场效应管工作原理与应用演示文稿
场效应管工作原理及应用

场效应管工作原理(1)场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应三极管的型号命名方法现行有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
MOSFET原理功率MOS及其应用ppt课件

20
2 场效应 管放大电 路
一、场效应管偏置电路
场效应管偏置电路的关键是如何提供栅源控制电压UGS
自给偏置电路: 适合结型场效应管和耗尽型MOS管
外加偏置电路: 适合增强型MOS管
D G
S
1、自给偏置电路
UGS = UG-US = -ISRS ≈ -IDRS
I
D
IDSS (1
UGSQ和IDQ
衬底B
7
二、N沟道增强型MOS场效应管工作原理 增强型MOS管
一 方 面
当VGS=0V时,漏源之间相当两个背靠背的PN结,无论VDS 之间加什么电压都不会在D、S间形成电流iD,即iD≈0. 动画
当VGS较小时,虽然在P型衬
VDS
六
底表面形成一层耗尽层,但负离
子不能导电。 当VGS=VT时, 在P型衬底表面
JFET:反向饱和电流剧增时的栅源电压
MOS:使SiO2绝缘层击穿的电压
17
1 MOS场 效应管
7. 低频跨导gm :反映了栅源压对漏极电流的控制作用。
gm
diD dvGS
VDS C
8. 输出电阻rds 9. 极间电容
rds
dvDS diD
VGS C
Cgs—栅极与源极间电容 Cgd —栅极与漏极间电容 Csd —源极与漏极间电容
id gmvgs gds vds
iD
G +
id D +
vgs
gds vds
-
gmvgs
-
S
24
2 场效应 管放大电 路
三、三种基本放大电路
1、共源放大电路
(1) 直流分析
UGS = UG-US
场效应管工作原理与应用通用课件

增强型场效应管是在正常工作状态下需要加正向栅极电压才能导通,而耗尽型场效应管则是加反向电 压导通。
详细描述
增强型场效应管在无电压时,半导体中没有导电沟道,需要加正向栅极电压后才会形成导电沟道;而 耗尽型场效应管在无电压时,半导体中已经存在导电沟道,加反向电压后可调节导电沟道的宽度。
绝缘栅双极晶体管(IGBT)
1 2
根据电路需求选择合适的类型
根据电路的电压、电流和频率要求,选择合适的 场效应管类型,如N沟道或P沟道。
考虑导通电阻和开关性能
选择导通电阻较小、开关速度较快的场效应管, 以提高电路性能。
3
考虑最大工作电压和电流
根据电路的最大电压和电流,选择能够承受的场 效应管。
场效应管使用注意事项
正确连接电源和信号线
效应管。
导通不良
02
如果场效应管导通不良,会影响电路性能,需要检查驱动信号
是否正常,以及场效应管本身是否有问题。
噪声干扰
03
如果电路中存在噪声干扰,会影响场效应管的正常工作,需要
采取措施降低噪声干扰。
05
场效应管封装与测试
场效应管封装形式
金属封装
采用金属外壳作为场效应管的封装,具有良好的 散热性能和电气性能。
场效应管工作原理与应用通 用课件
contents
目录
• 场效应管简介 • 场效应管工作原理 • 场效应管应用 • 场效应管选型与使用注意事项 • 场效应管封装与测试
01
场效应管简介
场效应管定义
场效应管(Field-Effect Transistor ,FET):是一种利用电场效应控制 电流的半导体器件。
电场效应:是指外加电场对导体内部 的电荷分布和运动状态产生影响的现 象。
功率场效应管的结构工作原理及应用

功率场效应管的结构工作原理及应用功率场效应管(Power MOSFET)是一种具有开关能力的功率半导体器件,它以场效应传导为基础实现功率放大或开关控制。
功率场效应管是现代电子设备中极为重要的组成部分,其具有结构简单、高效率、低噪声、体积小等优点,广泛应用于电源、电机控制、LED驱动和无线电频率放大等各个领域。
一、结构:功率场效应管的结构与小信号场效应管类似,主要包括强制耦合区、漏极区、源极区和栅极区。
其中,强制耦合区主要是功率MOSFET特有的结构,在高功率应用中主要用于减小开关时的开关损耗,提高开关速度。
漏极区用于集中分布外接负载电流,源极区用于提供电流,栅极区用于控制电流。
而与小信号场效应管不同的是,功率场效应管的漏极和源极区域都要经过优化以承受高电压和大电流的作用。
此外,功率场效应管通常采用金属包封封装,以方便散热、保护芯片,并且可以通过钳位散热器等手段进一步提高工作效率和稳定性。
二、工作原理:功率场效应管的工作原理基于场效应传导。
当栅极电压为正值时,使得栅极和源极之间的沟道形成N型导电区,增大了导电区域,使通流能力增加;当栅极电压为零或负值时,栅极和源极之间的沟道被截断,导电区域变小,导通能力减小。
这样能够通过栅极电压的控制来实现对电流的开关控制,从而达到放大或开关的效果。
三、应用:1.电源:功率场效应管可以用于直流电源的变换、调节和开关。
通过控制输入信号的开关,可以实现对输出电压和电流的调节。
功率场效应管在开关频率高、效率高的AC/DC电源和DC/DC变换器中得到广泛应用。
2.电机控制:功率场效应管可用于电机的驱动和控制。
通过控制栅极电压,可以实现电机的开关和速度调节,广泛应用于电动车、工业自动化等领域。
3.LED驱动:功率场效应管在LED照明中起到了至关重要的作用。
通过控制功率场效应管的开关状态,可以实现对LED的亮度和颜色的调节,同时提高了LED照明的效率和稳定性。
4.无线电频率放大:功率场效应管在无线电通信领域中广泛用于频率放大。
场效应管+讲解

