量子计算机
量子计算机简介

•4次基本操作得到16项,n次基本操作 得到包含2n个数值的寄存器的态。 (在经典操作中,n次操作得到包含1个 数值的寄存器的态。) •若将寄存器制备为若干个数的相干叠 加态,接着进行线性、幺正运算,则 计算的每一步将同时对叠加态中的数 同时进行。这就是量子并行计算和它 的优越性。
量子逻辑门
0 1
量子两态系统
如原子的基态和激发态 光子的偏振态
1
0 1
,
0
1 0
,
1 0 1, 0 1 0
2023/11/5
激发态
|1>
基态
|0>
写入 0和1
量子系统必须能写入、运算和读 出。
对一个处于基态的原子,不采取 行动,就写入了一个0。
用适当频率的激光将基态原子激 发到激发态,就写入了一个1。
量子超密编码
第一个量子隐形传态的实验实现 (Quantum Teleportation)
提供一种新的量子加密方法
D.Bouwmeester,Jian-Wei Pan(潘建伟), K.Mattle,E.H.Weinfurter,A.Zeilinger (Institut fur Experimentphysik, Universitat Innsbruck,Austia)
量子寄存器(以下简称寄存器)是量子 位的集合。例如,6在二进制中表示为 110,而在量子寄存器中用量子位的直积 表示为|1>|1>|0>。
重要的是不同的寄存器的值同时出现。 这在经典的情况下是不可能的。测量结 果 或 是 两 个 |0> 态 相 继 出 现 , 或 是 两 个 |1>态相继出现。如果出现一个|0>态接 着一个|1>态,则表示实验或制备中出错。
量子计算机

量子计算机量子计算机处理器量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。
当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。
量子计算机的概念源于对可逆计算机的研究。
研究可逆计算机的目的是为了解决计算机中的能耗问题。
量子计算机量子计算机,早先由理查德·费曼提出,一开始是从物理现象的模拟而来的。
可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。
理查德·费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。
量子计算机的概念从此诞生。
2量子计算机,或推而广之——量子资讯科学,在1980年代多处于理论推导等纸上谈兵状态。
一直到1994年彼得·秀尔(Peter Shor)提出量子质因子分解算法后,因其对于现在通行于银行及网络等处的RSA加密算法可以破解而构成威胁之后,量子计算机变成了热门的话题。
除了理论之外,也有不少学者着力于利用各种量子系统来实现量子计算机。
半导体靠控制集成电路来记录和运算信息,量子电脑则希望控制原子或小分子的状态,记录和运算信息。
图2:布洛赫球面乃一种对于二阶量子系统之纯态空间的几何表示法,是建立量子计算机的基础。
20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。
研究发现,能耗来源于计算过程中的不可逆操作。
那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。
既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。
早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。
量子计算机

1,什么是量子计算机?量子计算机(英语:Quantum computer),是一种使用量子逻辑实现通用计算的设备。
不同于电子计算机(或称传统电脑),量子计算用来存储数据的对象是量子比特,它使用量子算法来进行数据操作。
(维基百科解释)量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。
当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。
量子计算机的概念源于对可逆计算机的研究。
研究可逆计算机的目的是为了解决计算机中的能耗问题。
(百度百科解释)物理诺奖得主首次活捉粒子量子计算机将成可能瑞典皇家科学院9日宣布,将2012年诺贝尔物理学奖授予法国物理学家塞尔日·阿罗什和美国物理学家戴维·瓦恩兰,以表彰他们在量子物理学方面的卓越研究。
他说,这两位物理学家用突破性的实验方法使单个粒子动态系统可被测量和操作。
他们独立发明并优化了测量与操作单个粒子的实验方法,而实验中还能保持单个粒子的量子物理性质,这一物理学研究的突破在之前是不可想象的。
基本概念传统计算机即对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路实现。
输入态和输出态都是传统信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。
如输入二进制序列0110110 ,用量子记号,即\left| 0110110 \right\rangle 。
所有的输入态均相互正交。
对经典计算机不可能输入如下叠加态:c_1 \left|0110110 \right\rangle + c_2 \left| 1001001 \right\rangle 。
