特高压输电工程发展状况

合集下载

特高压输变电技术的现状分析和发展趋势

特高压输变电技术的现状分析和发展趋势

特高压输变电技术的现状分析和发展趋势摘要:在社会经济不断发展的背景下,人们对电力能源的需求不断提升。

电力能源传输往往受传输距离的影响,出现很大的损耗,在节能减排成为社会普遍共识的情况下,电力传输过程中的能源损耗问题愈加突出,该问题在很大程度上影响了电力能源的长距离输送和能源资源的配置。

随着特高压输变电技术的不断成熟,长距离输电过程中的能源损耗问题可以被解决。

基于以上认识,文章从特高压输变电技术的应用意义出发,探究了特高压输变电技术的研究现状及发展,希望能够为特高压输变电技术的应用提供一定的思路。

关键词:特高压;输变电;电力传输1.特高压输变电技术的应用意义应用特高压输变电技术建立特高压网络,能够进一步提升电网的安全性、可靠性与经济性;应用特高压输变电技术可以彻底解决电网跨区弱连接导致的电力网络安全问题,为我国东部地区的生产建设提供强有力的电力网络支撑;应用特高压输变电技术可解决高负载区域电网短路电流超限问题,并减少走廊回路数量、节省土地资源。

计算和实际应用证明,±800kV的直流输电线路比±600kV的直流输电线路回数明显减少,可节约输电通道面积300km2。

在传输100000kW的电能,传输距离为800km时,使用500kV交流线路需8~10回,而使用特高压输电网络仅需2回,可缩短传输通道宽度0.3km,节省传输通道面积240km2,具有较明显的经济优势。

应用特高压输变电技术和特高压电网有助于构建跨区域的大规模网络,实现错峰、调峰、水火互惠、减少电网损耗;应用特高压输变电技术也能减少煤炭运输压力,推进煤炭的集约利用。

目前,我国能源分布存在一定的结构性矛盾,中西部地区的能源资源较丰富,东部沿海地区的能源消耗大,存在能源紧张问题。

应用特高压输变电技术有助于西电东输,可以使西部地区充分发挥自身的资源优势,同时降低中部和东部地区的能源压力,推动地区经济和社会的协调发展。

1.我国特高压输变电技术的研究现状我国开展特高压输变电技术的科研工作已有30余年。

特高压直流输电的发展及技术特点

特高压直流输电的发展及技术特点

特高压直流输电的发展概况和技术特点电气0707王彦洁1071180724特高压直流输电的发展概况和技术特点王彦洁(华北电力大学,电气0707,北京市)【摘要】文章论述了特高压直流输电的概念和在国内外的发展情况,介绍了特高压直流输电工程的技术特点和工程设计问题,阐述了特高压直流输电对我国电网建设和经济发展的影响和意义以及在我国的发展前景。

【关键词】特高压直流输电0.引言特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。

其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。

电力工业的快速增长、电网容量的不断增大对输电技术提出了许多新的要求:发展“西电东送”的需要;电网增容及改善电网结构的需要;全国联网的需要:提高电网安全稳定运行水平的需要。

而特高压电网能够提高输送容量;缩短电气距离,提高稳定极限;降低线路损耗;减少工程投资;节省走廊面积;降低短路电流;加强连网能力。

其经济高效使特高压输电成为迫切需要研究解决的问题。

1.特高压直流输电的发展1.1特高压直流输电的概念直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。

直流输电是将交流电通过换流器变换成直流电,然后通过直流输电线路送至受电端并通过换流器变成交流电,最终注入交流电网。

特高压直流输电(UHVDC——Ultra High Voltage Direct Current transmission)是指±800kV(±750kV)及以上电压等级的直流输电及相关技术。

1.2 特高压直流输电的发展特高压直流输电技术起源于20世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。

1966年后,前苏联、巴西等国家也先后开展了特高压直流输电研究工作,80年代曾一度形成了特高压输电技术的研究热潮。

特高压交流输电技术发展现状

特高压交流输电技术发展现状

特高压交流输电技术发展现状特高压交流(Ultra High Voltage Alternating Current,简称UHVAC)输电技术是一种电力输送技术,其使用超高电压来减少输电损耗,提高电网的输电能力和可靠性。

