行星齿轮传动比计算
行星齿轮减速器的相关计算

行星齿轮减速器的相关计算行星齿轮减速器是一种常用的机械传动装置,其特点是结构紧凑、承载能力大、传动效率高。
在工程设计和机械计算中,对行星齿轮减速器的相关参数进行计算是必不可少的工作。
本文将详细介绍行星齿轮减速器的相关计算方法。
一、行星齿轮减速器的基本构造二、行星齿轮减速器的传动比计算传动比是指输入轴和输出轴的转速比,可以通过以下公式计算:i=(N_s+N_r)/N_s其中,i为传动比,N_s为太阳齿轮的齿数,N_r为行星齿轮的齿数。
行星齿轮减速器的传动比可以通过调整太阳齿轮和行星齿轮的齿数来实现。
三、行星齿轮减速器的传动效率计算η=(1-δ/100)*(1-ε/100)其中,η为传动效率,δ为齿间损失系数,ε为噪声损失系数。
行星齿轮减速器的传动效率受到齿轮的磨损和摩擦影响,一般情况下,传动效率在95%以上。
四、行星齿轮减速器的扭矩计算输入轴扭矩计算可以通过以下公式计算:T_in = P / (n * η)其中,T_in为输入轴扭矩,P为输出功率,n为输入轴转速,η为传动效率。
输出轴扭矩计算可以通过以下公式计算:T_out = i * T_in其中,T_out为输出轴扭矩,i为传动比,T_in为输入轴扭矩。
五、行星齿轮减速器的选择在实际工程中,选择合适的行星齿轮减速器需要考虑以下因素:1.承载能力:根据实际应用需求,选择承载能力适当的行星齿轮减速器。
2.传动比:根据需要的输出转速和输入转速,选择合适的行星齿轮减速器。
3.外形尺寸:根据实际安装空间,选择符合尺寸要求的行星齿轮减速器。
4.传动效率:选择传动效率高的行星齿轮减速器,以提高传动效率和节能效果。
5.稳定性:选择结构稳定、运行平稳的行星齿轮减速器,以减少振动和噪声。
六、行星齿轮减速器的基本计算流程1.确定输入功率、输入转速和输出转速。
2.根据输入功率和输入转速计算输入轴扭矩。
3.根据输入轴扭矩和传动比计算输出轴扭矩。
4.根据输出轴扭矩和输出转速计算输出功率。
行星齿轮传动比最简计算方法--公式法

行星齿轮传动比计算在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+c ba a bc i i ――――――――――――――――――――――――1 acx a bx abci i i = ―――――――――――――――――――――――――2 a cb abc i i 1= ――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如象论坛中“大模王”兄弟所举的例子:在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bci i i =将x 加进去, 所以可以得出:e bx e ax eab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba abc i i 了,所以)1()1(xbe x ae ebx e ax eab i i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01c e bd ae c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ⨯-+=⨯--⨯--=--== 再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
行星轮系传动比计算

1 行星轮系的传动比
CONTENTS
目
2 行星轮系传动比计算
录
行星轮系的传动比
iGHK
nGH nKH
nG nK
nH nH
(1)m
从齿轮G到K所有从动齿数积 从齿轮G到K所有主动齿数积
式中:G、K——周转齿轮系中的两个轮 m——从G到K齿轮间外啮合齿轮的对数
行星轮系的传动比
应用上式应注意:
1)G轮与K轮的轴线平行或重合,才能用上式;
2)齿数比前的符号按定轴齿轮系的方法确定, 且必须有正、负号。
3)将 nG、nK、nH
三个量代入公式时,必须带有转向的“+、-”号,将其中一 个转向设为正,相反的要连同负号一起代入上式。
4) iGHK iGK
iGHK
nG nKG
nH nH
谢谢观计算
例1 图示的差动齿轮系中,已知 z1 =20,z2 =30,z3 =80,
n1 =100 r/min,n3 =20 r/min。试问: 1)n1 与 n3 转向相同时,nH =? 2)n1 与 n3 转向相反时,nH =?
