国内外高压直流输电的发展与现状

合集下载

2024年高压直流断路器市场发展现状

2024年高压直流断路器市场发展现状

2024年高压直流断路器市场发展现状1. 引言高压直流断路器是电力系统中的重要设备,用于控制和保护直流输电线路。

随着可再生能源的快速发展和直流输电技术的广泛应用,高压直流断路器市场也面临着巨大的发展机遇和挑战。

本文将介绍高压直流断路器市场的发展现状,并分析其潜在的市场前景。

2. 高压直流断路器的定义和分类高压直流断路器是一种用于控制和中断直流电流的电气设备。

根据其工作原理和结构特点,高压直流断路器可以分为气体断路器、真空断路器和固体断路器等不同类型。

不同类型的断路器在高压直流输电领域有不同的应用范围和技术要求。

3. 2024年高压直流断路器市场发展现状3.1 市场规模高压直流断路器市场在过去几年中呈现出稳定增长的趋势。

据市场研究公司的数据显示,2019年全球高压直流断路器市场规模约为X亿美元,预计到2025年将达到Y亿美元。

中国、美国和欧洲地区是全球高压直流断路器市场的主要消费市场。

3.2 市场驱动因素目前,可再生能源的快速发展是推动高压直流断路器市场增长的主要驱动因素之一。

大规模的风电和光伏电站需要高压直流输电系统来传输电能,而高压直流断路器作为关键设备之一,将在可再生能源领域发挥重要作用。

另外,高压直流输电技术的发展也为市场提供了新的增长机遇。

直流输电系统具有输电损耗小、经济性强等优势,能够在长距离电力传输中显著降低能量损耗。

这促使各国加大对高压直流输电技术的研发和应用,进一步推动了高压直流断路器市场的发展。

3.3 市场挑战和机遇高压直流断路器市场在快速发展的同时也面临一些挑战。

首先,高压直流断路器的技术难度较高,研发和生产成本较高,这对市场的进一步扩大和产品价格的降低构成了一定的限制。

其次,市场竞争激烈,主要企业之间的差距较大。

高压直流断路器领域的企业大多为跨国公司,其技术实力和市场份额较大,对新进入市场的企业构成了竞争压力。

然而,高压直流断路器市场仍然具有巨大的市场潜力。

随着直流输电技术和可再生能源的不断发展,对高压直流断路器的需求将不断增加。

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景一、本文概述随着全球能源需求的持续增长和电网互联的深化发展,高压直流输电技术(HVDC)已成为现代电力系统的重要组成部分。

本文旨在全面概述高压直流输电技术的现状,包括其基本原理、关键设备、应用领域以及面临的挑战,并展望其未来的发展前景。

我们将深入探讨HVDC 技术的最新进展,包括新型拓扑结构、控制策略、设备制造技术等方面的创新,并分析这些创新如何推动HVDC技术在全球范围内的广泛应用。

我们还将讨论HVDC技术在可再生能源接入、电网互联、城市电网建设等领域的应用潜力,以及面临的挑战和解决方案。

通过本文的阐述,我们期望为读者提供一个全面而深入的了解高压直流输电技术的现状和发展前景的视角,为相关领域的研究和实践提供参考和借鉴。

二、高压直流输电技术现状高压直流输电(HVDC)技术自20世纪50年代诞生以来,经过几十年的发展,已经成为现代电力系统的重要组成部分。

当前,HVDC技术正处在一个快速发展的阶段,其在全球范围内的应用越来越广泛,技术性能也日益成熟和先进。

在技术上,现代高压直流输电系统已经实现了高度的自动化和智能化。

通过采用先进的控制系统和保护装置,HVDC系统能够实现快速响应和精确控制,确保电力系统的稳定运行。

同时,随着电力电子技术的飞速发展,HVDC系统的换流技术也在不断升级,从最初的汞弧阀换流器发展到现在的晶闸管换流器,再到未来的可关断晶闸管换流器,这些技术的进步极大地提高了HVDC系统的效率和可靠性。

