运筹学在物流领域中的应用
运筹学方法在物流管理中的应用

运筹学方法在物流管理中的应用随着互联网的不断发展,物流行业也在不断壮大。
物流行业的快速发展,促使物流企业必须不断提升自己的运营效率,降低成本,提高服务质量。
运筹学方法在物流管理中的应用可以帮助物流企业提高运营效率,降低成本,提高服务质量。
本文将介绍运筹学方法在物流管理中的应用,具体包括物流网络模型、物流分拣、仓库管理和物流配送优化。
一、物流网络模型物流网络模型是指在一定的物流规划条件下,通过建立物流网络模型,确定物流规划的路径和节点,使整个物流过程高效便捷。
物流网络模型可以使用图论的概念和算法,优化供应链中的物流流程,通过最小化成本或最大化利润来确定优化的策略。
例如,某电商企业为了提高客户的服务质量,在全国范围内建立了数百个仓库和分拣中心。
在这种情况下,物流网络模型可以帮助企业判断哪些仓库或分拣中心需要优先满足订单,以使其运作效益最大化。
此外,物流网络模型还可以帮助企业确定物流路径和节点,以最小化物流成本。
二、物流分拣物流分拣是指在物流过程中,按照客户订单或其他规则对物流配送物品进行分类,以提高物流效率和服务质量。
物流分拣可以使用运筹学方法,根据订单需求、库存水平和配送线路等信息,对物品进行快速定位和分类,以提高物流配送的质量和效率。
例如,某餐饮企业需要通过物流配送将食品送到客户的手中。
在这种情况下,物流分拣可以帮助企业根据客户的订单需求和地理位置,将食品进行分拣,然后按照配送路线送到指定的客户处,以提高物流配送效率和服务质量。
三、仓库管理仓库管理是指对物流仓库进行规划、管理和优化的过程。
仓库管理可以使用运筹学方法,通过建立物流模型、优化仓库布局和库存分配,最大限度地提高仓库的存储容量和效率,减少仓库的运营成本。
例如,某制造商需要管理大量的原材料和成品库存。
在这种情况下,仓库管理可以帮助企业优化仓库布局和库存分配,确保原材料和成品的最佳存储和实时控制。
此外,通过优化仓库操作流程、降低人工成本和仓库设备的升级,企业可以实现仓库运营的最大化收益。
运筹学在物流管理中的应用

运筹学在物流管理中的应用运筹学是一门研究对决策问题进行建模、分析和优化的学科。
它的目标是通过科学的方法来解决现实世界中的问题。
物流管理作为一门关注资源、信息和货物流动的学科,在适用运筹学方法的帮助下可以实现更高效的运输和井然有序的供应链。
本文将探讨运筹学在物流管理中的应用,并且论述其中的一些实际案例。
首先,运筹学在物流管理中的一个重要应用领域是路线规划。
物流公司需要在有限的资源和时间内选择最佳的运输路径,以最大程度地减少成本和时间。
运筹学提供了许多模型和算法,可以帮助物流公司优化路线规划。
例如,旅行商问题(TSP)是一个经典的运筹学问题,它要求在给定的一组城市之间找到最短的路径。
物流公司可以通过将其运输点和交通网络建模为TSP,并使用相应的优化算法来寻找最佳路径。
其次,运筹学还可以应用于库存管理。
库存是物流管理中的一个重要环节,它需要平衡成本和顾客需求之间的关系。
运筹学提供了一些方法来帮助物流公司合理地安排库存。
例如,通过使用智能预测模型,物流公司可以根据历史销售数据和需求趋势来预测商品的需求量,并相应地调整库存。
此外,运筹学还可以帮助物流公司优化供应链中的订购和补货策略,以减少库存、运输和储存成本。
另一个运筹学在物流管理中的应用是货车调度。
物流公司通常需要同时调度多辆货车以满足顾客的需求。
运筹学提供了一些调度算法来帮助物流公司有效地安排货车的行程。
例如,装箱问题(KP)是一个经典的运筹学问题,它要求在有限的货物和货车容量下,将货物合理地装箱以减少运输成本。
采用贪心算法或动态规划算法可以有效解决装箱问题,使得货物能够更紧凑地装箱在货车中,从而提高货车的装载率和运输效率。
除了上述应用领域,运筹学在物流管理中还可以应用于调度问题、网络设计、资源分配等方面。