传统计算机内部的每一步变换都演化为正交态,而一般的量子变换没有这个性质,因此,传统计算机中的变换(或计算)只对应一类特殊集。
量子计算机分别对传统计算机的限制作了推广。
量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特(qubits)),量子计算机的变换(即量子计算)包括所有可能的正变换。
量子计算机介绍

Google Quantum AI
Google提供的量子计算云服务, 包括量子处理器、模拟器、编程工
具和算法库等,支持TensorFlow,提供 易用的编程接口和丰富的算法库, 支持多种应用场景和自定义开发。
04
典型应用场景分析
Chapter
人才培养
加强量子计算领域的人才培养和 引进,建立多层次的人才梯队。
01 02 03 04
法规保障
建立量子计算领域的法律法规体 系,保障技术创新和产业发展的 合法权益。
国际合作与交流
积极参与国际量子计算领域的合 作与交流,提升我国在国际舞台 上的影响力和话语权。
THANKS
感谢观看
纠缠态是指两个或多个量子比特之间存在一种特殊的关联 关系,使得它们的状态是相互依赖的。这种纠缠关系在量 子通信和量子密码学等领域有着广泛的应用。
02
量子计算机硬件组成
Chapter
量子芯片设计与制造
01
02
03
量子比特实现
利用超导线圈、离子阱、 量子点等技术实现量子比 特,是量子计算的基本单 元。
Cirq
03
Google开发的量子计算框架,提供灵活的量子电路设计和模拟
工具,支持自定义量子门和噪声模型。
云服务提供商及其产品特点
IBM Quantum
IBM提供的量子计算云服务,包括 量子处理器、模拟器、编程工具和 算法库等,支持多种应用场景。
Azure Quantum
微软提供的量子计算云服务,提供 多种量子硬件后端和模拟器,支持 Q#等编程语言。
衡量量子门操作的准确性,精度 越高则计算结果越可靠。
03
量子计算机软件平台
Chapter
量子计算机PPT课件

案例三
利用Q#模拟量子纠缠现象
案例四
在Q#中实现Shor的质因数分 解算法
04
量子算法与应用领域的应用
Shor算法原理
利用量子纠缠等特性,在多项式时间内完成大数质 因数分解,相比经典计算机具有指数级加速效果。
在密码学中的应用
Shor算法可破解RSA等公钥密码体系,对现有密码 安全构成威胁,推动密码学发展新的抗量子算法。
集成多种量子硬件后端, 如IonQ、Quantinuum 等
提供多种量子计算模拟器 ,包括全振幅模拟器和稀 疏模拟器
提供丰富的量子开发工具 ,如Q#编译器、调试器 和可视化工具
案例:使用Q#编写简单程序
01
02
03
04
案例一
编写Q#程序实现量子比特翻 转操作
案例二
使用Q#和Azure Quantum 解决旅行商问题
06
总结与展望
Chapter
本次课程重点内容回顾
量子计算基本概念
介绍了量子比特、量子门、量子 纠缠等基本概念,为后续学习打 下基础。
量子计算机硬件
介绍了量子计算机的硬件组成, 包括量子芯片、控制系统、低温 系统等,让学员对量子计算机有 更深入的了解。
01 02 03 04
量子算法
详细讲解了Shor算法、Grover 算法等经典量子算法的原理和实 现过程,展示了量子计算在特定 问题上的优势。
精度和效率。
量子优化算法
利用量子计算特性解决组合优化等 问题,如旅行商问题、背包问题等 ,相比经典算法具有更优性能。
量子机器学习算法
结合量子计算和机器学习技术,用 于数据分类、降维等任务,可处理 大规模高维数据并实现更高效的学 习过程。
量子计算机课件(精)

03
如何将更多的量子比特集成到一台量子计算机中,并保持其性能和稳定性是一个巨大的挑战。
量子计算机的可扩展性
1
2
3
超导量子比特是实现量子计算最有前景的物理系统之一,它利用了约瑟夫森结来制备超导材料中的量子态。
超导量子比特
离子阱是一种将离子捕获在微米级电极中的技术,通过控制电极上的电压,可以实现离子的量子态操作。
量子计算机对现有基础设施的影响
由于量子计算机的运行方式和传统计算机不同,因此它可能会对现有的基础设施产生影响。例如,网络传输协议可能需要重新设计以适应量子信息的传输。
量子计算机的安全问题
由于量子计算机的高效计算能力,它可能会被用于进行恶意活动,例如破解密码、窃取机密信息等。因此,我们需要研究和开发安全措施以防止这些潜在的风险。
CHAPTER
量子计算基础知识
量子比特是量子计算中的基本单元,它与传统计算机中的比特有所不同。在量子计算机中,量子比特可以处于多种可能的状态叠加态,这使得量子计算机能够处理和存储更加复杂的信息。
量子比特的状态可以通过量子态进行描述,它是一个向量,其中的每个元素代表该量子比特处于不同状态的概率幅。
量子比特的状态可以通过量子测量进行确定,而在测量之前,它的状态是不确定的,处于一种叠加态。
量子纠缠是量子力学中的另一个重要概念,它表示两个或多个量子比特之间存在一种特殊的关联。
当两个量子比特处于纠缠状态时,它们的状态是相互依赖的,一旦测量其中一个量子比特,另一个量子比特的状态也会立即确定。
03
CHAPTER
量子算法介绍
总结词
高效分解大数
详细描述
Shor算法是一种基于量子并行性的算法,可以高效地分解大数,这对于密码学和网络安全具有重要意义。相比经典计算机需要指数级别的时间复杂度,Shor算法只需要多项式级别的时间复杂度。
什么是量子计算机,它相较于传统计算机有什么优势?