特高压技术是电力行业的前沿技术,在中国得到广泛应用和发展。

以下将分析特高压交流输电技术的发展现状。

特高压交流输电技术在中国取得了重要的突破和进展。

中国是全球特高压技术的领先国家,在特高压电网建设方面取得了举世瞩目的成就。

中国的第一个特高压工程是南京-南翔特高压直流输电工程,于2004年开始建设。

现在,中国已经形成了北方电网和南方电网的特高压交流网,同时也在推进西电网和东北电网的特高压建设。

中国还成功研发和应用了一系列的特高压输电设备,如特高压变压器、特高压电缆和特高压断路器等。

特高压交流输电技术的优势和挑战也逐渐显现。

特高压技术能够大幅度降低电力输送过程中的线损,提高输电效率,降低能源消耗。

使用特高压技术可以远距离长距离输送电力,实现资源优化配置,提高能源利用率。

特高压技术还具有电网的可靠性和稳定性更高的特点。

特高压技术的建设和运营成本较高,需要大量的资金投入。

特高压技术的安全风险和环境风险也需要引起重视和解决。

特高压交流输电技术的应用前景广阔。

特高压技术不仅可以用于大规模电力输送,还可以用于清洁能源的集中式发电和远距离输电。

特高压技术为可再生能源的开发和利用提供了便利条件,可以解决风电和太阳能等分布式能源的接入问题。

特高压技术还可以促进国际能源互联互通,加强能源供应保障和能源安全。

特高压交流输电技术的发展还面临一些挑战和问题。

一方面,特高压技术需要继续完善和创新,提高设备的性能和可靠性,降低设备的制造成本。

特高压技术还需要解决输电线路对环境的影响和风险防控。

特高压技术的应用还需要加强与其他技术的集成和配合,实现电网的智能化、数字化和自动化。

特高压交流输电技术在中国的发展取得了重要的突破和进展,但仍然面临一些挑战和问题。

特高压直流输电现状分析

特高压直流输电现状分析

特高压直流输电现状分析摘要:近年来,经济快速发展,电力行业需求越来越大,国内特高压直流输电技术是指在电压等级为±800kV(±750kV)及以上的条件下进行输电。

特高压直流输电的主要优点是对于电的输送量更大,输电距离更远,根据最近召开的能源第十七次会议进行的相关预测,当前世界能源发展势头旺盛,从现代到2030年,能源产业产值将会翻倍增长,主要的能源产值国家为当前新型大国如印度、中国等一些后期发展中国家。

我国现阶段电力工业发展状态良好,预测在未来15-20年内,国内的电力工业水平竟会达到国际领先水平,相关产值将会不断增加。

根据我国电力发展规划,国内电机总容量将会达到更高的应用水平,以人们的生活与社会生产提供强大动力。

运用特高压直流输电技术,这无疑十分符合当下我国的用电需求,这对于我国的经济建设和经济发展大有帮助。

关键词:特高压;直流输电;现状引言特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。

其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。

从上世纪60年代开始,美国、前苏联、德国等国家考虑到部分地区需特大容量、超远距离输电,尝试了特高压交直流输电。

自1966年起瑞典查尔姆斯大学开始初步研究±750kV导线。

之后很多国家也先后开展了多项特高压直流输电研究工作,例如某直流输电工程,此工程直流输电电压可达到±600千伏,输电功率达到630万千瓦,输送距离806公里,较以前的直流输电工程有大幅度发展。