在应用上,高压直流输电技术已经广泛应用于长距离大功率输电、跨海输电、异步联网等多个领域。

特别是在可再生能源的开发和利用中,HVDC技术发挥着不可替代的作用。

例如,在风能、太阳能等可再生能源丰富的地区,通过建设HVDC系统将电能输送到需求侧,可以有效地解决可再生能源的接入和消纳问题,推动可再生能源的大规模开发和利用。

然而,尽管高压直流输电技术取得了显著的进步和广泛的应用,但仍面临着一些挑战和问题。

高压直流输电技术的发展趋势

高压直流输电技术的发展趋势

高压直流输电技术的发展趋势在当今能源需求不断增长、能源分布不均衡以及对电力供应质量要求日益提高的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正发挥着越来越重要的作用。

随着科技的不断进步,高压直流输电技术也在持续发展和创新,展现出一系列令人瞩目的发展趋势。

高压直流输电技术具有诸多优点,如能够实现远距离、大容量输电,降低输电损耗,提高输电效率等。

它在实现能源资源的优化配置、促进区域间的电力互济等方面发挥着关键作用。

从技术层面来看,电压等级的不断提高是一个重要的发展趋势。

更高的电压等级意味着能够传输更大的功率,减少输电线路的数量,降低建设成本和土地占用。

目前,特高压直流输电技术已经取得了显著的成就,未来有望进一步提升电压等级,以满足更大规模的电力输送需求。

在换流器技术方面,新型的换流器拓扑结构不断涌现。

传统的基于晶闸管的换流器逐渐被基于绝缘栅双极型晶体管(IGBT)等全控型器件的换流器所取代。

这些新型换流器具有更快的开关速度、更好的控制性能和更低的损耗,能够提高输电系统的效率和稳定性。

直流断路器的研发也是一个关键领域。

快速可靠的直流断路器对于保障直流输电系统的安全运行至关重要。

目前,已经有多种直流断路器的技术方案在研究和试验中,未来有望实现更快速、更可靠、更经济的直流断路器,从而提高直流输电系统的故障处理能力。

随着电力电子技术的发展,多端直流输电系统正逐渐成为现实。

相较于传统的两端直流输电,多端直流输电能够更灵活地实现多个电源和负荷的连接,提高电力系统的可靠性和灵活性。

未来,多端直流输电系统有望在城市电网、区域电网互联等领域得到广泛应用。

在控制保护技术方面,智能化、自适应的控制保护系统是发展的方向。

通过先进的传感器和监测技术,实时获取输电系统的运行状态信息,利用智能算法进行分析和决策,实现对输电系统的精准控制和保护,提高系统的稳定性和可靠性。

在能源转型的大背景下,高压直流输电技术与可再生能源的结合将更加紧密。

高压输电发展现状及未来趋势分析

高压输电发展现状及未来趋势分析

高压输电发展现状及未来趋势分析概述随着经济的快速发展和城市化进程的加速,对电力供应的需求也与日俱增。

而高压输电作为电力供应链中的重要环节,其发展现状及未来趋势对于能源供给的稳定性和可持续性起着至关重要的作用。

本文将探讨高压输电发展的现状,并分析未来的趋势。

一、高压输电发展现状1. 高压输电技术的发展随着电力系统规模的不断扩大,高压输电技术也取得了长足的发展。

目前,交流输电技术广泛应用于高压输电领域,包括特高压交流输电技术(UHVAC)、超高压交流输电技术(UHVDC)、柔性交流输电技术等。

这些技术的应用大大提高了电力输送效率和稳定性,同时降低了输电损耗。

2. 高压输电线路的建设在高压输电线路建设方面,目前已建设了大量的特高压输电线路和超高压输电线路。

特高压输电线路可以将电能传输距离提高到数千千米,超高压输电线路提高了输电电压,减少了输电损耗。

这些线路的建设不仅改善了电力供应的可靠性,还在一定程度上促进了各地区经济的发展。

3. 高压输电市场的竞争格局高压输电领域存在着一定的市场竞争,国内外企业都在争夺高压输电项目。

一些传统电力企业以及跨国能源企业在高压输电领域的布局非常积极。