什么是量子计算机,它相较于传统计算机有什么优势?量子计算机是指利用量子力学原理构建的计算机,是一种全新的计算模型。
相较于传统计算机,它有什么优势呢?以下为您详细介绍。
一、超强计算能力传统计算机处理信息的基本单元是比特,其只能处于两种状态中的一种:0或1。
而量子计算机中的基本信息单元是量子比特(qubit),它能够处于多个状态的线性组合中。
这种特殊的量子态使得量子计算机能够同时处理多个计算任务,从而在同样计算量下比传统计算机快上千倍以上。
二、突破传统加密传统计算机的加密方式是基于复杂算法,保护信息免受黑客攻击。
然而,量子计算机具有破解传统加密算法的能力,因为其运算速度快,能够通过量子并行和量子搜索,瞬间找到正确的解。
量子计算机在加密领域的应用,很可能会导致密码破解,因此需要研发新的加密方式。
三、模拟自然现象自然界的许多现象都是非常复杂的,传统计算机不可能准确模拟这些过程。
而量子计算机以其特殊的计算方式,可以模拟更加复杂的自然现象,如分子结构、量子场论、天体运动等。
这些模拟结果在医学、化学、物理等领域有着重要的应用。
四、人工智能和机器学习在人工智能和机器学习领域,量子计算机也有着广泛的应用前景。
目前的神经网路和机器学习算法需要大量的计算能力和存储能力,而量子计算机的高效处理能力可以为这些算法提供更好的运算平台。
同时,量子计算机对于模拟量子神经网路也有着独特的优势。
五、推进科学发展量子计算机将对未来的科学研究产生深远的影响,如加速药物研发、优化全球供应链、改进气候模拟等。
它也有望为人类提供更全面、更精确的科学理解,推动科学发展。
总结量子计算机是一种全新的计算机模型,能够处理传统计算机无法处理的问题。
它的优势包括超强计算能力、突破传统加密、模拟自然现象、应用于人工智能和机器学习领域以及推动科学发展。
虽然目前的量子计算机技术还处于起步阶段,但其潜力巨大,必将引领人类探索未知的新纪元。
什么是量子计算

什么是量子计算量子计算,也被称为量子计算机,是利用量子力学中的概念和原理来进行计算的一种新型计算模型。
与传统的经典计算机相比,量子计算机具有更强大的计算能力和处理速度,可以在某些特定问题上实现指数级的计算优势。
本文将介绍量子计算的基本原理、应用前景以及当前面临的挑战。
一、量子计算的基本原理量子计算的基本单位是量子比特(qubit),而不是经典计算机中的比特(bit)。
在量子计算中,qubit可以同时处于多种状态的叠加态,并且可以进行量子纠缠操作。
量子计算的核心原理之一是量子叠加。
在经典计算机中,比特只能处于0或1的状态,而qubit可以同时处于0和1的叠加态。
这意味着量子计算机可以同时处理多个计算路径,从而实现并行计算。
另一个核心原理是量子纠缠。
在量子计算中,两个qubit可以进行纠缠操作,当一个qubit发生变化时,与之纠缠的qubit也会随之变化,即使它们之间的距离很远。
这种纠缠关系使得量子计算机可以进行远程通信和量子隐形传态等操作。
二、量子计算的应用前景由于量子计算具备强大的计算能力和处理速度,它在许多领域具有广阔的应用前景。
1.密码学量子计算对密码学领域具有重大影响。
传统密码算法,如RSA和椭圆曲线加密算法,依赖于大数的分解难题。
然而,量子计算机的Shor算法可以在多项式时间内分解大数,破坏了现有密码算法的安全性。
因此,量子计算将推动密码学领域的发展,促进新型的量子安全算法的研究。
2.优化问题量子计算可以应用于一些复杂的优化问题,如旅行商问题、组合优化问题等。
通过利用量子并行和量子纠缠,量子计算机可以在较短时间内找到最优解,从而提高效率和减少计算成本。
3.化学模拟量子计算具有模拟量子系统的能力,特别适用于化学领域。
通过模拟分子或材料的电子结构和相互作用,量子计算机可以加速新材料的发现和药物的设计过程,推动化学领域的创新。
三、量子计算面临的挑战虽然量子计算具有广泛的应用前景,但目前仍然存在一些挑战和困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子计算机量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装臵。
当某个装臵处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。
量子计算机的概念源于对可逆计算机的研究。
研究可逆计算机的目的是为了解决计算机中的能耗问题。
组长:黄桢组员:鲍成晓、陈成川、葛广杰、胡龙演讲:黄桢问题回答:葛广杰资料收集:鲍成晓、陈成川、胡龙、黄桢、葛广杰PPT制作:鲍成晓、陈成川、黄桢目录第1章量子计算机 (3)第1.1章有趣的量子理论 (4)第2章概念 (4)第2.1章经典计算机的特点 (4)第2.2章量子计算机的特点 (5)第2.3章量子计算机能做什么 (6)第2.4章量子计算机的工作原理 (7)第2.5章目前发展的系统 (9)第3章名称的不同 (9)第3.1章关于在中国台湾的名称 (9)第3.2章关于在中国大陆的名称 (9)第4章展望 (10)第4.1章未来 (10)第4.2章量子计算机的广阔前景 (10)第5章研发现状 (10)第5.1章世界首台量子计算机在美国问世 (10)第5.2章最新研究结果 (11)第5.3章国内量子计算机发展现状 (12)第6章第一台商业化量子计算机 (12)第1章量子计算机量子计算机,早先由理查德·费曼提出,一开始是从物理现象的模拟而来的。