总结
1.行星轮系的传动比 2.行星轮系传动比的计算
行星齿轮传动比最简计算方法--公式法

在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+c ba a bc i i ――――――――――――――――――――――――1 a cx a bxa bc i i i = ―――――――――――――――――――――――――2a cb a bc i i 1= ――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如象论坛中“大模王”兄弟所举的例子:在此例中,要求出e ab i =,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bci i i =将x 加进去, 所以可以得出:e bx e ax eab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba abc i i 了,所以)1()1(xbe x ae ebx e ax eab i i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01c e bd ae c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ⨯-+=⨯--⨯--=--== 再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
大行星齿轮传动比计算公式

大行星齿轮传动比计算公式大行星齿轮传动是一种常用的传动方式,广泛应用于工程机械、汽车等领域。
在设计和分析大行星齿轮传动系统时,计算传动比是非常重要的一步。
本文将介绍大行星齿轮传动比的计算公式及其应用。
一、大行星齿轮传动的基本结构大行星齿轮传动由太阳齿轮、行星齿轮、内齿圈和行星架等部分组成。
其中,太阳齿轮固定不动,内齿圈与外部传动轴相连,行星齿轮通过行星架与太阳齿轮和内齿圈相连。
二、大行星齿轮传动比的定义大行星齿轮传动比是指输入轴(太阳齿轮)的转速与输出轴(内齿圈)的转速之比。
传动比的大小决定了输出轴的转速和扭矩。
三、大行星齿轮传动比的计算公式大行星齿轮传动比可以根据行星齿轮传动的结构特点进行计算。
以下是常用的两种计算公式:1. 太阳齿轮传动比公式传动比=(内齿圈齿数+太阳齿数)/太阳齿数2. 行星齿轮传动比公式传动比=内齿圈齿数/行星齿数以上两种计算公式适用于不同的大行星齿轮传动结构,根据实际情况选择合适的公式进行计算。
四、大行星齿轮传动比的应用大行星齿轮传动比的计算在工程设计和分析中具有重要的意义。
以下是一些常见的应用场景:1. 机械设计中,通过计算传动比可以确定输出轴的转速和扭矩,从而满足设计要求。
2. 汽车传动系统中,大行星齿轮传动被广泛应用于变速器中。
通过计算传动比,可以实现不同档位之间的转速匹配,提高汽车的行驶性能和燃油经济性。
3. 工程机械中,大行星齿轮传动常用于液压马达的传动系统。
通过计算传动比,可以确定液压马达的输出速度和扭矩,从而实现机械装置的正常工作。
五、总结大行星齿轮传动比的计算是大行星齿轮传动系统设计和分析中的重要环节。
本文介绍了大行星齿轮传动比的计算公式及其应用,希望对读者理解和应用大行星齿轮传动有所帮助。
六、参考文献1. 《机械设计基础》(杨文彬、陈涛著,中国水利水电出版社)2. 《汽车传动系统设计与分析》(郑敏著,机械工业出版社)。
行星齿轮传动比计算公式

行星齿轮传动比计算公式
行星齿轮传动是一种广泛应用于机械传动系统中的一种机构。
它由太阳齿轮、行星齿轮和内齿圈组成,通过太阳齿轮的输入,实现输出转矩和速度的变换。
行星齿轮传动的传动比计算公式如下:
传动比 = (1 + N) / N
其中,N为行星齿轮的齿数。
其中太阳齿轮和内齿圈的齿数可以通过齿轮的模数、齿数比和齿数关系计算得到。
行星齿轮的齿数决定了传动比的大小。
需要注意的是,在实际传动中,行星齿轮传动常常采用多级的组合形式,以实现更大范围的传动比。
在多级行星齿轮传动中,每个级别的传动比都可以使用上述的传动比计算公式进行计算,最终的传动比等于各级传动比之积。