例如,物流公司可以利用运筹学模型来优化分拣中心的布局,以便最大程度地降低拣选时间和运输成本。
此外,运筹学方法还可以帮助物流公司合理分配货车、仓库和人力资源,以提高整体效率和服务水平。
运筹学方法在物流管理中的应用

运筹学方法在物流管理中的应用运筹学是一门研究如何决策和优化资源分配以提高效率的学科。
在物流管理领域,运筹学方法可以帮助企业解决各种问题,从而提高物流运营效果。
本文将介绍运筹学在物流管理中的应用,并讨论其优势和局限性。
一、需求预测与库存管理需求预测是物流管理的核心问题之一。
通过运筹学方法,可以分析历史数据,建立数学模型来预测未来的需求。
运筹学方法能够考虑多个因素,如季节性变化、市场趋势等,从而提高预测的准确性。
基于需求预测结果,物流企业可以合理制定库存策略,避免库存过剩或不足的问题。
通过运筹学方法,企业可以最大限度地减少库存成本,同时保证及时供应,提高客户满意度。
二、配送路线规划配送路线规划是物流管理中的一项重要任务。
通过运筹学方法,可以将配送问题转化为优化问题,以最小的成本和时间满足客户的需求。
例如,可以使用线性规划模型来确定最佳配送路线,并考虑诸如交通拥堵、货物容量等限制条件。
这样,企业可以最大限度地降低运输成本,提高配送效率。
另外,运筹学方法还可以考虑实时交通信息,动态调整配送路线,实现智能化的物流管理。
三、仓储设施布局优化仓储设施的布局对物流管理具有重要影响。
通过运筹学方法,可以分析企业的需求、库存量、货物流向等因素,以最小的成本配置仓储设施。
运筹学方法可以综合考虑货物流动成本、仓库租金、人力成本等因素,制定最优的仓储设施布局方案。
这样,企业可以最大限度地节约成本,提高服务水平和客户满意度。
四、运输网络设计运输网络设计是物流管理中的复杂问题之一。
通过运筹学方法,可以分析企业的运输需求、货物流向、运输方式等因素,以建立运输网络优化模型。
通过模型求解,可以确定最优的运输网络设计方案,使得运输成本最小化,同时满足客户需求。
运筹学方法可以考虑多种因素,如运输成本、运输时间、运输风险等,以制定合理的运输策略。
然而,运筹学方法在物流管理中也存在一些局限性。
首先,使用运筹学方法需要准确的数据和模型。
如果数据不准确或模型不完善,将会影响决策结果的准确性。
运筹学方法在物流管理中的应用

运筹学方法在物流管理中的应用一、引言物流管理是指对物流活动进行有效管理和优化,以提高物流效率和降低物流成本的管理方法。
而运筹学作为一门研究如何对复杂系统进行优化决策的学科,可以为物流管理提供重要的决策支持。
本文将探讨运筹学方法在物流管理中的应用。
二、物流网络规划物流网络规划是物流管理的核心任务之一,它涉及到如何布局物流中心、确定配送路线和仓储点等决策。
在这个过程中,运筹学方法可以帮助物流管理者进行综合评价和决策。
例如,运用线性规划模型可以通过优化配送方案,使得运输成本最小化;最优网络模型可以帮助确定最佳的仓储设施位置,以降低物流的运营成本。
三、运输调度优化运输调度优化是物流管理中的常见问题,它涉及到如何安排货物的装卸、运输和配送等活动。
运筹学方法可以将这个问题转化为最优化问题,并利用数学模型和算法进行求解。
例如,通过使用车辆路径规划算法,可以减少运输路线中的里程和时间,提高运输效率;动态优化模型可以根据实时交通情况进行运输调度,以避免拥堵和延迟。
库存管理是物流管理中的重要环节,它涉及到如何合理安排库存的数量和位置,以保证供应链的正常运转。
运筹学方法可以通过建立库存控制模型来帮助管理者进行库存优化决策。
例如,通过应用动态规划模型可以找到最佳的订单策略,以最小化库存持有成本和缺货成本的综合。
五、配送路线优化配送路线优化是物流管理中的重要问题,它涉及到如何合理安排配送车辆的行驶路径,以减少行驶里程和成本。
运筹学方法可以通过建立配送路径规划模型,并运用启发式算法来求解最优解。
