高中数学必修4第一章知识点总结及典型例题
数学必修四第一章知识点总结

数学必修四第一章知识点总结数学,作为一门科学,可以追溯到古代文明。
它是一门逻辑严谨且普遍适用的学科,不仅在科学研究中扮演重要角色,也在日常生活中发挥着巨大作用。
在高中阶段,学生们接触到了更加深入和抽象的数学概念和理论。
而数学必修四中的第一章,则是引导学生进入高中数学学习的重要一步。
本文将对数学必修四第一章的知识点进行总结和探讨,帮助读者更好理解和掌握这些内容。
一、集合与映射第一章的重点内容是集合与映射的概念与运算。
在集合的介绍中,我们学习到集合的概念、集合的表示方法、集合运算以及集合的性质。
而在映射的探讨中,我们则了解到映射的定义与表示、映射的性质与判定、一对一映射与满射的概念、映射的合成和反函数等。
集合是数学中一种基础的概念,它可以看作具有某种共同特征的元素的整体。
集合可以用罗列法、描述法来表示,还可以通过集合间的交、并、差等运算进行运算。
在运算的过程中,我们需要注意集合运算的运算律和性质,以确保我们得出的结果正确。
映射是集合之间的一种关系,它将一个集合中的元素对应到另一个集合中。
映射的特点是对于每个元素,它都有唯一的对应元素。
我们可以通过箭头图和表示法来表示映射。
映射的性质有可逆性、一一性和满性,我们可以通过这些性质来判定一个映射的特殊类型。
二、不等式第一章的另一重要内容是不等式的运算与求解。
不等式是数学中一种常见的关系式,它描述了两个数量的大小关系。
我们学习到了一元线性不等式、一元二次不等式以及其它常见不等式的求解方法。
在解不等式的过程中,我们需要注意不等式的运算规则和性质。
对于一元线性不等式,我们可以利用增减法、取反法和绝对值法等方法来求解。
而对于一元二次不等式,我们需要将其化为一元二次方程的形式,再通过求解方程来得到不等式的解集。
此外,我们还学习到了不等式的集合表示法和图像表示法,这些表示方法可以帮助我们更好地理解和分析不等式的解集。
同时,我们还需要注意一些常见的不等式性质和技巧,如三角不等式和均值不等式等,这些性质可以帮助我们在求解复杂不等式时提供指引和思路。
高中数学必修4第一章

3 1 ,2 2 3 1 , 2 2
=
3 . 2
专题一
专题二
专题三
专题四
变式训练 1 若点 P(3,y)是角 α 终边上的一点,且满足 y< 0,cos α= 5,
则 tan α=( A.3 4
3
)
B.
解析:由已知
3 4 3
C.
3 5
4 3
D.-
4 3
32 +������2
= ,∴y=±4. D.
考点一
考点二
考点三
考点四
解析:由 f(x)=(1-cos x)sin x 知其为奇函数 .可排除 B.当 x∈ 时,f(x)>0,排除 A. 当 答案:C
3π 3π x= 时,f 4 4
π 0, 2
=
3π 1-cos 4
3π sin 4
=
2+1 >1,排除 2
D.
考点一
考点二
考点三
考点四
考点二
π 2
π π π 2 6 2 π π kπ- ≤x≤kπ+ (k∈ Z), 6 3
(k∈ Z) .
所以当 x=0 时 ,f(x)取得最小值 . 即 2sin π 6
+a=-2,故 a=-1.
考点一
考点二
考点三
考点四
考点一 三角函数图象的判定 1.(2013· 课标全国Ⅰ高考)函数f(x)=(1-cos x)sin x在[-π,π]的图象大 致为( )
即 tan θ=1, 于是 sin2θ+3sin θcos θ+2cos2θ
sin2 ������+3sin������cos������+2cos2������ = sin2 ������+cos2 ������
北师大版必修4高中数学第一章概念辨析正弦、余弦图象和性质例题讲解素材