上世纪90年代,世界上第一个复杂的三端直流输电工程完成,并同时建成了长达250KM的海缆直流输电工程。

当前直流输电已成为一种重要的电力传输方式,特别是随着计算机和光纤等新技术的发展,使直流输电系统的保护、控制及调节更加完善,大幅提升了直流输电系统运行的可靠性。

特高压直流输电的现状与展望 王冰1

特高压直流输电的现状与展望 王冰1

特高压直流输电的现状与展望王冰1摘要:特高压直流输电一般用在大容量长距离的直流电运输过程中,目前,在海底电缆、大型发电站等对这种技术的应用最广泛。

在我国,特高压直流输电是指通过1 000 k V级交流电网和600 k V级以上的直流电网所构成的电网系统。

纵观当前,直流输电技术发展得越来越成熟,并在电力传输中占着举足轻重的地位,由于目前计算机技术应用在了特高压直流输电中,使得特高压直流输电在调控方面有着更大的发展。

本文通过分析我国特高压直流输电的发展现状,对特高压直流输电在今后的发展进行了展望。

关键词:特高压;直流输电;电网;电力传输1特高压电直流输电的现状1.1发展速度快在20世纪60年代,一些发达国家需要向部分地区进行远距离输电,由于输电过程中的距离遥远,且输送的电量极大,所以,设计人员就开始研究高压直流运输。

起初,电流的传输距离最多可达1 000 km,最高直流电压为500 000 V,传输过程中的最大功率可以达到6.0×106k W;发展到如今,这种特高压直流电的传输最高电压可以达到800 000 k V,而且最近几年,特高压直流电的发展速度非常惊人。

另外,由于我国这几年现代化科技的飞速发展,目前,在高压直流电的传输过程中,计算机在对高压电流检测过程中得到了应用,这使得高压直流电的系统方面得到了优化,进而使得高压直流电的技术发展更向前迈进了一步。

此外,与以往的电线相比而言,电流传输过程中对光纤的使用使得电流在传输过程中的安全性得到了保障,进而很大程度上使得输电效率得到了提高。

同时,随着高压直流电传输技术的发展,目前,有很多国家也开始把高压直流电传输技术应用于实际生活中。

1.2效率高目前,我国在直流电传输方面一共有3种电流传输方式,即交流电传输、超高压输电以及特高压输电。

在进行远距离直流电传输过程中,应用最多的一种方式是特高压直流电传输。

这种电流传输方式无论在经济成本、能源耗损,还是在工程规模方面,都要优于其他的电流传输方式。

我国特高压发展和应用现状分析

我国特高压发展和应用现状分析

我国特高压发展和应用现状分析我国特高压(Ultra High Voltage,简称UHV)是指超过1000千伏的电网,通常用于远距离输电。

特高压技术拥有较大的传输能力和较低的输电损耗,被视为世界上唯一能够实现大功率、远距离输电的技术。

下面将对我国特高压发展和应用现状进行分析。

我国特高压发展取得了长足进步。

特高压技术在我国的应用始于2006年,目前已经建成了全球最强特高压交流工程——国家电网公司运营的长距离交流特高压工程。

该工程由多条1000千伏输电线路组成,覆盖了我国多个省份,总输电能力超过1000万千瓦。

我国特高压直流工程也在快速发展,已建成多条特高压直流线路,如长江架空特高压直流项目、西北-华北特高压直流工程等。

我国特高压应用领域不断拓展。

特高压技术最早主要用于远距离输电,但随着技术的发展,特高压开始应用于城市供电网、再生能源接入、电力交易等领域。

特高压技术不仅能够输送大量电能,还能够提高供电可靠性和稳定性,满足日益增长的电力需求。

特高压直流技术还可以实现不同电网之间的互联互通,提高电力系统的整体效率。

我国特高压发展还面临一些挑战。

特高压建设投资巨大,需要大量的资金。

特高压工程的建设还需要考虑地质、环境等因素,施工难度较大。

特高压技术也面临输电过程中的电磁辐射、功率损耗等问题,需要从技术和安全角度进行进一步研究。

我国特高压发展势头强劲,已经建成了一系列特高压工程,并在应用领域不断拓展。

特高压技术不仅提高了我国电力系统的输电能力和可靠性,还能够实现不同电网之间的互联互通。

特高压发展还面临一些挑战,需要进一步研究和改进。

未来,我国特高压将继续发展壮大,成为我国电力工业的重要支撑。

国内外特高压输电技术发展情况综述

国内外特高压输电技术发展情况综述

国内外特高压输电技术发展情况综述1.背景自从电能作为人们生活中廉价而又清洁的能源以来,随着电网的不断发展壮大,输电电压经历高压、超高压两个发展阶段,目前又跨入了特高压输电的新的历史时期。