例如,遗传算法可以通过模拟自然进化过程,来搜索最佳的配送路径;模拟退火算法可以通过模拟金属退火过程,来找到局部最优解。
六、需求预测与供应链协调需求预测与供应链协调是物流管理中的关键问题,它涉及到如何准确预测市场需求,以合理安排生产和配送计划。
运筹学方法可以通过建立需求预测模型和供应链协调模型,来帮助管理者作出决策。
例如,利用时间序列分析模型和神经网络模型可以准确预测市场需求;通过协调生产计划和配送计划,可以降低库存水平和提高响应速度。
运筹学方法在物流管理中的应用

运筹学方法在物流管理中的应用运筹学是一门研究如何有效地组织和管理资源以实现最佳目标的学科。
它在各个领域都有广泛的应用,包括物流管理。
物流管理涉及到货物的运输、仓储、配送等环节,通过运筹学方法可以优化物流流程,提高效率,降低成本。
本文将探讨运筹学方法在物流管理中的具体应用。
首先,运筹学方法在物流的运输规划中发挥重要作用。
物流运输的主要目标是通过合理的路线和运输工具来最大化效率。
运筹学方法可以通过建立数学模型来优化运输规划。
例如,最短路径算法可以帮助确定货物的最佳路线,避免绕路或拥堵的情况,从而减少时间和成本。
此外,运筹学方法还可以考虑不同的因素,如货物的重量、体积、交通状况等,以选择最合适的运输方式,如陆运、海运或空运。
其次,物流管理中的仓储管理也可以借助运筹学方法来提升效率。
仓储管理涉及到库存的管理、仓库的布局等方面。
过多的库存会增加成本,而过少的库存会导致货物供应不足。
为了平衡库存水平,运筹学方法可以帮助确定合适的订货策略。
例如,通过基于需求预测的方法,可以预测货物的需求量,并根据需求量制定合理的订货计划。
此外,通过库存控制模型,可以确定何时补充库存,以避免过剩或不足的情况。
此外,配送方面也可以应用运筹学方法进行优化。
配送是物流管理中不可或缺的一环,影响着货物的交付时间和成本。
通过运筹学方法,可以建立配送路线优化模型,以最小化总运输成本或缩短配送时间。
例如,可以使用旅行商问题算法来确定最佳的配送路线,从而减少行驶里程和时间。
此外,还可以考虑多因素,如交通拥堵、配送窗口等,以优化配送计划。
除了运输、仓储和配送,运筹学方法还可以应用于物流网络设计和运营决策。
物流网络设计涉及到网络拓扑结构、设施选址等方面。
通过运筹学方法,可以为企业建立精确的数学模型,从而确定最佳的物流网络结构和设施布局。
运营决策方面,可以应用线性规划、整数规划等方法来优化供应链中的各个环节,如采购管理、生产规划等。
综上所述,运筹学方法在物流管理中有广泛的应用。
运筹学在物流配送优化中的应用

运筹学在物流配送优化中的应用运筹学是一门研究利用计算机技术和数学方法解决实际问题的学科,它在物流配送领域中扮演着重要的角色。
本文将探讨运筹学在物流配送优化中的应用,以及它对物流行业带来的好处。
一、物流配送的挑战物流配送是指将货物从生产地或仓库送达目的地的过程。
在这个过程中,存在许多挑战,如如何选择最优的配送路径、如何合理分配货物到不同的车辆、如何有效地安排配送时间窗口等。
这些问题都是需要借助数学建模和优化算法来解决的,而运筹学正是提供了解决方案的工具之一。
二、运筹学在路径规划中的应用路径规划是物流配送过程中的重要环节。
运筹学可以通过建立数学模型和运用最优化算法来解决路径规划问题。
例如,最短路径算法可以帮助企业选择最短路径,从而降低运输成本和提高运输效率。
而最优路径规划算法可以考虑不同的因素,如交通拥堵、配送时间窗口等,综合考虑各个因素来确定最优路径。
三、运筹学在货物分配中的应用运筹学在货物分配中也发挥了重要作用。
如何合理地将货物分配到不同的车辆上,以减少空载率和提高利用率,是一个需要优化的问题。
运筹学可以通过数学建模和优化算法,结合车辆容量、距离、货物需求等因素,帮助企业制定最优的货物分配方案,从而降低配送成本,提高配送效率。