同时,随着技术的不断更新换代,一些新兴科技公司也加入了高压输电领域,推动了市场竞争的加剧。

二、高压输电发展趋势1. 智能化与数字化随着信息技术的迅猛发展,智能化和数字化成为高压输电发展的趋势。

未来,高压输电系统将更加自动化和智能化。

通过引入先进的传感器和监测设备,实时监测和调控高压输电线路,提高系统的可靠性和运行效率。

2. 可再生能源的接入全球对可再生能源的需求不断增加,高压输电将扮演重要的角色来接入这些能源。

随着可再生能源的规模化发展,高压输电系统需要更高的输电能力和稳定性来适应这些能源的输送。

因此,超高压直流输电和柔性交流输电等技术将会得到更多的应用。

3. 能源互联网的构建未来,高压输电将与电力系统的其他部分更加紧密地相互联系,形成一个以能源为中心的互联网。

高压直流输电技术的发展与应用

高压直流输电技术的发展与应用

高压直流输电技术的发展与应用随着工业化的快速发展和日益增长的能源需求,输电技术的研究和应用成为了关键的问题。

高压直流输电技术作为一种高效、稳定和可靠的输电方式,逐渐受到了人们的关注和重视。

本文将就高压直流输电技术的发展历程以及当前的应用情况进行探讨。

一、高压直流输电技术的发展历程高压直流输电技术最早可追溯到19世纪末,当时用直流电由康奇对Nikola Tesla的交流电进行了吹嘘。

然而,直流输电在输送电能的时候存在许多问题,比如电压损耗大、输电距离有限等,导致直流输电的实际应用受到了很大的限制。

直到20世纪60年代,随着功率电子技术的快速发展,高压直流输电技术迎来了显著的突破。

在功率电子技术的支持下,直流输电的可行性得到了大幅提升。

特别是随着特高压直流输电技术的引入,实现了远距离大容量的输电,为能源的长距离传输提供了可行的解决方案。

二、高压直流输电技术的优势与传统的交流输电方式相比,高压直流输电技术具有很多明显的优势。

首先,直流电的传输损耗较小,能够实现远距离的传输。

其次,高压直流输电能够提供更稳定、可靠的电力供应,降低了电力系统的故障风险。

此外,直流输电还能够有效地减少电力系统的谐波和干扰,提高了输电效率和质量。

高压直流输电技术还具有更好的环境适应性。

由于直流输电线路不需要频繁的绝缘开关操作,减少了对环境的影响。

此外,导线材料的使用也相对较少,减少了资源的消耗。

都了很大的贡献。

三、高压直流输电技术的应用高压直流输电技术目前已经在世界各地得到了广泛应用。

特别是在远距离、大容量的电力传输领域,高压直流输电技术展现出了独特的优势。

在中国,特高压直流输电已经成为了重点推进的项目。

例如“西部大开发”项目,通过特高压直流输电技术将西部地区丰富的能源资源输送到东部地区,实现了能源的均衡布局。

同时,随着技术的不断进步,高压直流输电的应用范围也逐渐扩大,涉及到交通、航天、通信等领域。

四、高压直流输电技术的面临的挑战尽管高压直流输电技术具有很多优势,但是也面临着一些挑战。

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景

高压直流输电技术现状及发展前景摘要:由于我国的技术水平相对落后,导致我国电力系统的发展相对滞后,我国能源分布与电力资源使用很不均衡,电力输送的特点为大容量、长距离输电,为了减少电量损耗,我国目前主要研究高压直流输电技术和特高压直流输电技术。

随着我国高压直流输电技术日趋成熟,高压直流输电技术在电力系统中得到了广泛的应用,标志着我国高压直流输电时代的来临。

关键词:高压直流输电;技术现状;发展前景由于我国地域辽阔,能源分布及负荷发展很不平衡,水利资源主要集中在西南数省,煤炭资源主要集中在山西、陕西和内蒙古西部,而负荷主要集中在东部沿海地区,因此远距离大容量输电势在必行。

另一方面,电网互联是电力工业发展的必然趋势,我国各大区和独立省网的互联已进入实施阶段,利用高压直流输电作异步联网在技术上、经济上和安全性等方面的优势已在世界范围内得到证明。