这种发展标志着我国综合实力的不断提高,电力行业技术水平的提高。

近来,由于石油价格的暴涨,1993年11月在宜昌召开的中国电机工程学会电力系统与电网技术综合学术年会上发表《关于着手开展特高压输电前期科研的建议》以来,各方面的人士对特高压输电技术给予了高度的关注。

那么何谓特高压输电呢?特高压输电系指比交流500kV输电能量更大、输电距离更远的新的输电方式。

它包括两个不同的内涵:一是交流特高压(UHC),二是高压直流(HVDC)。

具有输电成本经济、电网结构简化、短路电流小、输电走廊占用少以及可以提高供电质量等优点。

根据国际电工委员会的定义:交流特高压是指1000kV以上的电压等级。

在我国,常规性是指1000kV以上的交流,800kV以上的直流。

我们国家是在何种情形下进行特高压研究的呢?不妨从如下几个方面来看:从能源利用上来说,看国际上常以能源人均占有量、能源构成、能源使用效率和对环境的影响,来衡量一个国家的现代化程度。

目前我国人均年消耗的能源水平很低,如果在21世纪中叶赶上国际中等发达水平,能源工业将要有大的发展。

据最近召开的世界能源第十七次会议预测,世界能源工业还要进一步发展,到2030年,世界的能源产量将翻一番;到21世纪末再翻一番,其中主要集中在中国、印度、印尼等发展中国家。

我国电力将在未来15~20年内保持快速增长,根据我国电力发展规划,到2003年、2010年、2020年我国电力装机容量将分别达到3.7亿千瓦、6亿千瓦和9亿千瓦。

从世界范围来看,交流特高压和高压直流将长期并存,而交流特高压输变电设备是交流特高压和高压直流的基础。

而新的输电电压等级的出现取决于诸多因素。

首先是长距离、大电量输送方式的增长需求,其次是输电技术水平、经济效益和环境影响等方面的考虑。

特高压交流输电技术发展现状

特高压交流输电技术发展现状

特高压交流输电技术发展现状特高压交流输电技术是指电压等级在800千伏及以上的电力输电系统。

它是实现全球范围内大规模能源互联网的关键技术之一,也是未来能源互联网发展的必然选择。

本文将介绍特高压交流输电技术的发展现状。

作为特高压交流输电技术的发起者和领跑者,中国在特高压交流输电领域取得了重要的进展。

2010年,中国建成了世界首条特高压交流输电工程——京沪特高压工程。

此后,中国陆续建设了西电东送、南西电网、北洛电网等一系列特高压交流输电工程,形成了覆盖全国的特高压输电网。

据统计,中国目前特高压交流线路总长已经超过3万公里。

除了覆盖面积之外,中国特高压交流输电技术在其他方面也取得了显著的进展。

首先是电力传输效率的大幅提高。

特高压交流输电技术的特点是输电线路可以较长距离传输能量,同时在线路传输过程中能量损失少。

这种输电技术的广泛应用不仅可以降低输电成本,还可以降低二氧化碳等温室气体的排放,进而保护环境。

其次,中国特高压交流输电技术在电网安全和稳定运行方面也具有重要意义。

特高压交流输电技术可在输电过程中通过智能监测系统及时地发现故障,保障电网的安全稳定运行,并为善后措施提供必要的支持。

除了中国,世界上还有一些其他国家也在开展特高压交流输电技术的研究和实践。

例如,欧洲在发展可再生能源时面临着能源地理分布不均的问题,需要通过输电将远离能源消费中心的可再生能源输送到主要用电地点。

为此,欧洲各国陆续启动了特高压交流技术的研究和试验工作,试图通过特高压交流输电来解决能源输送的问题。

美国也有一些特高压交流输电工程,例如从得克萨斯州到加利福尼亚州的特高压输电线路,其线路长度达到近1000英里。

这条输电线路的电压等级达到了1100千伏,并实现了可持续运营。

总体来看,特高压交流输电技术在全球范围内都受到了越来越多的关注和研究,特别是在推动可再生能源的发展、提高能源供应安全等方面具有重要的作用和价值。

从发展趋势上看,未来的特高压交流输电技术将主要体现为智能化、数字化和高效化三个方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特高压输电工程发展状况特高压输电分为:特高压交流输电和特高压直流输电,这两种输电方式各有各的优缺点。