四、运筹学在时间窗口管理中的应用时间窗口管理是物流配送中的另一个关键问题。
不同的客户有不同的配送时间窗口,如何在满足客户需求的同时,尽可能地合理安排配送顺序,是一个需要优化的问题。
运筹学可以通过建立数学模型和运用调度算法,考虑时间窗口约束、配送距离、车辆容量等因素,制定最优的配送计划,以最大程度地满足客户需求。
五、运筹学在库存管理中的应用库存管理是物流配送的重要环节。
通过合理控制库存水平,可以降低成本和提高效率。
运筹学可以通过建立数学模型和优化算法,结合订单量、库存成本、补货周期等因素,帮助企业制定最优的库存管理策略。
通过科学的库存管理,企业可以减少库存积压和缺货现象,从而提高物流配送的效率。
运筹学方法在物流规划中的应用

运筹学方法在物流规划中的应用一、引言物流规划是现代物流管理中的重要环节,它能够帮助企业提高物流效率、降低物流成本,提升顾客满意度。
而运筹学方法作为一种科学的决策分析工具,具有优化问题、模型建立和求解等特点,可以为物流规划提供科学的决策支持。
本文将介绍运筹学方法在物流规划中的应用,并分为以下几个方面进行讨论。
二、运输路线规划运输路线是物流运输的基本单位,它的规划对于物流企业来说至关重要。
运筹学方法可以通过对运输距离、运输时间、运输成本等因素的量化分析,建立运输路线选择模型,从而帮助企业选择最优的运输路线。
例如,利用最短路径算法以及遗传算法等运筹学方法,可以帮助企业在多个供应商和多个目的地之间找到最短路线,从而有效减少运输成本、缩短运输时间。
三、配送路径优化物流配送路径优化是提高物流效率的关键环节,它能够帮助企业减少运输车辆的数量、提高配送效率、降低配送成本。
运筹学方法可以通过建立优化模型,分析配送路径的各种因素,如运输时间、交通拥堵程度等,并结合约束条件,运用线性规划、整数规划等运筹学方法求解问题。
通过这些方法,企业可以科学地安排配送路径,合理利用资源,提高配送效率。
四、仓库布局规划仓库布局规划是物流管理中的重要环节,它关系着物流运作的效率和成本。
运筹学方法可以通过建立数学模型,模拟仓库内的货物流动,并结合仓库的各种约束条件,运用整数规划、线性规划等方法求解问题。
通过这些方法,企业可以优化仓库的布局,提高货物的存储效率,减少货物的损耗和损坏。
五、库存控制策略库存是物流管理中重要的资金投入部分,对于企业来说,合理控制库存水平既能保证供应链的正常运转,又能降低库存成本。
运筹学方法可以通过建立库存控制模型,分析库存的补充周期、订货量等因素,并结合企业的运作特点,运用动态规划、蒙特卡洛模拟等方法求解问题。
通过这些方法,企业可以制定合理的库存控制策略,降低库存成本,提高资金利用效率。
六、运输网络优化运输网络优化是指在物流运输网络中,通过优化物流网络结构,提高物流运输效率和服务质量。
运筹学在物流管理中的应用价值及应用 -回复

运筹学在物流管理中的应用价值及应用-回复标题:运筹学在物流管理中的应用价值及应用引言:在当今全球化和数字化的背景下,物流管理的重要性日益凸显。
物流管理是指从供应链的起始点到终端消费者之间的货物运输和仓储等一系列活动的有效组织和协调。
运筹学作为一门重要的运筹学科学,通过数学建模和优化决策方法,为物流管理提供了强有力的支持。
本文将探讨运筹学在物流管理中的应用价值,并具体介绍运筹学在物流调度、路线优化和库存管理方面的应用案例。
一、运筹学在物流管理中的应用价值1.1 提高运输效率:运筹学通过数学模型和优化算法,可对物流网络进行优化规划,减少总运输成本、缩短运输时间、提高运输效率。
1.2 降低库存成本:通过合理的库存管理方法,运筹学可以帮助企业减少库存预留、降低库存成本,提高资金使用效率。
1.3 优化仓储布局:通过运筹学的方法,可以进行仓储布局的优化设计,降低仓储成本,提高仓储效率,实现最优的仓储运作。