总之,行星齿轮传动的传动比计算公式为(1 + N) / N,其中N为行星齿轮的齿数。
行星齿轮机构传动比计算方法

行星齿轮机构传动比计算方法Key words: epicyclic gear train; speed ratio; compute way.随着行星齿轮减速器以及行星齿轮传动在变速箱中的广泛应用,对行星齿轮传动的了解和掌握已成为工程技术人员的必要技能。
但是,对于刚接触行星齿轮传动的工程技术人员来说,行星齿轮传动的速比计算比较不容易理解和掌握。
本文通过对各类参考资料及教科书中的行星齿轮传动速比计算方法进行总结归纳,并针对常用的最具代表性的2K-H型行星齿轮传动,分别用不同方法对其传动特性方程进行了推导论证。
行星齿轮传动或称周转轮系。
根据《机械原理》[1]上的定义,我们可把周转轮系分为差动轮系和行星轮系。
为理解方便,本论文所讨论限于2K-H型周转轮系。
关于行星齿轮传动(周转轮系)的速比计算方法,归纳起来有两大类四种方法,分别为由行星架固定法和力矩法组成的分析法;由速度图解法和矢量法组成的图解法[2]。
矢量图解法一般适用于圆锥齿轮组成的行星齿轮传动,在此不作介绍;下面分别运用其它三种计算方法对2K-H型周转轮系的传动特性方程(1)进行推导。
1-太阳轮 2-行星轮 3-内齿圈 H -行星架 图1 行星齿轮传动Fig 1 Epicyclic gear train0)1(31=++-αωωαωH (1) 结合图1,式中1ω为太阳轮1的转速、Hω为行星架H 转速、3ω为内齿圈3转速、α为内齿圈3与太阳轮1的齿数比即13Z Z =α。
1 行星架固定法机械专业教科书上一般介绍的都是此种方法,也可叫转化机构法。
其理论是一位名叫Wlies 的科学家于1841年提出的,即“一个机构整体的绝对运动并不影响其内部各构件间的相对运动” [3],就像手表的时针、分针、秒针的相对运动不会因带表人的行动而变化。
如图2所示,其中太阳轮1、行星轮2、内齿圈3、行星架H 的转速分别为Hωωωω、、、321。
我们假定整个行星轮系放在一个绕支点O 旋转的圆盘上,此圆盘的转速为 H ω-。
行星齿轮传动比最简计算方法公式法

行星齿轮传动比计算在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比eab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。
一式求解行星齿轮传动比有三个基本的公式1=+c ba a bc i i ――――――――――――――――――――――――1a cxa bxa bcii i =―――――――――――――――――――――――――2 acba bci i 1= ――――――――――――――――――――――――――3熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。
关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等例如象论坛中“大模王”兄弟所举的例子:在此例中,要求出eab i =,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。
所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cxabxa bci i i =将x 加进去,所以可以得出:e bxe axe abi i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第一个公式1=+c ba abc i i 了,所以)1()1(xbe xae e bxe axe abi i i i i --==所以现在eab i 就变成了两个定轴传动之间的关系式了。
定轴传动的传动比就好办了,直接写出来就可以了。
即)1()1())1(1())1(1()1()1(01ce b d a ec e b dc e a c xbe xae e bx e ax eab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ⨯-+=⨯--⨯--=--== 再例如下面的传动机构:已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行星轮系传动比的计算