1
正余弦图象和性质概念辨析
1.函数的增减性质与图像的升降形态是一个事物的两种不同的表现形式,当函数单调递增时,反映到图像是上升的趋势,当函数单调递减时,反映到图像是下降趋势,“增”“减”用到函数上,“升”“降”用到图像上.
2.函数的单调性可以看作函数的“局部”性质,它在定义域的某一个子区间上单调递增(减),因此正弦函数x y sin =的单调增区间有无数多个,可以简写为:
⎥⎦
⎤⎢⎣⎡+-22,22ππππk k )(Z k ∈, 就是说,k 每取一个整数值,就得到一个单调递增区间,而不能写成:
⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-ππππ2,232,2 …, 这里并集符号“ ”用错了.
3.周期通常指最小正周期.
4.并不是所有周期函数都有最小正周期(如()x f =1).
5.不只三角函数才是周期函数,如2)2()(k x x f y -==,[)12,12+-∈k k x
(Z k ∈)也是周期函数,它的周期2=T ,它的图像如下所示.
6.要分析周期函数的性质,只需在它的一个周期内分析即可,这就是“解剖麻雀”的方法,麻雀虽小,五脏俱全.
(4-8-3)。
高中数学必修4知识点总结归纳(人教版最全)

高中数学必修4知识点汇总第一章:三角函数1、任意角①正角:按逆时针方向旋转形成的角 ②负角:按顺时针方向旋转形成的角 ③零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在区域.5、长度等于半径长的弧所对的圆心角叫做1弧度6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.8、若扇形的圆心角为α(α为弧度制),半径为r ,弧长为l ,周长为C ,面积为S则αr l =,l r C +=2,22121r lr S α==9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:一全正,二正弦,三正切,四余弦.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos ααα=; 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2πα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、要由sin y x =的图像得到sin()y A x φ=+的图像主要有下列两种方法:sin sin()sin()sin()y x y x y x y A x φωφωφ=−−−→=+−−−→=+−−−→=+相位周期振幅变换变换变换sin sin sin()sin()y x y x y x y x ωωφωφ=−−−→=−−−→=+−−−→=+周期相位振幅变换变换变换注:第二种φωω+→x x 的情况需要平移ωφ个单位 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ; ④相位:x ωϕ+;⑤初相:ϕ.α) A α)(1)(2)15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心 ()(),0k k π∈Z 对称轴 ()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴函 数 性质第二章:平面向量1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则),(AB 1212y y x x --=4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 8、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.第三章:三角恒等变换1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- (2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-.3、()sin cos αααϕA +B =+,其中tan ϕB =A.。
(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学必修4第一章复习总结及典型例题

高中数学必修4第一章复习总结及典型例题
第一、任意角的三角函数
一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角
终边相同的角的集合|2,,
弧度制,弧度与角度的换算,
2弧长r、扇形面积rr,
1212二:任意角的三角函数定义:任意角的终边上任意取一点,该圆心角是1弧度,则扇形的面积=cm2
4、设
a
14、下列函数中,周期为的偶函数是()
A.2
解答题解答题应写出文字说明、演算步骤或证明过程2
coin2第一类型:1、已知角终边上一点P(-4,3),求的值119coin22
2已知是第二象限角,fintan.
inco2tan(1)化简f;(2)若in
3,求下列各式的值:(1)
31,求f的值.234inco1;(2).23in5co2incoco
第二类型:B的一部分图象
如右图所示,如果A0,0,||
(1)求此函数的周期及最大值和最小值(2)求这个函数函数解析式
第三类型:1.已知函数2,
15in2264(1)求函数的单调递增区间;
(2)求出函数的对称中心和对称轴方程.3写出=in图象如何变换到
15in2的图象2。
高中数学必修4第一章三角函数的知识点

2
1,1
k
; 当 当 x 2 k k 时,
y m ax 1 ;当 x 2 k
R
倍(纵坐标
不变) ,得到函数 y sin x 的图象;再将函数 y sin x 的图象上所有点的纵坐标 伸长(缩短)到原来的 倍(横坐标不变) ,得到函数 y sin x 的图象. 函数 y sin x 的图象上所有点的横坐标伸长(缩短)到原来的
2
奇函数
偶函数
奇函数
2
, 2k
2
;③频率: f
1
2
;④相位: x ;⑤初相: .
函数 y s in x ,当 x x1 时,取得最小值为 y m in ;当 x x 2 时,取得最大值为
y m a x ,则
sin , co s
co s , tan
, tan
tan .
3、与角 终边相同的角的集合为 k 3 6 0 , k
sin , co s
co s
tan .
终边所落在的区域.
co s , co s sin , tan co t . 2 2 2 co s , co s sin , tan co t . 2 2 2
1 2
y m ax
y m in ,
高中数学必修四第一章知识点

