工业机器人的零件识别等。
图像识别技术也被应用于医疗诊断、安防监控、智能家居等各个领域,为人们的生活和工作带来了诸多便利。
二、图像识别技术的技术原理图像识别技术的主要技术原理是利用计算机对图像进行特征提取和分类识别。
具体来说,图像识别技术包括以下几个关键步骤:1. 图像采集:首先需要对待识别的图像进行采集和获取,可以通过摄像头、扫描仪等设备获取图像数据。
2. 图像预处理:对采集到的图像数据进行预处理,包括图像去噪、图像增强、图像分割等操作,以提高图像的质量和准确性。
3. 特征提取:利用图像处理和模式识别技术,对图像中的各种特征进行提取和描述,例如颜色、形状、纹理等特征。
4. 特征匹配:将提取到的特征与事先建立的模型进行匹配,以实现对图像中的目标物体进行识别和分类。
5. 输出结果:根据匹配结果输出相应的识别结果和分类信息,实现对图像中的目标物体进行识别和分析。
图像识别技术通过对图像中的特征进行提取和匹配,实现了对图像中的目标物体进行自动识别和分类,从而为后续的决策和应用提供了基础数据。
基于视觉的图像识别技术

基于视觉的图像识别技术是目前人工智能中非常重要的一环。
随着计算机计算能力的提高和深度学习算法的发展,图像识别技术在医疗、安防、交通、军事等领域得到了广泛应用。
本文将介绍图像识别技术的发展历程、现状以及未来发展趋势。
一、图像识别技术的发展历程图像识别技术起源于上世纪60年代,那时计算机还非常昂贵,计算能力有限。
当时的图像识别技术主要是基于数字信号处理或模式识别的方法,用于处理黑白图像。
70年代,出现了新的数字处理技术和计算机处理能力的提升,图像识别技术开始逐步应用于实际领域。
80年代后,计算机计算能力的大幅提高和计算机网络的普及,使得图像处理和图像识别技术的应用领域越来越广泛。
90年代初,神经网络的发展成为图像识别技术发展的关键。
神经网络是一种基于生物神经学原理的人工智能技术,可以模拟人类神经系统的处理方式,实现对复杂的多维数据的处理和分析。
从那时起,神经网络被广泛应用于图像识别和物体识别中,成为了图像识别技术的基础。
二、图像识别技术的现状目前,已经非常成熟,在医疗、安防、交通等领域得到了广泛应用。
举个例子,移动智能硬件已经广泛使用图像识别技术,让我们的生活变得更加智能化。
在传统行业领域,图像识别技术也得到了应用。
在医疗领域,医生可以通过图像识别技术快速获得患者的X光和MRI图像,为患者提供更快更优质的医疗服务。
在安防领域,图像识别技术可以用于人脸识别和车辆号牌识别等,以提高安防监控的准确率。
另外,交通管控是图像识别技术的另一个重要应用领域。
高速公路上的交通监控系统可以通过图像识别技术实现车辆计数、车速监测和违法行为识别等功能。
三、图像识别技术的未来发展趋势图像识别技术发展的潜力还非常巨大,未来可以望到的发展趋势主要包括以下几个方面。
1. 图像识别技术将逐步实现智能处理目前,图像识别技术还无法像人类的智能处理那样快速精准,但未来的图像识别技术将越来越接近人类的智能处理水平。
一旦技术实现了人类智能处理的水平,将可应用于更多领域中,大大改善我们的生活。
人工智能在图像识别中的发展现状与未来趋势分析

人工智能在图像识别中的发展现状与未来趋势分析引言:随着人工智能技术的飞速发展,图像识别成为了人工智能领域的热点之一。
在图像识别领域,人工智能通过深度学习、卷积神经网络等技术取得了突破性的进展。
本文将对人工智能在图像识别中的发展现状与未来趋势进行分析。
一、人工智能在图像识别中的发展现状:1. 深度学习技术的应用与突破:深度学习技术是人工智能在图像识别领域取得突破的重要驱动力。