特高压输电技术具有以下优越性:1.1够提高电网的安全性、可靠性。

采用l 000kV电压长远距离输,可以降低电网的短路电流。

比如若长运距离输送l 000万kw电力,可以减少相当于本地装机17台60万kW的机组。

每台60万kW的机组对其附近区域500 kV电网的短路电流将增加1.8 kA。

而采用特高压输电技术的分层、分区布局电网,则可以优化电网结构,从根本上解决短路电流超标,从而提高电网的安全性、可靠性。

1.2够更为经济地提高大容量、远距离送电能力。

研究表明:1条l 000 kV线路的输送客量相当于5条500 kV线路的输送容量,这样能够使包括变电站在内的电网建设成本降低10%~15%。

我国的电站建设多集中于煤矿资源丰富的华北和水资源丰富的两南,用电负荷又集中在华东、华中。

这种状况客观上要求西电东送。

据预测,到2020年,我国的发电装机容量有可能达到ll 亿kW。

依靠目前的500 kV电网无论是输送距离还是输送容量,都无法承受,只能依靠技术进步,通过特高压输电技术及特高压输电电网建设,将大型水电、煤电基地的电能输送到所需目的地。

1.3够大量节约电网建设用地。

我国环境保护标准程定,邻近民居的地面电场强度不能大于4 kV /m,500 kV的输电线路走廊宽度要为10~48 m,而l 000 kV线路走廊要为8l一97 m。

通过理论计算得知,输送同样的功率(如500万kW),采用l 000 kV特高压输电线路比采用500 kV高压输电线路节约60%的建设用地。

所以说.特高压输电技术能够大量节约电网建设用地.是资源节约型建设丁程。

特高压输电技术主要的技术难关:2 .1 过电压与绝缘配合。

在特高压输电系统运行过程中,将承受操作冲击、故障冲击、雷电冲击等引起的过电压。

由于目前我国尚无特高压过电压标准,因此,对过电压与绝缘配合进行研究,选择正确和经济的方式降低设备的过电压水平和绝缘水平,对系统安全运行是十分重要的。

由于特高压输电工程的特殊性,导线的布置方式有多种选择,绝缘子串型和塔头间隙种类较超高压线路多,如同杆并架,导线水平排列、垂直排列,绝缘子I 串、v 串甚至Y 串等。

我国特高压输电线路跨越高海拔地区的国情还决定必需对不同海拔条件下的空气间隙放电电压特性进行研究。

因此,在常规研究项目基础上,研究不同条件下空气间隙的放电特性对于指导特高压输电工程的设计更具深远意义。

表1为国家电网公司特高压试验基地在空气间隙及设备绝缘特性方面可进行的具体研究内容。

2 .2污秽外绝缘问题。

通常,污秽外绝缘问题研究的主要内容为绝缘子及套管的人工污秽、淋雨、覆冰和低气压(高海拔)条件下的外绝缘试验,试验的关键是在全电压下进行。

在我国特高压输电工程的前期研究中,由于缺乏高电压等级的污秽电源,1000 kV 交流、+800 kV直流线路长串绝缘子的试验不得不在国外进行,如:日本N G K 、瑞典STR I。

国外对特高压交流输电问题研究比较多,并且有前苏联1150 kV 的运行经验可以借鉴。

然而,考虑到我国特高压输电工程经过地域的环境及地理气候条件(如高海拔、重污秽等),国外的建设经验不宜照搬。

以目前我国1000 kV 级交流输电线路采用的8 分裂导线设计为例,根据国外特高压运行经验,该特高压线路至少需要300 kN 以上的大盘径大吨位绝缘子l o J。