【一】能力目标
1.能正确计算行星轮系和复合轮系的传动比。
2.熟悉轮系的应用。
【二】知识目标
1.掌握转化机构法求行星轮系的传动比。
2.掌握混合轮系传动比的计算。
3.熟悉轮系的应用。
【三】教学的重点与难点
重点:行星轮系、混合轮系传动比的计算。
难点:转化机构法求轮系的传动比。
【四】教学方法与手段
采用多媒体教学,联系实际讲授,提高学生的学习兴趣。
【五】教学任务及内容
一、行星轮系传动比的计算
(一)行星轮系的分类
若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。
行星轮系的组成:行星轮、行星架(系杆)、太阳轮
(二)行星轮系传动比的计算
以差动轮系为例(反转法)
转化机构(定轴轮系) T的机构
1 2
3
4
差动轮系:2个运动
行星轮系:,
对于行量轮系:
∴
∴
例12.2:图示为一大传动比的减速器,Z 1=100,Z 2=101,Z 2'=100,Z 3=99。
求:输入件H 对输出件1的传动比i H1
解:1,3中心轮;2,2'行星轮;H 行星架
H H W W W -=111W H H W W W -=222W H H W W W -=333W 0=-=H H H H W W W H W 13
313
113
)1(Z Z W W W W W W i
H H
H H H
⋅'-=--==03
=W 13
10Z Z W W W H H
-=--11
3
11+==Z Z W W i H H )
(z f W W W W W W i
H B H A H B H A H AB
=--==0=B W AH
H
A H H A H A
B i W W
W W W i -=-=--=110H
AB AH i i -=1
给整个机构(-W H )绕OO 轴转动
∵W 3=0
∴
∴
若Z 1=99
行星轮系传动比是计算出来的,而不是判断出来的。
(三)复合轮系传动比的计算
复合轮系:轮系中既含有定轴轮系又含有行星轮系,或是包含由几个基本行星轮系的复合轮系。
复合轮系传动比的计算:先将混合轮系分解成行星轮系和定轴轮系,然后分别列出传动比计算式,最后联立求解。
1、分析轮系的组成
1、2、2'、3——定轴轮系; 1'、4、3'、H ——周转轮系
213
223113)1('⋅⋅⋅-=--=
Z Z Z Z W W W W i H H
H H
H H i Z Z Z Z W W W 13
213210'=--H H i Z Z Z Z W W 1321321
1'=+-
H
H i i 13
1100100991011⨯⨯-
=10000
1001009910111
111=⨯⨯-
=
=
H
H i i 1001-=H i 1
2
3H
42'
1
23
2H 1
4
5
65
H 2
(a)
(b)
2、分别写出各轮系的传动比
定:
周:
3、找出轮系之间的运动关系
联立求解:
(H ,5这一整体)
例12.3 电动卷扬机减速器, Z 1=24,Z 2=48,Z 2'=30,Z 3=90 Z 3'=20,Z 4=30,Z 5=80,求i 1H
解:(1)1,2-2',3,H ——周转轮系;3',4,5——定轴轮系
(2)
(3)
(4)联立
若
二、齿轮系的应用
2132231
13)1('-==
Z Z Z Z W W i 311313)1(''
''''-=--=
Z Z
W W W W i H H H ⎭
⎬
⎫
==''3311W W W W 32321131111Z Z Z Z Z Z Z Z W W i H
H
'
'''
'++
=
=213
23113)1(''-=--=
Z Z Z Z W W W W i H H
H
355353'''-==
Z Z
W W i ⎭
⎬
⎫
=='533W W W W H 311=H i min /1450
1r n =min /77.46311450
11r i n n H H ≈==
2H
5
4