通过多层次的神经网络模型,深度学习可以学习到更高层次的特征表示,从而提高图像识别的准确率和效果。
卷积神经网络(CNN)作为深度学习的代表性模型,在图像识别中取得了重大突破,出现了一系列优秀的算法架构,如AlexNet、VGGNet、GoogLeNet和ResNet等。
这些算法通过对大量图像数据进行训练,使得计算机能够准确地识别图像内容。
2. 大数据与云计算的支持:大数据和云计算技术的快速发展为图像识别提供了强大的支持。
大数据技术可以提供海量的训练样本,有助于提高图像识别的准确率。
而云计算技术则提供了强大的计算和存储能力,使得大规模的图像识别任务得以实现。
此外,基于云端的图像识别服务也为企业和个人提供了便捷的图像识别解决方案。
3. 应用领域的拓展:人工智能在图像识别中的应用领域不断拓展。
除了传统的图像分类、目标检测和人脸识别等应用外,人工智能还在医疗影像诊断、自动驾驶、安防监控等领域取得了重要突破。
医疗影像诊断方面,人工智能可以通过对病灶的识别和定位,辅助医生进行疾病诊断。
自动驾驶领域,人工智能可以通过对车辆周围环境的识别,实现智能驾驶和交通安全。
二、人工智能在图像识别中的未来趋势:1. 深度学习模型的进一步优化:在未来,深度学习模型将继续优化和改进,提高识别准确率和效果。
目前,针对深度学习模型中存在的不足和挑战,研究者们正致力于提出新的算法架构和训练技巧。
例如,迁移学习和增强学习的引入可以使得模型更好地应对多样化的图像识别任务。
图像识别技术的发展现状与未来应用

图像识别技术的发展现状与未来应用在当代科技领域中,图像识别技术的迅猛发展引起了全球的高度关注。
随着计算机视觉和人工智能的快速发展,图像识别技术正孕育着无限的潜力和广阔的应用前景。
本文将探讨图像识别技术的发展现状以及未来的应用领域。
一、图像识别技术的发展现状随着计算机计算能力的增强和数据存储技术的飞速发展,图像识别技术取得了突破性进展。
当前,图像识别技术主要基于深度学习和卷积神经网络,能够处理大量的图像数据,并从中提取特征信息。
图像识别技术不仅能够识别物体、场景、文字等基本元素,还能进行人脸识别、表情识别、光照识别等高级图像分析。
例如,人脸识别技术已广泛应用于安防领域。
通过图像识别技术,计算机可以识别出图像中的人脸,并与数据库中的信息进行比对,实现人脸身份的快速验证。
此外,图像识别技术还在医疗、交通、金融等行业中得到了广泛应用。
在医疗领域,图像识别技术可以帮助医生进行早期癌症检测;在交通领域,图像识别技术可以监控路况、车牌识别等;在金融领域,图像识别技术可以用于银行卡的识别和支付验证。
二、图像识别技术的未来应用随着科技的不断进步和社会的快速发展,图像识别技术的应用领域将不断拓展,未来的发展潜力巨大。
首先,图像识别技术在智能交通领域的应用前景广阔。
目前,许多国家正积极推进无人驾驶技术的研发和应用。
图像识别技术可以通过感知设备识别道路、交通标志和其他车辆,实现自动驾驶汽车的智能决策和行驶。
同时,图像识别技术还可以应用于交通事故监测、拥堵预测等方面,为城市交通管理和安全保障提供有效的技术支持。
其次,图像识别技术在医疗领域的应用也具有广阔前景。
随着人口老龄化的加剧和医疗资源的不均衡分布,图像识别技术可以帮助解决医疗领域的难题。
通过图像识别技术,医生可以对大量的医学影像数据进行自动分析和诊断,提高诊断准确率和效率。
此外,图像识别技术还可以应用于手术辅助、疾病预警等方面,为健康管理和疾病防控提供有力支持。
再次,图像识别技术在智能家居和智能工业领域也有广泛应用的前景。
图形识别技术的应用场景与未来发展趋势