高中数学必修4第一章三角函数知识点总结文献编辑者——周俞江⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z 3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限 对应的标号即为nα终边所落在的区域.“唯一让你变得与众不同的天赋是持续不断的忍耐和坚持”等分角所在象限的判断方法,在解决这类问题时,我们既可以采用常规的代数法,也可以利用数形结合思想,采用图示法巧妙对nα角所在的象限做出正确判断。
一、代数法就是利用已知条件写出α的范围,由此确定n α角的范围,再根据nα角的范围确定所在的象限;【例1】已知α为第一象限角,求2α角所在的象限。
解:∵ α为第一项限角∴90360360+⨯⨯k k <<α )(Z k ∈451802180+⨯⨯k k <<α)(Z k ∈若k 为偶数时:则)(2Z n n k ∈=,则453602360+⨯⨯n n <<α)(Z n ∈∴ 2α角是第一象限角; 若k 为奇数时:则)(12Z n n k ∈+=,则)(2253602180360Z n n n ∈+⨯+⨯ <<α∴ 2α角是第三象限角; 因此,2α角是第一象限或第三象限角【例2】已知α为第二项限角,求2α角所在的象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修四 第一章
知识点归纳
第一:任意角的三角函数
一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边
相同的角的集合
}
{|2,k k z ββπα=+∈ ,
弧度制,弧度与角度的换算,
弧长l
r α=、扇形面积2112
2
s lr r α==,
二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22
r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切x
y
a =tan ,它们都是以角为自变量,以比值为函数值的函数。
三:同角三角函数的关系式与诱导公式:
1.平方关系:
22sin cos 1
αα+=
2. 商数关系:
sin tan cos α
αα
=
3.诱导公式——口诀:奇变偶不变,符号看象限。
正弦
余弦
正切
第二、三角函数图象和性质 基础知识:1、三角函数图像和性质
2、熟练求函数sin()y A x ωϕ=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作
sin()y A x ωϕ=+简图:五点分别为:
、 、 、 、 。
3、图象的基本变换:相位变换:sin sin()y x y x ϕ=⇒=+
周期变换:sin()sin()y x y x ϕωϕ=+⇒
=+
振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 4、求函数
sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω有周期确定,φ有特殊点确定。
基础练习:
1、tan(600)-=o
. sin 225︒= 。
2、已知扇形AOB 的周长是6cm ,该圆心角是1弧度,则扇形的面积= cm 2
. 3、设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于 4、函数
y =的定义域是_____ __
5、的结果是 。
6、函数x y 2sin 3=的图象可以看成是将函数)3
x 2sin(3y π
-=的图象-------( ) (A )向左平移个6π单位 (B )向右平移个6π单位(C )向左平移个3π单位 (D )向右平移个3
π
单位
7、已知0tan ,0sin ><θθ,那么θ是 。
8.已知点P (tan α,cos α)在第三象限,则角α的终边在
9、下列函数中,最小正周期为π,且图象关于直线3
π
=
x 对称的是( ) A .sin(2)3π=-y x B.sin(2)6π=-y x C.sin(2)6π=+y x D.sin()23
π=+x y 10、下列函数中,周期为π的偶函数是( )
A.cos y x =
B.sin 2y x =
C. tan y x =
D. sin(2)2
y x π
=+
解答题解答题应写出文字说明、演算步骤或证明过程.
第一类型:1、已知角α终边上一点P (-4,3),求)
2
9sin()211cos()
sin()2cos(απαπαπαπ
+---+的值
2.已知α是第二象限角,sin()tan()
()sin()cos(2)tan()
f πααπαπαπαα---=
+--.
(1)化简()f α; (2)若31
sin()23
πα-=-,求()f α的值.
3.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)21
2sin cos cos ααα
+.
第二类型: 1.已知函数sin()y A x B ωϕ=++的一部分图象
如右图所示,如果0,0,||2
A π
ωϕ>><,
(1)求此函数的周期及最大值和最小值 (2)求这个函数函数解析式
第三类型:1.已知函数4
5)62sin(21++=
πx y (1)求函数的单调递增区间;
(2)求出函数的对称中心和对称轴方程. (3) 写出y=sinx 图象如何变换到15
sin(2)264
y x π=++的图象。