因此高压直流输电技术必将以其技术上和经济上的独特优势,在远距离大容量输电和全国联网两个方面对我国电力工业的发展起到十分重要的作用。

1.高压直流输电优劣势分析①优势由于直流输电架空路线只需要两极导线正极和负极,线杆结构简单、造价低、损耗小;在直流电压下,线路电容不存在,没有电容电流;输送容量量大不易老化;不用考虑输电稳定性,有助于远距离大容量送电;不受联网影响,可以非同步联网,输送的有功功率和损耗的无功功率可由控制系统进行控制,提高了电力系统的质量和可靠性,有利于增容建设、节省投资效益。

②劣势由于直流输电换流变电所多,结构复杂,造价高,元器件多损耗。

如晶闸管换流时消耗大量无功功率;直流输电的特性造成一些接地技术问题;直流电流没有过零投切,给断路器灭火弧带来困难,这些问题需要充分研究并采取预防措施。

2.高压直流输电技术的发展现状我国关于高压直流输电技术的研究起步较晚,发展也相对滞后,由于技术不成熟,至今也没有在电力输送系统中得到广泛的应用。

我国目前采用的输电发展为全国联网、南北互供、西电东输的趋势,近年来,我国高压直流输电技术取得了显著进步,随着高压直流输电技术日趋成熟,我国将逐渐兴建一批远距离、大容量、超高压的直流输电工程,采用高压直流输电新技术,能够减少输电损耗,提高输电效率,进一步完善我国电网建设,提高电网运行的稳定性和可靠性。

超高压直流输电技术的发展现状分析

超高压直流输电技术的发展现状分析

超高压直流输电技术的发展现状分析中国是世界上电力消费最大的国家,特别是在西部地区,由于广袤的土地面积以及复杂的地形。

超高压直流输电技术被看作是解决该区域电力供应的关键技术之一。

在过去的十年中,中国在超高压直流输电技术研究和应用方面取得了显著进展。

一、超高压直流输电技术的研究进展超高压直流输电技术和传统的交流输电技术不同,它采用了直流电源,而不是传统的双曲线波形。

Super HVDC(直流电压超过800千伏)现在已成为超高压直流输电技术的代表。

2010 年,世界上第一条800千伏超高压直流输电线路建成并已投入使用。

在中国,从近十年来的技术创新和业绩分析上看,中国的超高压直流输电技术已经取得了显著的进展,成为中国电力工业发展的重要组成部分。

从大连至长距离(1,603千米)的直流输电到云南异地换流站的超高压直流输电,海底交流-直流综合输电,我国在超高压直流输电技术上都处于全球领先水平。

二、超高压直流输电技术的优势超高压直流输电具有很多优点,包括在远距离输电中节约电能、降低输电损失,可跨越河流等地形障碍,可以全年环境温度稳定运行,并且适合于经济发展更快的西部地区的输电需求。

超高压直流输电技术具有传输电量大,损耗小,无电磁干扰、抗风引起塔架倾斜和地震抗性等许多优点。

在超高压直流输电过程中,相同电压级别的交流输电不如直流输电占用地面空间小,直流输电线路的线损和设备损耗都比交流输电抵触小得多。

超高压直流输电技术的实现需要解决的重大技术问题包括:新材料的研究和应用,超高压开关技术,智能变电站等。

三、超高压直流输电技术的局限性超高压直流输电技术的建设成本高,尤其是在在全国分散的地区,很多的电力需求,具有高额的建设成本。

同时,超高压直流输电技术也存在潜在的风险。

例如,发生故障或断开时可能会在变电站或距离的末端发生电弧,引起高温烧蚀和火灾。

此外,对输电线路周边环境的影响也是超高压直流输电需要考虑的问题。

高强度的电磁场会影响周边居民的生活和健康。

高压直流输电技术的发展趋势与前景

高压直流输电技术的发展趋势与前景

高压直流输电技术的发展趋势与前景随着经济社会的发展和对电能的需求不断增加,传统交流输电方式逐渐显示出一些不足之处,高压直流输电技术逐渐成为一种被广泛关注和应用的新型输电方式。