图形识别技术的应用场景与未来发展趋势随着人工智能技术的发展,图形识别技术也越来越成熟,已经广泛应用于各个领域,如医疗、物流、安防等。
本文将探讨图形识别技术的应用场景和未来发展趋势。
一、图形识别技术的应用场景1.医疗领域在医疗领域,图形识别技术可以用来辅助医生诊断疾病。
例如,可以用人工智能技术来分析大量医学图像,发现医生可能会错漏的信息,提高医生诊断的准确性和效率。
此外,图形识别技术也可以用来辅助手术和治疗,例如在眼科手术中,可以使用人工智能技术来辅助医生实现精细的手术操作。
2.物流领域在物流领域,图形识别技术可以用来自动识别物品。
例如,在快递行业中,可以使用人工智能技术来自动识别包裹上的地址,从而实现自动分类和派送。
此外,图形识别技术还可以用来自动识别物流仓库中的货物,从而实现自动化的存储和取货。
3.安防领域在安防领域,图形识别技术可以用来辅助监控和预防犯罪。
例如,在公共场所可使用安防摄像头来进行监控,利用人工智能技术来识别人群中的异常行为,快速发现危险情况并通知相关人员进行处理。
此外,图形识别技术还可以用来识别犯罪嫌疑人的面部轮廓等特征,辅助警方进行侦破。
二、图形识别技术的未来发展趋势1.多模态图形识别技术多模态图形识别技术是指将不同类型的图像信息结合在一起进行识别,提高图像识别的准确性和效率。
例如,可以将语音和图像信息结合在一起,实现人机交互和场景识别。
2.深度学习技术深度学习技术是指通过建立多层神经网络来实现高效的图像识别。
它不仅可以识别静态图像,还可以对视频和动态图像进行分析。
深度学习技术已经成为图形识别领域中最为重要的技术之一,未来还将继续发挥重要作用。
3.操作系统集成图形识别技术操作系统也可以集成图形识别技术,以便更加便利地实现图形识别功能。
例如,可以在手机操作系统中集成图形识别技术,让用户更加便捷地进行人脸解锁和图像识别。
综上所述,图形识别技术已经广泛应用于各个领域,未来也将继续发挥重要作用。
图像识别的技术现状及展望

图像识别的技术现状及展望摘要:本文对图像识别技术的应用现状进行了研究,分析了图像识别技术的优点和重要性,介绍了有关图像识别的内容和过程,对图像识别的重要内容和关键步骤进行了全面探讨,主要包括图像分割、分类和图像的匹配等内容,对各种算法的特点和图像识别技术在未来社会人工智能的发展方向进行了分析。
关键词:图像识别;技术现状;展望在社会经济不断发展的背景下,信息技术也得到了高速发展,图像识别技术在此背景下应运而生,它在我国各个领域中都有着非常广阔的发展空间,为了提高图像识别的应用效果,部分学者对图像识别过程等内容进行了研究,通过优化图像识别结构和关键步骤等方式,发挥了图像识别技术在社会经济中的价值,从而进一步完善我国的智能化体系。
一、图像识别技术发展背景如今,大数据时代的到来,给人们的生活和工作都带来便利,尤其移动互联网和智能手机的快速发展,带来了海量图片信息,相关研究发现,我国每天网上图片上传量约为6000万张。
在国内,微信朋友圈中也是以图片分享为驱动,由于这种方式不会受到地域和语言等多种因素的限制,所以图片逐渐取代了复杂和难以理解的繁琐和微妙的文字,成为网络信息发展的主流。
在用户读取信息的习惯上说,与文字相比,图片可以为用户提供更加生动和有趣的艺术感信息,丰富用户的想象力,还具有一定的降压效果。
在图片来源上说,智能手机为给我们的生活和工作带来了方便,其还具有拍摄和截屏等多种功能,可以帮助我们更快地用图片对具体的信息采集和记录。
目前,图片已经网络发展中的主要信息载体,但是它给人们带来便利的同时的,也会带来一定的问题。
当信息由文字记载的时候,用户能够通过关键词,对其中的内容进行搜索,然后轻易找到所需的内容,对其进行任意编辑。