可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。
理查德·费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。
量子计算机的概念从此诞生。
量子计算机,或推而广之——量子资讯科学,在1980年代多处于理论推导等纸上谈兵状态。
一直到1994年彼得·秀尔(Peter Shor)提出量子质因子分解算法后,因其对于现在通行于银行及网络等处的RSA加密算法可以破解而构成威胁之后,量子计算机变成了热门的话题。
除了理论之外,也有不少学者着力于利用各种量子系统来实现量子计算机。
半导体靠控制集成电路来记录和运算信息,量子电脑则希望控制原子或小分子的状态,记录和运算信息。
图2:布洛赫球面乃一种对于二阶量子系统之纯态空间的几何表示法,是建立量子计算机的基础。
20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。
研究发现,能耗来源于计算过程中的不可逆操作。
那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。
既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。
早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。
在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。
与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。
所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。
这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。
与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。
因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。
量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。
除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。
1994年,贝尔实验室的专家彼得·秀尔(Peter Shor)证明量子计算机能完成对数运算,而且速度远胜传统计算机。
这是因为量子不像半导体只能记录0与1,可以同时表示多种状态。
如果把半导体计算机比成单一乐器,量子计算机就像交响乐团,一次运算可以处理多种不同状况,因此,一个40位元的量子计算机,就能解开1024位元的电子计算机花上数十年解决的问题。
第1.1章有趣的量子理论量子论的一些基本论点显得并不“玄乎”,但它的推论显得很“玄”。
我们假设一个“量子”距离也就是最小距离的两个端点A和B。
按照量子论,物体从A不经过A和B中的任何一个点就能直接到达B。
换句话说,物体在A点突然消失,与此同时在B点出现。
除了神话,你无法在现实的宏观世界找到一个这样的例子。
量子论把人们在宏观世界里建立起来的“常识”和“直觉”打个了七零八落。
薛定谔之猫是关于量子理论的一个理想实验。
实验内容是:这只猫十分可怜,它被封在一个密室里,密室里有食物有毒药。
毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。
如果原子核衰变,则放出α粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,猫必死无疑。
这个残忍的装臵由奥地利物理学家埃尔温·薛定谔所设计,所以此猫便叫做薛定谔猫。
量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道猫是死是活,它将永远处于非死非活的叠加态,这与我们的日常经验严重相违。
第2章概念量子计算机,顾名思义,就是实现量子计算的机器。
要说清楚量子计算,首先看经典计算。
经典计算机从物理上可以被描述为对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路来实现。
第2.1章经典计算机的特点1.其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。
如输入二进制序列0110110,用量子记号,即|0110110>。
所有的输入态均相互正交。
对经典计算机不可能输入如下叠加态:C1|0110110 >+ C2|1001001>。
2.经典计算机内部的每一步变换都演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对量子计算机应一类特殊集。