1.4 提升供应链反应能力:运筹学在物流管理中的应用可以帮助企业建立敏捷供应链、响应快速变化的市场需求,提高供应链的灵活性和反应能力。
二、应用案例一:物流调度优化物流调度是物流管理中的关键环节之一。
通过运筹学方法,可以实现物流调度的优化,提高运输效率。
2.1 问题定义:给定一组货物和一组车辆,需要确定最优化的车辆配送方案,使得总运输成本最小。
2.2 模型建立:建立线性规划模型,将目标函数设置为最小化总运输成本,约束条件包括货物需求和车辆容量。
2.3 优化决策:通过线性规划求解器等工具,求解得到最优的车辆配送方案,实现对物流调度的优化。
三、应用案例二:路线优化路线优化是提高物流运输效率的关键环节之一。
通过运筹学方法,可以实现路线优化,减少运输成本和时间。
3.1 问题定义:给定一组发货点和收货点,需要确定最优的路线规划方案,使得总运输成本最小。
3.2 模型建立:建立图论模型,以发货点和收货点为节点,以运输成本为边权,构建带有约束条件的最小生成树或最短路径模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学在物流中的应用摘要: 物流在现代社会当中扮演着非常重要的角色。
本文通过运筹学方面的知识来解决物流中出现的问题。
最后通过运筹学来解决几个例题的最优解问题。
1 引言物流(Logistics)是指物品从供应地向接受地的实体流动过程.在现代物流中,物流管理(Logistics Management)是指在社会在生产过程中,根据物质资料实体流动的规律,应用管理的基本原理和方法,对物流活动进行计划、组织、指挥、协调、控制和监督,使各项物流活动实现最佳的协调与配合,以降低物流成本,提高物流效率和经济效益。
随着我国社会经济的快速发展,国民经济和贸易呈现迅猛发展的态势。
现代综合物流管理中,对采购、包装、流通加工、储存保管、配送、装卸和运输等物流活动诸要素的管理,对人、财、物、设备、方法和信息等物流系统诸要素的管理,对物流经济管理、物流质量管理和物流工程经济管理等物流活动中具体职能的管理都要用到数学知识。
运筹学在现代物流企业的实际应用是一个非常具有意义的课题,借助运筹学的主要研究内容和方法,建立了大致的知识框架体系,它不是枯燥乏味的理论,而是非常实用的学科,生活中几乎处处都有运筹学,特别是对物流工作更是意义深远,能帮助物流企业解决许多实际的问题。
运筹学是运用系统化的方法,经由建立数学模型及其测试,协助达成最佳决策的一门科学。
它主要研究经济活动和军事活动中能用数量来表达的有关运用、筹划与管理等方面的问题,它根据问题的要求,通过数学的分析与运算,做出综合的合理安排,以达到较经济、有效地使用人力、物力、财力等资源。
运筹学与物流学作为正式的学科都始于二战时期,从一开始,两者就密切的联系在一起,相互渗透和交叉发展,运筹学应用的案例大都是物流作业和管理。
运筹学作为物流学科体系的理论基础之一,其作用是提供实现物流系统优化的技术与工具,是系统理论在物流应用的具体方法。
二战后,各国都转向快速恢复工业和发展经济,而运筹学此时正转向经济活动的研究,因此极大地引起了人们的注意,并由此进入了各行业和部门,获得了长足发展和广泛应用,形成了一套比较完整的理论,如规划论、存储论、决策论、和排队论等.而战后的物流并没有像运筹学那样引起人们及时的关注,直到20世纪60年代,随着科学技术的发展、管理科学的进步、生产方式和组织方式等的改变,物流才为管理界和企业界所重视,因此,相比运筹学,物流的发展滞后了一些。
不过,运筹学在物流领域中的应用却随着物流学科的不断成熟而日益广泛。
随着科学技术的不断进步和普及,运筹学所能解决的问题越来越多,广泛应用于军事、工业、农业、自然科学、社会科学等各个领域,已成为人们为合理利用有限资源制定最佳决策的有力工具,它的研究范围正在不断扩大。
2 运筹学与物流2.1 运筹学运筹学也称作业研究,是运用系统化的方法,经由建立数学模型及其测试,协助达成最佳决策的一门学科。