由于不同的绝缘子积污情况、耐污闪能力、老化性能、机械性能等相差很大,因此,以下4 个方面问题是影响特高压输电工程外绝缘设计和选择的关键问题:(1 )设备外绝缘的耐污闪能力。

与国外特高压输电工程不同,我国的地域辽阔,地理环境复杂,不同地区污秽情况有很大差别。

同时,我国的大气污染程度较美国、前苏联等国要严重得多。

随着我国经济高速发展,工业污染日益严重,可以预见,在将来1000 kV 交流特高压~M+ 800 kV 直流特高压输电工程中,线路外绝缘的染污放电问题将会越来越严重,因此,特高压输电线路在外绝缘设计时,首先应考虑的是设备外绝缘的耐污闪能力。

(2 ) 复合外绝缘的性能及可靠性。

面对日益严重的大气污染问题,在特高压交、直流输电工程上大量采用复合绝缘子已不可避免,然而国外特高压输电工程在此方面的研究比较薄弱,可借鉴的经验不多。

因此,需要对复合绝缘子机电特性、老化、机械疲劳、内部缺陷探测等问题,以及复合绝缘子在高海拔、覆冰条件下的外绝缘问题等进行深入、细致的研究。

此外,部分线路绝缘子、变电设备采用R TV 涂料(包括PRT V 涂料)来增加设备外绝缘的耐污闪能力时,RT V 涂料(包括PRT V 涂料)的可靠性、使用寿命的定义和判据也需要进一步研究。

(3) 外绝缘的串长及串型选择。

对输电线路而言,绝缘子的串长是确定塔头尺寸和塔头结构设计的基础。

耐污闪性能好的绝缘子,其串长就相对较小。

相反地,耐污闪性能差的绝缘子会导致绝缘子串长较长,此时输电线路的丁程造价势必会大大增加。

综合考虑国内外特高压输电线路工程经验和运行特性分析,我国特高压输电线路可能采用与普通型输电线路不同的绝缘子布置方式,如v 形串等。

由于采用V 形串时的绝缘子的积污以及闪络电压同悬垂串都有所不同,因此,需要解决不同串形下的外绝缘水平选择问题。

(4 ) 高海拔和覆冰问题。

与平原地区相比,高海拔地区的染污绝缘问题更为严重。

世界上的发达国家主要在平原地区,很少遇到高海拔问题,因此,他们在此领域所做研究很少,只有前苏联、日本、加拿大、瑞典等国家曾做过一些高海拔外绝缘污闪特性短串或模型的试验。

由于我国特高压交、直流输电线路将经常性穿越高海拔、覆冰等气候恶劣地区(如规划中的向家坝一苏南+800 kV 特高压直流输电线路中,线段的最高海拔达到了3680 m ),因此,各种环境条件下,输电线路合理的绝缘配置也是特高压输电技术研究的关键问题,此问题的研究关键仍然是必须在全电压等级下进行。

2.3 电磁环境研究。

电磁环境问题是特高压交、直流输电线路设计、建设和运行中必须考虑的重大技术问题。

特高压输电线路的电磁环境与输电线路电晕特性有关,线路的电晕会造成电晕损耗、工频电磁场(交流输电)、直流电场效应(直流输电)、无线电干扰和可听噪声等方面的后果。

其中,可听噪声问题已经成为特高压输电线路导线设计的最重要影响因素。

在高海拔地区,输电线路的电磁环境问题比平原地区更为严重,然而目前国内外对此问题的研究却很不充分。

因此,如何有效利用特高压交流试验基地和直流试验基地的污秽及环境压力容器试验室,展开高海拔地区输电线路电磁环境等问题的研究,也是面临的新课题。

与+500 kV 直流输电工程相比,特高压直流输电工程具有电压高、导线截面大、铁塔高、单回线路走廊宽等特点,因此其电磁环境问题与+500 kV 直流线路有一定的差别。