但是,如果在此过程中,信息是由图片记载的时候,用户并不能对图片中的内容进行更好地检索,严重影响了用户在图片中找出关键内容的效率,这在一定程度上降低了我们的信息检索效率[1]。
这就需要加强对计算机图像识别技术的有效应用。
图像识别技术的发展趋势和应用场景

图像识别技术的发展趋势和应用场景随着科技的不断发展和进步,人工智能技术也逐渐成为人们关注的焦点之一。
图像识别技术作为其中的一种,被广泛应用于各种场景中。
本文将介绍图像识别技术的发展趋势和应用场景,探讨其未来的发展方向。
一、图像识别技术的发展概况图像识别技术是利用机器学习和深度学习等算法,对图像进行分析和处理,从而实现自动识别和分类的功能。
在过去的几年里,随着计算机性能的不断提升和算法的不断优化,图像识别技术也在不断地发展和完善。
目前,图像识别技术已经广泛应用于各个领域,如安防监控、智能交通、医疗影像、文物保护等。
其中,安防监控是图像识别技术应用最为广泛的领域之一。
通过对摄像头的拍摄画面进行处理和分析,可以实现对异常行为的实时监控和预警,提高安全防范能力。
二、图像识别技术的应用场景1. 智能交通在智能交通领域,图像识别技术可以实现对车辆和行人的自动识别和分类。
例如,在城市中实现智能红绿灯控制,通过对路口的拍摄画面进行分析,实现交通流量的调控和优化,从而提高路网的通行效率和安全性。
2. 医疗影像在医疗影像领域,图像识别技术可以应用于X光片、CT、MRI 等影像的自动分析和处理。
例如,在肺癌筛查方面,通过对X光片进行分析,可以实现对病灶的自动检测和诊断,缩短医生的诊疗时间,提高诊断准确率。
3. 文物保护在文物保护领域,图像识别技术可以应用于文物的自动分类和识别。
例如,在考古发掘中,通过对文物的形态和特征进行分析和比较,可以实现对文物的自动分类和鉴定,提高考古工作的效率和精度。
4. 无人机航拍在无人机航拍领域,图像识别技术可以应用于对目标检测和跟踪。
例如,在农业方面,通过对农田的航拍画面进行处理和分析,实现对庄稼的生长状态和病虫害情况的自动监测和诊断,提高农业生产的效率和产量。
三、图像识别技术的未来发展方向随着社会的不断进步和发展,图像识别技术将会面临着更多的应用场景和更高的技术要求。
以下是图像识别技术未来的发展方向:1. 多模态图像识别现有的图像识别技术大多只能应用于单一的图像或视频,难以同时处理多种不同的数据信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像识别技术的背景
知了图像识别科技,是一家以图像识别算法为核心的高科技企业,目前已经开发出了,知了点拍,钢管,钢筋智能点数app。
识别率高,点数速度快,极大的方便了需要对钢管,钢筋点数人员的工作,提高了效率,知了点拍,是施工和建材经销商的好帮手。
移动互联网、智能手机以及社交网络的发展带来了海量图片信息,根据BI五月份的文章,Instagram每天图片上传量约为6000万;今年2月份WhatsApp每天的图片发送量为5亿;国的微信朋友圈也是以图片分享为驱动。
不受地域和语言限制的图片逐渐取代了繁琐而微妙的文字,成为了传词达意的主要媒介。
图片成为互联网信息交流主要媒介的原因主要在于两点:第一,从用户读取信息的习惯来看,相比于文字,图片能够为用户提供更加生动、容易理解、有趣及更具艺术感的信息;第二,从图片来源来看,智能手机为我们带来方便的拍摄和截屏手段,帮助我们更快的用图片来采集和记录信息。
但伴随着图片成为互联网中的主要信息载体,难题随之出现。
当信息由文字记载时,我们可以通过关键词搜索轻易找到所需容并进行任意编辑,而当信息是由图片记载时,我们却无法对图片中的容进行检索,从而影响了我们从图片中找到关键容的效率。