他主要研究经济活动和军事活动中能用数量来表达的有关运用、筹划与管理等方面的问题。
它根据问题的要求,通过数学的分析与运算,作出综合的合理安排,以达到较经济地、有效地使用人力、物力、财力等资源。
运筹学的主要分支有规划论、对策论、排队论、网络计划(即统筹方法)和质量控制等,许多着作把也测技术也作为运筹学的一个分支。
2.2 物流学物流译自英文Physical Distribution(实体分配)“物的流通”,简称PD.简单的说,早期的物流概念就是指商品的实体存储与运输,即商品实体的空间位移。
此概念最早源于没过,20世纪60年代中期为日本所引用,在我国曾一度叫做“商品储运”。
而现代物流则使用Logistics“后勤”这个词。
20世纪80年代物流的概念普遍用Logistics取代PD.1985年没过物流管理协会正式从名称National Council of Physical Distribution Management 改为National Council of Logistics Management,从而标志现代物流观念的确立,以及对物流战略管理的统一化。
Logistics本来是作为军事用语,指的是战时物资补给等后方支持业务。
日本的林周二对物流的定义是这样描述的:“物流是包括物料的废弃与还原,联结供给主体与需要主体,克服空间与时间距离,并创造一部分形质效果的物理性经济活动。
具体包括运输、保管、包装、装卸、物流加工等活动以及有关的信息活动。
”德国的R•尤尼曼对物流所下的定义为:“物流是研究对系统的物料流(material flow)及有关的信息流(information flow)所进行的规划与管理的科学理论。
”在现阶段,“物流”作为最有代表性的定义,是全美物流管理协会的定义,即“物流是以适应顾客需要为目的的,对从产地到消费地的原材料、半成品、成品和与之相关信息的专业保管进行有效率的计划、执行、管理等一系列过程”。
与原有的物流概念相比,“后勤”的概念有所扩大,包括从原材料供给到消费的整个过程的管理。
随着顾客需求的多样性、多品种、少量、多频度的商品供给以及经济的全球化现象,使后勤在企业的活动中相对重要性逐步提高,随着信息技术的发展,尤其是网络技术的发展,物流的范围已经超过了一个企业的界限,扩大到了多个企业。
我国在2001年8月1日开始实施的国家标准《物流术语》中对物流作了如下规定:物流即物品从供应地向接收地的实体流动过程,根据实际需要,将运输、存储、装卸、搬运、包装、物流加工、配送、信息处理等基本功能实施有机的结合。
2.3 运筹学与物流的关系物流与运筹学具有紧密的联系,它们作为科学概念都是起源于20世纪40年代的第二次世界大战,从开始起,两者就是互相渗透,交叉发展。
然而,运筹学发展较快,已经形成了比较完备的理论体系和多种专业学科,而物流科学发展比较迟缓,理论体系尚不完备,包含的专业学科也很少。
在第二次世界大战期间,运筹学家们在解决后勤保障、潜艇战术等一系列军事问题上做出了巨大的成就,战后运筹学受到美国一些大公司的重视,他们把运筹学应用到企业管理之中,在部分企业取得成功以后,运筹学的应用得到了迅速的发展。
随后,几乎在所有发达国家中都掀起了一股研究和应用运筹学和科学管理的热潮,运筹学是一门实用性很强的科学,他的方法应用于各个领域,包括物流领域。
如果查阅运筹学方面的着作,就会发现运筹学应用的典型案例大都是物流作业及其管理,这也说明物流与运筹学之间的密切关系。
3 物流领域中的运筹学应用3.1存储论存储论又称库存论,主要是研究物资库存策略的理论,即确定物资存储量、捕获频率和一次补货量。
合理的库存是生产和生活顺利进行的必要保障,可以减少资金的占用,减少费用支出和不必要的周转环节,缩短物资流通周期,加速再生产的过程等。