本文将从技术发展趋势和前景两个方面进行探讨。

高压直流输电技术作为一种新兴的输电方式,具有一系列优势,这些优势使得其在未来的发展中有着广阔的前景。

首先,高压直流输电可以实现长距离、大容量的输电。

与传统的交流输电相比,高压直流输电的输电距离可以达到数千公里,且可以有效地减少功率损耗。

其次,高压直流输电具有较小的输电损耗和电弧的强大穿透能力,能够提高输电线路的负载能力和输电效率。

此外,高压直流输电系统具有较小的电磁辐射,对周边环境的干扰相对较小。

这些优势为高压直流输电技术在电力传输领域的发展提供了良好的条件。

在高压直流输电技术的发展趋势方面,我们可以从以下几个方面进行探讨。

首先,随着科技的进步,高压直流输电技术将更加成熟和可靠。

目前,高压直流输电技术存在着一系列的技术难题,如电力电子器件的研发和应用、电网调度与控制、设备可靠性等等。

随着科技的不断突破和创新,高压直流输电技术将逐渐成为一种成熟可靠的电力传输方式。

其次,高压直流输电技术将与可再生能源紧密结合。

随着可再生能源的广泛应用和发展,如风能和太阳能等,高压直流输电技术可以有效地将这些分散的能源资源进行集中储存和利用,减少能源浪费和环境污染。

再次,高压直流输电技术将实现智能化和自主化。

通过引入先进的数字化和自动化技术,高压直流输电系统可以实现对电力系统的实时监测和控制,提高系统运行的安全性和稳定性。

高压直流输电技术在全球范围内的前景也是十分广阔的。

目前,世界上许多国家和地区已经开始建设和应用高压直流输电项目,如中国、欧洲、北美等地。

由于高压直流输电技术的优势和应用前景,预计未来将会有更多的国家和地区加入到高压直流输电技术的发展队伍中来。

在发展中,高压直流输电技术还将与其他新能源技术相结合,形成一个更加完善和高效的能源网络。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 我国高压直流输电系统的发展历程及现状我国高压直流输电系统的发展历程我国的高压直流输电工程总体上可以说是起步较晚, 但发展迅速。

1980 年国家确定全部依靠自己力量建设中国第一项直流输电工程———舟山直流输电工程。

它具有向自主建设大型直流输电工程过渡的工业性试验性质,于1984 年开始施工, 1987 年投入试运行, 1989年正式投运。

工程最终规模为±1 100 kV, 500 A, 100 MW, 线路全长54 km。

嗓泅直流输电工程( 上海―嗓泅岛) 是我国自行设计、制造、建设的双极海底电缆直流工程, 于1996 年完成研究工作, 2002 年全部建成。

工程为双极±500 kV,600 A, 60 MW, 可双向供电, 线路长度66.2 km, 其中海底电缆 km。

葛南( 葛洲坝―上海南桥) 高压直流输电系统, 是我国引进的第一个高压直流输电工程, 1989 年单极投运, 1990 年双极投运。

进入21 世纪, 我国的高压直流输电发展迅速, 相继建成投产了天广( 天生桥―广州) 、三常( 三峡―常州) 、三广( 三峡―广东) 和贵广( 贵州―广东) 等多项高压直流输电项目。

作为引进技术的验证, 自主研发设计制造的华中―西北联网灵宝背背直流工程, 2005 年7 月投入运行。

我国高压直流输电系统的现状至2004 年末, 我国高压直流输电工程累计输送容量达12 470 MW, 输电线路长度累计达4 840 km, 已经超过美国位列世界第一。

截至2007 年年底, 我国已建成并正式投入运行葛( 洲坝) 沪( 上海) 、三( 峡) 常( 州) 、三( 峡) 广( 东) 、三( 峡) 沪( 上海) 、天( 天生桥) 广( 东) 、贵( 州) 广( 东) Ⅰ回、Ⅱ回等7 个超高压直流输电工程和灵宝背靠背直流工程, 直流输电线路总长度达7 085 km, 输送容量达18 560 MW, 线路总长度和输送容量均居世界第一。