图片给我们带来了快捷的信息记录和分享方式,却降低了我们的信息检索效率。
在这个环境下,计算机的图像识别技术就显得尤为重要。
图像识别是计算机对图像进行处理、分析和理解,以识别各种不同模式的目标
和对像的技术。
识别过程包括图像预处理、图像分割、特征提取和判断匹配。
简单来说,图像识别就是计算机如何像人一样读懂图片的容。
借助图像识别技术,我们不仅可以通过图片搜索更快的获取信息,还可以产生一种新的与外部世界交互的方式,甚至会让外部世界更加智能的运行。
百度彦宏在2011年提到“全新的读图时代已经来临”,现在随着图形识别技术的不断进步,越来越多的科技公司开始涉及图形识别领域,这标志着读图时代正式到来,并且将引领我们进入更加智能的未来。
图像识别的初级阶段——娱乐化、工具化
在这个阶段,用户主要是借助图像识别技术来满足某些娱乐化需求。
例如,百度魔图的“大咖配”功能可以帮助用户找到与其长相最匹配的明星,百度的图片搜索可以找到相似的图片;Facebook研发了根据相片进行人脸匹配的DeepFace;雅虎收购的图像识别公司IQ Engine开发的Glow可以通过图像识别自动生成照片的标签以帮助用户管理手机上的照片;国专注于图像识别的创业公司旷视科技成立了VisionHacker游戏工作室,借助图形识别技术研发移动端的体感游戏。
这个阶段还有一个非常重要的细分领域——OCR(Optical Character Recognition,光学字符识别),是指光学设备检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程,就是计算机对文字的阅读。
语言和文字是我们获取信息最基本、最重要的途径。
在比特世界,我们可以借助互联网和计算机轻松的获取和处理文字。
但一旦文字以图片的形式表现出来,就对我们获取和处理文字平添了很多麻烦。
这一方面表现为数字世界中由于特定原因被存储称图片格式的文字;另一方面是我们在现实生活中看到的所有物理形态的文字。
所以我们需要借助OCR技术将这些文字和信息提取出来。
在这方面,国产品包括百度的涂书笔记和百度翻译等;而谷歌借助经过DistBelief 训练的大型分布式神经网络,对于Google 街景图库的上千万门牌号的识别率超过90%,每天可识别百万门牌号。
在这个阶段,图像识别技术仅作为我们的辅助工具存在,为我们自身的人类视觉提供了强有力的辅助和增强,带给了我们一种全新的与外部世界进行交互的方
式。
我们可以通过搜索找到图片中的关键信息;可以随手拍下一件陌生物体而迅速找到与之相关的各类信息;可以将潜在搭讪对象拍下提前去她的社交网络了解一番;也可以将人脸识别作为主要的身份认证方式……这些应用虽然看起来很普通,但当图像识别技术渗透到我们行为习惯的方方面面时,我们就相当于把一部分视力外包给了机器,就像我们已经把部分记忆外包给了搜索引擎一样。
这将极大改善我们与外部世界的交互方式,此前我们利用科技工具探寻外部世界的流程是这样:人眼捕捉目标信息、大脑将信息进行分析、转化成机器可以理解的关键词、与机器交互获得结果。
而当图像识别技术赋予了机器“眼睛”之后,这个过程就可以简化为:人眼借助机器捕捉目标信息、机器和互联网直接对信息进行分析并返回结果。
图像识别使摄像头成为解密信息的钥匙,我们仅需把摄像头对准某一未知事物,就能得到预想的答案。
就像百度科学家余凯所说,摄像头成为连接人和世界信息的重要入口之一。
图像识别的高级阶段——拥有视觉的机器
上文提到,目前的图像识别技术是作为一个工具来帮助我们与外部世界进行交互,只为我们自身的视觉提供了一个辅助作用,所有的行动还需我们自己完成。