在物流领域的各节点:工厂、港口、配送中心、物流中心、仓库、零售店等都或多或少地保有库存,为了实现物流活动总成本最小或利益最大化,大多数人们都运用了存储理论的相关知识,以辅助决策。
并且在各种情况下都能灵活套用相应的模型求解,如常见的库存控制模型分确定型存储模型和随机型存储模型,其中确定型存储模型又可分为几种情况:不允许缺货,一次性补货;不允许缺货,连续补货;允许缺货,一次性补货;允许缺货,连续补货。
随机型存储模型也可分为:一次性订货的离散型随机型存储模型和一次性订货的连续型随机存储模型。
常见的库存补货策略也可分为以下四种基本情况:连续检查,固定订货量,固定订货点的(Q, R)策略周期性检查的(T, S)策略以及综合库存的(T, R, S)策略。
针对库存物资的特性,选用相应库存控制模型和补货策略,制定一个包含合理存储量、合理存储时间、合理存储结构和合理存储网络的存储系统。
3.2图(网络)论自从上世纪50年代以后,图论就广泛应用于解决工程系统和管理问题,将复杂的问题用图与网络进行描述简化后再求解。
图与网络理论有很强的构模能力,描述问题直观,模型易于计算实现,很方便地将一些复杂的问题分解或转化为可能求解的子问题。
图与网络在物流中的应用也很显着,其中最明显的应用是运输问题、物流网点间的物资调运和车辆调度时运输路线的选择、配送中心的送货、逆向物流中心产品的回收等,运用了图论中的最小生成树、最短路、最大流、最小费用等知识,求得运输所学时间最少或路线最短或费用最省的路线。
另外,工厂、仓库、配送中心等物流设施的选址问题,物流网点内部工种、任务、人员的指派问题,设备更新问题,也可以运用图论的知识辅助决策者进行最优的安排。
3.3排队论排队论也称随机服务理论,主要研究各种系统的排队队长、等待时间和服务等参数,解决系统服务设施和服务水平之间的平衡问题,以较低的投入求得更好的服务。
排队现象现实生活中普遍存在,物流领域中也多见,如工厂生产线上的产品等待加工,在制品、产成品排队等待出入库作业,运输场站车辆进出站的排队,客服务中心顾客电话排队的服务设施数量、系统容量、顾客到达时间间隔的分布、服务时间的分布特征,可分为(M/M/1/ ), (M/M/1/k), (M/M/1/m), (M/M/s/k), (M/M/s/m)几种不同情况,不同情形套用相应的模型可以求解。
3.4对策论、决策论对策论也称博弈论,对策即是在竞争环境中做出的决策,决策论即研究决策的问题,对策论可归属为决策论,它们最终都是要做出决策。
决策普遍存在于人类的各种活动之中,物流中的决策就是在占有充分资料的基础上,根据物流系统的客观环境,借助于科学的数学分析,实验仿真或经验判断,在己提出的若干物流系统方案中,选择一个合理、满意方案的决断行为。
如制定投资计划、生产计划、物资调运计划、选择自建仓库或租赁公共仓库、自购车辆或租赁车辆等等。
物流决策多种多样,有复杂有简单,按照不同的标准可化分为很多种类型,其中按决策问题目标的多少可分为单目标决策和多目标决策。
单目标决策目标单一,相对简单,求解方法也很多,如线性规划、非线性规划、动态规划等。
多目标决策相对而言复杂得多。
如要开发一块土地建设物流中心,既要考虑设施的配套性、先进性,还要考虑投资大小问题等,这些目标有时相互冲突,这时就要综合考虑。
解决这类复杂的多目标决策问题现行用的较多的,行之有效的方法之一是层次分析法,一种将定性和定量相结合的方法。
4 运筹学软件及其应用运筹学是应用分析、实验、量化的方法,对物流工程管理系统中人力、物力、财力等资源进行系统安排,为决策者提供有依据的最佳方案,以实现最有效的管理.通过运筹学的与物流的联系,我们能轻易的看到运筹学对于现代物流的重要性,我们在掌握运筹学的基本分析方法之后,可以利用LINGO的软件分析实际问题。
Lingo软件主要用于求解和分析线性规划、非线性规划、二次规划和整数规划等问题,提供了建立最有问题的一种语言。