第2.2章量子计算机的特点相应于经典计算机的以上两个限制,量子计算机分别作了推广。
量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特(qubits)),量子计算机的变换(即量子计算)包括所有可能的玄正变换。
1.量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;2量子计算机中的变换为所有可能的么正变换。
得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。
由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。
量子计算最本质的特征为量子叠加性和量子相干性。
量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算机的输出结果。
这种计算称为量子并行计算。
无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。
遗憾的是,在实际系统中量子相干性很难保持。
在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干(也称“退相干”)。
因此,要使量子计算成为现承载16个量子位的硅芯片实,一个核心问题就是克服消相干。
而量子编码是迄今发现的克服消相干最有效的方法。
主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。
量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。
迄今为止,世界上还没有真正意义上的量子计算机。
但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。
如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。
目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。
现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。
将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。
研究量子计算机的目的不是要用它来取代现有的计算机。
量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。
量子计算机的作用远不止是解决一些经典计算量子计算机原理机无法解决的问题。
第2.3章量子计算机能做什么量子计算机可以进行大数的因式分解,和Grover搜索破译密码,但是同时也提供了另一种保密通讯的方式。
在利用EPR对进行量子通讯的实验中中我们发现,只有拥有EPR 对的双方才可能完成量子信息的传递,任何第三方的窃听者都不能获得完全的量子信息,正所谓解铃还需系铃人,这样实现的量子通讯才是真正不会被破解的保密通讯。
此外量子计算机还可以用来做量子系统的模拟,人们一旦有了量子模拟计算机,就无需求解薛定愕方程或者采用蒙特卡罗方法在经典计算机上做数值计算,便可精确地研究量子体系的特征。
量子计算机是通过量子分裂式、量子修补式来进行一系列的大规模高精确度的运算的。
其浮点运算性能是普通家用电脑的CPU所无法比拟的,量子计算机大规模运算的方式其实就类似于普通电脑的批处理程序,其运算方式简单来说就是通过大量的量子分裂,再进行高速的量子修补,但是其精确度和速度也是普通电脑望尘莫及的,因此造价相当惊人。
目前唯一一台量子计算机仍在微软的硅谷老家中,尚在试验阶段,离投入使用还会有一段时间。
量子计算机当然不是给我们用来玩电子游戏的,因为这好比拿激光硅芯片上16个量子位的光学照片切割机去切纸,其主要用途是例如象测量星体精确坐标、快速计算不规则立体图形体积、精确控制机器人或人工智能等需要大规模、高精度的高速浮点运算的工作。
在运行这一系列高难度运算的背后,是可怕的能量消耗、不怎么长的使用寿命和恐怖的热量。
假设1吨铀235通过核发电机1天能提供7000万瓦伏电量,但这些电量在短短的10天就会被消耗殆尽,这是最保守的估计;如果一台量子计算机一天工作4小时左右,那么它的寿命将只有可怜的2年,如果工作6小时以上,恐怕连1年都不行,这也是最保守的估计;假定量子计算机每小时有70摄氏度,那么2小时内机箱将达到200度,6小时恐怕散热装臵都要被融化了,这还是最保守的估计!由此看来,高能短命的量子计算机恐怕离我们的生活还将有一段漫长的距离,就让我们迎着未来的曙光拭目以待吧!第2.4章量子计算机的工作原理普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。
但量子计算机要远远更为强大。
它们可以在量子位(qubit)上运算,可以计算0和1之间的数值。
假想一个放臵在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。