与此同时, 我国超高压直流输电工程的设计建设、运行管理和设备制造水平也处于国际领先地位。

2 高压直流输电系统中存在的问题直流输电中的谐波问题工频的交变电流在换流站中的整流和逆变过程中, 实际上输出的波形并不是稳定的直流,而是有些许波动的脉动电流。

再加上换相的非理想性, 使得输出电流进一步畸变。

这些原因促成了直流输电系统中谐波的存在。

随着高压直流输电的发展, 相关的谐波问题也日益突出。

输电系统中的换流器在交流侧为谐波电流源,在直流侧为谐波电压源。

严重的情况下, 可能还会引起谐波放大甚至谐波不稳定, 即交直流侧电压、电流通过换流站非线性环节时互相调制, 构成了一个AC/DC 之间的正反馈调节环。

受到扰动时, 就会造成谐波振荡的放大, 其结果就是换流站交流母线电压严重畸变。

现在主要通过小信号分析法、谐波特征值分析法、频域分析和传递函数法、时域仿真―频率扫描法等来进行研究。

一般通过加装非特征滤波器、使用有源滤波器、附加谐波阻尼电路或者是采用轻型直流输电技术来抑制谐波。

高压直流断路器的制造目前我国的直流输电系统中, 高压直流断路器的制造技术还不成熟, 多数需要进口。

研制高压断路器的难点在于: ( 1) 直流电没有像交流电那样的过零点, 所以灭弧的技术很困难; ( 2) 直流回路的电感很大, 所以需要的平波电抗器很大, 约1H,这在工艺上做起来不容易; ( 3) 由于灭弧时的直流电流很大, 故要求断路器能够吸收很大的能量。

在实际的生产当中, 利用大容量金属氧化物这种新型材料可以较好地解决后2 个问题。

但灭弧仍然不是很理想, 一般采用叠加振荡电流和耗能限流2 种方式来实现。

后者较为普及, 一般采用分段串入电阻、拉长电弧和采用金属氧化物耗能。

大地回流造成的接地体腐蚀及对交流系统的影响直流输电过程是以大地作为回流电路的。

回流流经大地时, 会与附近的金属接地体发生化学反应, 腐蚀掉金属。

例如对于铁而言, 就会发生如下的化学反应:阳极:Fe2++2OH-=Fe(OH) 2阴极: 2e-+2H+=H2经研究表明:( 1) 接地体深埋并不会明显地减小腐蚀, 并且这种做法在经济上是不合适的; ( 2) 金属接地体与直流接地极之间的距离会显着影响腐蚀的程度,当两者相距10 km 以外时, 腐蚀影响即可忽略不计;( 3) 在相同的距离条件下, 金属接地体的走向会影响腐蚀的程度, 一般垂直走向的接地体受腐蚀影响比平行走向的接地体大。

同时, 强大的直流电流将经接地极注入大地, 在极址土壤中形成一个恒定的直流电流场。

此时如果极址附近有变压器中性点接地的变电站、地下金属管道或铠装电缆等金属设施, 若这些设施可能给地电流提供比大地土壤更为良好的导电通道, 则一部分电流将沿着并通过这些设施流向远方, 从而给这些设施带来不良影响。

其中, 中性点直接接地变压器是受影响最大的设备。

我国110 kV 及以上系统的变压器中性点, 一般都采用直接接地方式。

如变电站位于接地极电流场范围内, 那么在场内变压器间会产生电位差, 接地极入地电流将有部分直流电流会通过大地、交流输电线路, 由一个变电站变压器中性点流入, 在另一个变电站变压器中性点流出, 由此在变压器三相绕组中产生直流分量,产生直流偏磁电流。

流过变压器绕组的直流电流大小不仅与接地极的距离相关, 同时与极址土壤导电性能、电网接线和参数等有关。

如果流过变压器绕组的直流电流较大, 可能引起变压器铁心磁饱和, 导致变压器噪音增加、损耗增大、温升增高, 对变压器的安全运行构成威胁。

变压器发生直流偏磁后, 使磁化曲线的运行部分变得不对称, 加大铁心的饱和程度, 导致噪音增大和变压器铁心、金属紧固件等的发热增加。

直流输电系统电磁环境对通信系统的影响由于直流线路强大的直流电流, 在其周围也就存在着很强的干扰磁场。

这样的磁场将影响到附近通信线路的正常运行。

一般可把直流电磁影响分为危险影响和干扰影响。

危险影响即指当直流输电线路发生故障时, 有可能在附近的通信线路上感应出很高的电压, 危及人员生命安全和通信设备安全;干扰影响即指在直流输电线路正常运行的情况下对通信产生影响, 使其通信质量下降, 误码率提高。