而当机器真正具有了视觉之后,它们完全有可能代替我们去完成这些行动。
目前的图像识别应用就像是盲人的导盲犬,在盲人行动时为其指引方向;而未来的图像识别技术将会同其他人工智能技术融合在一起成为盲人的全职管家,不需要盲人进行任何行动,而是由这个管家帮助其完成所有事情。
举个例子,如果图像识别是一个工具,就如同我们在驾驶汽车时佩戴谷歌眼镜,它将外部信息进行分析后传递给我们,我们再依据这些信息做出行驶决策;而如果将图像识别利用在机器视觉和人工智能上,这就如同谷歌的无人驾驶汽车,机器不仅可以对外部信息进行获取和分析,还全权负责所有的行驶活动,让我们得到完全解放。
《人工智能:一种现代方法》中提到,在人工智能中,感知是通过解释传感器的响应而为机器提供它们所处的世界的信息,其中它们与人类共有的感知形态包括视觉、听觉和触觉,而视觉最为重要,因为视觉是一切行动的基础。
在一次论坛上百度IDL的余凯院长问大家,你觉得哪种感觉最重要?没有人能很快作答,后
来余凯院长换了个提问方式,如果要放弃一种感觉,你最不愿意放弃的是那一种?这时大家都回答是视觉。
Chris Frith在《心智的构建》中提到,我们对世界的感知不是直接的,而是依赖于“无意识推理”,也就是说在我们能感知物体之前,大脑必须依据到达感官的信息来推断这个物体可能是什么,这构成了人类最重要的预判和处理突发时间的能力。
而视觉是这个过程中最及时和准确的信息获取渠道,人类感觉信息中的80%都是视觉信息。
机器视觉之于人工智能的意义就是视觉之于人类的意义,而决定着机器视觉的就是图像识别技术。
更重要的是,在某些应用场景,机器视觉比人类的生理视觉更具优势,它更加准确、客观和稳定。
人类视觉有着天然的局限,我们看起来能立刻且毫无费力的感知世界,而且似乎也能详细生动的感知整个视觉场景,但这只是一个错觉,只有投射到眼球中心的视觉场景的中间部分,我们才能详细而色彩鲜明的看清楚。
偏离中间大约10度的位置,神经细胞更加分散并且智能探知光和阴影。
也就是说,在我们视觉世界的边缘是无色、模糊的。
因此,我们才会存在“变化盲视”,才会在经历着多样事物发生时,仅仅关注其中一样,而忽视了其他样事物的发生,而且不知道它们的发生。
而机器在这方面就有着更多的优势,它们能够发现和记录视力所及围发生的所有事情。
拿应用最广的视频监控来说,传统监控需要有人在电视墙前时刻保持高度警惕,然后再通过自己对视频的判断来得出结论,但这往往会因为人的疲劳、视觉局限和注意力分散等原因影响监控效果。
但有了成熟的图像识别技术之后,再加以人工智能的支持,计算机就可以自行对视频进行分析和判断,发现异常情况直接报警,带来了更高的效率和准确度;在反恐领域,借助机器的人脸识别技术也要远远优于人的主观判断。
许多科技巨头也开始了在图像识别和人工智能领域的布局,Facebook签下的人工智能专家Yann LeCun最重大的成就就是在图像识别领域,其提出的LeNet为代表的卷积神经网络,在应用到各种不同的图像识别任务时都取得了不错效果,被认为是通用图像识别系统的代表之一;Google 借助模拟神经网络“DistBelief”通过对数百万份 YouTube 视频的学习自行掌握了猫的关键特征,这是机器在没有人帮助的情况下自己读懂了猫的概念。
值得一提的是,负责这个项目的Andrew NG已经转投百度领导百度研究院,其一个重要的研究方向就是人工智能和图像识别。
这也能看出国科技公司对图像识别技术以及人工智能技
术的重视程度。
图像识别技术,连接着机器和这个一无所知的世界,帮助它越发了解这个世界,并最终代替我们完成更多的任务。