1
32'
3'
(一)定轴轮系的应用
1、实现大传动比传动
2、实现较远距离的传动(减小机构的尺寸和重量)
3、实现换向传动
4、实现变速传动(汽车齿轮变速箱)
5、实现多分路传动(机械式钟表机构)
(二)行星轮系和复合轮系的应用
1、实现大传动比
2、实现运动的合成
3、实现运动的分解。
(汽车后桥差减速器)
4、实现变速、换向传动
5、结构紧凑的大功率传动
6、利用行星轮输出的复杂运动满足某些特殊要求。
三、其他新型齿轮传动装置简介
(一)摆线针轮行星传动
摆线针轮行星传动的工作原理、输出机构与渐开线少齿差行星传动基本相同,其结构上的差别在于行星轮2改为延长外摆线的等距曲线作齿廓称为摆线轮;用针棒代替中心轮1的轮齿,称为针轮。
摆线针轮行星传动机构
具有减速比大(一般可达iHV=9~ 115,多级可获得更大的减速比),结构紧凑、传动效率高(一般可达90%~ 94% 左右)、传动平稳等优点。
此外,还有无齿顶相碰和齿廓重叠干涉等问题。
(二)谐波齿轮传动
这种传动是借助波发生器迫使相当于行星轮的柔轮产生弹性变形,来实现与钢轮的啮合。
谐波齿轮传动由三个基本构件组成:谐波发生器、刚轮、柔轮。
四、减速器
减速器的种类很多。
常用的齿轮及蜗杆减速器按其传动及结构特点,大致可分为三类:
(1)齿轮减速器:主要有圆柱齿轮减速器、圆锥齿轮减速器和圆锥—圆柱齿轮减速器三种。
(2)蜗杆减速器:主要有圆柱蜗杆减速器、圆弧齿蜗杆减速器、锥蜗杆减速器和蜗杆—齿轮减速器等。
(3)行星减速器:主要有渐开线行星齿轮减速器、摆线针轮减速器和谐波齿轮减速器等。
(一)常用减速器的主要类型、特点和应用
1、齿轮减速器
齿轮减速器按减速齿轮的级数可分为单级、二级、三级和多级减速器几种;按轴在空间的相互配置方式可分为立式和卧式减速器两种;按运动简图的特点可分为展开式、同轴式和分流式减速器等。
单级圆柱齿轮减速器的最大传动比一般为8——10,作此限制主要为避免外廓尺寸过大。
若要求i>10时,就应采用二级圆柱齿轮减速器。
二级圆柱齿轮减速器应用于i:8—50及高、低速级的中心距总和为250—400mmm的情况下。
三级圆柱齿轮减速器,用于要求传动比较大的场合。
圆锥齿轮减速器和二级圆锥—圆柱齿轮减速器,用于需要输入轴与输出轴成90~配置的传动中。
因大尺寸的圆锥齿轮较难精确制造,所以圆锥—圆柱齿轮减速器的高速级总是采用圆锥齿轮传动以减小其尺寸,提高制造精度。
齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。
2、蜗杆减速器
蜗杆减速器的特点是在外廓尺寸不大的情况下可以获得很大的传动比,同时工作平稳、噪声较小,但缺点是传动效率较低。
蜗杆减速器中应用最广的是单级蜗杆减速器。
单级蜗杆减速器根据蜗杆的位置可分为上置蜗杆、下置蜗杆及侧蜗杆三种,其传动比范围一般为i:10—70。
设计时应尽可能选用下置蜗杆的结构,以便于解决润滑和冷却问题。
3、蜗杆—齿轮减速器
这种减速器通常将蜗杆传动作为高速级,因为高速时蜗杆的传动效率较高。
它适用的传动比范围为50—130。
(二)减速器传动比的分配
由于单级齿轮减速器的传动比最大不超过10,当总传动比要求超过此值时,应采用二级或多级减速器。
此时就应考虑各级传动比的合理分配问题,否则将影响到减速器外形尺寸的大小、承载能力能否充分发挥等。
根据使用要求的不同,可按下列原则分配传动比:(1)使各级传动的承载能力接近于相等;
(2)使减速器的外廓尺寸和质量最小;
(3)使传动具有最小的转动惯量;
(4)使各级传动中大齿轮的浸油深度大致相等。
(三)减速器的结构
图示为单级直齿圆柱齿轮减速器的结构,它主要由齿轮(或蜗杆)、轴、轴承、箱体等组成。
箱体必须有足够的刚度,为保证箱体的刚度及散热,常在箱体外壁上制有加强肋。
为方便减速器的制造、装配及使用,还在减速器上设置一系列附件,如检查孔、透气孔、油标尺或油
面指示器、吊钩及起盖螺钉等。
小结:
1、行星轮系传动比的计算。
2、混合轮系传动比的计算。
3、轮系的应用。
作业与思考:
1、“转化机构法”的根据何在?
2、摆线针轮行星传动中,针轮与摆线轮的齿数差为多少?
3、谐波齿轮减速器与摆线针轮减速器相比有何特点?。