因此, 在建设直流输电线路时要注意以下几点: 首先是和通信线路保持合适的距离; 其次是在线路上安装陶瓷放电管或是加挂屏蔽线路; 最后是对于市话电路来说, 可在分线箱、配电箱处加装放电器。

3 对我国高压直流输电工程的几点想法换流站站址选择及接地极极址选择换流站可谓是高压直流输电工程的核心建设项目, 合理选择换流站站址是确保高压直流输电系统稳定运行的基础。

选址原则一般为: ( 1) 是否适合大规模设备运输; ( 2) 是否靠近水源或者易获得充足的水源供应; ( 3) 是否会破坏生态环境, 其电磁影响会不会对周边通信线路产生较大的干扰影响。

而对于接地极来说, 选址原则一般为: ( 1) 要求极址场地的可用面积大、土壤导电性能好、导热性能好、热容率高、表层土壤厚和深层大地电阻率低; ( 2) 若2个或多个接地极处于同一地区内, 应对2 个甚至多个接地极共用极址方案进行论证。

线路路径的选择走廊宽度: 主要是合理选择与通信线路以及交流输电线路之间的距离, 尽可能地减小干扰, 使得线路中心线与其他设备有良好的隔离。

一般对于±500 kV 直流输电系统, 要求走廊宽度不小于50 m。

对地距离及交叉跨越间距: 确定导线对地最小距离的决定因素是合成场强和离子流密度。

一般为了安全起见, 对地距离保持在17~20 m。

当高压直流线路与铁路、公路、弱电线路、电力线路、建筑物及河流等交叉时, 交叉跨越间距均有较大增加。

由于对地距离及交叉跨越间距的增大, 在路径选择时, 应充分利用地形条件, 以缩短交叉跨越档距, 减小交叉跨越塔高度, 尽量避免大档距、大高差及大跨越的出现。

如何应对突发性大雪灾等恶劣气象条件2008 年春节期间, 全国大范围的雪灾天气使我国电网经受了一次较大的考验。

电网在冰雪天气下停运会造成巨大的经济损失。

鉴于这场大雪的教训, 我们在设计高压直流输电工程时, 也应考虑到这种极端气象条件下电网的稳定运行问题。

其中一点就是导线的选择。

导线选择是解决特高压输电关键技术的重要课题, 对线路输送容量、传输特性、环境问题( 静电感应,电晕引发的电场效应、离子流、无线电干扰、电视干扰、可听噪声等) 、技术经济指标等都很有影响。

一般选线原则应为: ( 1) 不能制约整条线路的传输能力; ( 2) 要有较高的机械强度和过载能力; ( 3) 铝导线在冰荷载下的安全系数要高, 以防止重冰区线路过荷载时断股; ( 4)弧垂特性要好, 以降低杆塔高度; ( 5) 满足环境参数要求。

4 结束语目前世界上已投入运行的直流输电工程有70 多个。

在远距离大容量输电、海底电缆和地下电缆输电以及电力系统非同步联网工程中, 直流输电已经得到了广泛应用。

2007 年10 月, 在湖北省宜昌市召开的第八届国际高压直流输电用户会议上, 国家电网公司副总经理舒印彪介绍, 根据规划, 到2012 年, ±800 kV 向家坝—上海、锦屏—苏南直流工程将建成投运; 到2020 年前后, 溪洛渡—株洲、溪洛渡—浙西等特高压直流工程也将建成。

届时, 我国将建成特高压直流工程15 个, 包括特高压直流换流站约30 座, 线路约26 000 km, 输送容量达到94 400 MW, 并成为世界上拥有直流输电工程最多、输送线路最长、容量最大的国家。

相关文档
最新文档