由于特高压直流输电工程的电磁环境与导线型式、架线高度等密切相关,具体的选择方式不仅直接影响到工程的技术方案和建设造价,还将直接影响工程建设环保是否达标等问题。

目前,+800 kV 特高压直流输电在国际上没有先例,没有经验可以借鉴,相应的电磁环境也没有相关标准可循。

而在1000 kV 交流特高压输电线路电磁环境问题方面,其主要涉及到工频电场、工频磁场、无线电干扰和可听噪声等几个方面,虽然已经有部分研究成果应用于晋一南一荆试验示范工程,但是对于减小电晕损耗、降低可听噪声以及无线电干扰的措施尚需进一步研究。

近四年我国的特高压输电:3 .1 1000千伏特高压南阳站首台主变顺利运抵现场。

1000千伏晋东南-南阳-荆门特高压交流试验示范工程扩建工程南阳站首台主变于2011年5月30日下午从周口港启运,经过四天公路运输,于2011年6月3日12时18分运抵施工现场,打通了南阳站主变运输的通道,吹响了工程电气主设备安装的冲锋号。

本期南阳站将安装8台特高压变压器,分别从辽宁沈阳和江苏常州启运,经水路运输到达河南省境内周口港码头。

河南境内公路运输距离280公里,其中高速公路240公里(5家公司7个管段)、地方公路40公里,涉及两座危旧桥梁加固,沿途需多次逆行高速桥进行变道、多次穿越桥涵,其中穿越最低的一座桥涵时,设备距离桥洞顶面不足2公分、距离地面不足1公分,安全和技术控制难度大,极具挑战性。

3 .2郑宝森调研锦屏-苏南±800千伏特高压直流输电工程同里换流站建设。

2012年10月23日,国家电网公司党组成员、副总经理郑宝森一行赴江苏吴江,调研锦屏-苏南±800千伏特高压直流输电工程同里换流站建设情况,现场指挥极Ⅰ高端换流器大负荷试验。

郑宝森一行视察了同里换流站,查看了正在进行安装的极II高端换流变、极II高端阀厅,对同里换流站工程建设进度、安全监督和质量管理等方面工作给予高度肯定。

郑宝森在主控室亲自指挥了极Ⅰ高端换流器的大负荷和过负荷试验,并通过电话系统慰问了送端裕隆换流站的参建人员。

郑宝森还主持召开了现场协调会议,听取了直流建设部、直流公司、中国电科院等单位前阶段建设和调试工作以及后续工作计划的汇报。

他指出,该工程施工现场管理到位、建设调试人员精神饱满,从工程签订主设备合同至今年6月份低端投运,只用了15个月,创造了新的世界纪录,为迎峰度夏期间四川水电送出发挥了重要作用。

到下个月实现双极投运也仅仅只有20个月时间,工程质量高、安全管理好、建设速度快,在向上工程的基础上又上了一个台阶。

3 .3向家坝-上海±800千伏特高压直流输电示范工程顺利完成双极过负荷运行。

2013年6月18日,国家电网公司组织实施了向家坝-上海±800千伏特高压直流输电示范工程(简称“向上工程”)过负荷运行,成功将四川地区的704万千瓦电力高效输送至2000公里外的上海,刷新了单回输电工程输送功率的世界纪录。

本次过负荷运行按照双极“640万千瓦满负荷4小时+704万千瓦过负荷2小时”的方式安排,在两侧换流站环境温度均超过35℃高温的严酷条件下,对两端交、直流主设备和系统进行了严格考核。

本次过负荷运行的成功完成,进一步验证了特高压直流输电的技术可行性和设备可靠性,标志着国家电网公司在超远距离、超大规模输电技术方面取得全面突破,将显著提升电网大规模、大范围、高效率优化配置能源资源的能力,对于我国清洁能源的快速发展和大型能源基地的规模开发,促进能源的大范围优化配置,保障国家能源安全具有重大而深远的意义。

总结:关于特高压交流输电和特高压直流输电各有各的优缺点,研究发展时做到取长补短,直流与交流相结合的发展思路,保证可靠性和经济性。

相关文档
最新文档