场效应管+讲解
场效应管
场效应管(Field Effect Transistor, FET)是一种电子电路器件,是由电流流过一个小面积的外部接触层与绝缘底座的晶体管件,具有电子和离子的交互作用而构成的。
它们的特点是有一个小的控制电压来控制一个大的电流,这是晶体管所不具有的特性,所以场效应管可以用来做信号放大器。
场效应管的工作原理是,当对晶体管的接口处施加一个正偏压后,会在晶体管中构成一个叫做“场效应”的变量,电子以及空穴便会在晶体管中流动,当此电压大小发生改变时,在晶体管中的电子流动也会发生改变,这时的电流可以从晶体管的某处取出,因而晶体管构成了一个电路,这就是场效应管。
由于场效应管的特性,它被广泛用于电子电路,尤其是电路的控制与信号放大等方面,在无线电领域中,场效应管也有广泛的应用。
在目前的电子电路中,MOSFET(摩尔管)和JFET(自给效应管)是最常用的两种场效应管,前者的构造比较复杂,通常使用在模拟信号放大方面,而后者的构造相对比较简单,使用在数字信号放大方面。
- 1 -。
场效应管工作原理与应用演示文稿

数学模型:
VDS 很小 MOS 管工作在非饱区时,ID 与 VDS 之间呈线性关系:
ID
nCOXW
2l
[2(VGS
VGS(th))VDS
VD2S ]
nCOXW
l
(VGS
VGS(th))VDS
其中,W、l 为沟道的宽度和长度。
COX (= / OX) 为单位面积的栅极电容量。
ID/mA VDS = VGS – VGS(th)
条件: 特点:
VGS > VGS(th) V DS < VGS – VGS(th)
VGS = 5 V
4.5 V 4V 3.5 V
ID 同时受 VGS 与 VDS 的控制。O
VDS /V
当 VGS为常数时,VDSID 近似线性,表现为一种电阻特性;
当 VDS为常数时,VGS ID ,表现出一种压控电阻的特性。
P+
N+
N+
P
P
由图
VGD = VGS - VDS
▪ VDS 很小时 → VGD VGS 。此时 W 近似不变,即 Ron 不变。
因此
VDS→ID 线性 。
▪ 若 VDS →则 VGD → 近漏端沟道 → Ron增大。
此时
Ron →ID 变慢。
▪ 当 VDS 增加到使 VGD = VGS(th) 时 → A 点出现预夹断
3.1 MOS 场效应管
MOSFET
增强型(EMOS) 耗尽型(DMOS)
N 沟道(NMOS) P 沟道(PMOS) N 沟道(NMOS) P 沟道(PMOS)
N 沟道 MOS 管与 P 沟道 MOS 管工作原理相似, 不同之处仅在于它们形成电流的载流子性质不同,因此 导致加在各极上的电压极性相反。
场效应管的结构及工作原理 和应用例题讲解

场效应管的结构及工作原理和应用例题讲解嘿呀!今天咱们来好好聊聊场效应管的结构及工作原理和应用例题讲解。
首先呢,咱们来瞅瞅场效应管的结构哇!场效应管分成好几种类型,像结型场效应管和绝缘栅型场效应管等等。
就拿绝缘栅型场效应管来说吧,它里面又有增强型和耗尽型之分呢。
哎呀呀,这结构可复杂又精细!
再说说它的工作原理呀!简单来讲,场效应管是通过电场来控制电流的。
比如说,在栅极上加不同的电压,就能改变导电沟道的宽窄,从而控制源极和漏极之间的电流。
哇塞,是不是很神奇!
接下来咱们看看它的应用,这可太广泛啦!在电子电路中,场效应管可以用来做放大器,增强信号的强度呢。
还有哦,在数字电路里,它能当开关使用,控制电路的通断。
哎呀呀,这可真是太重要啦!
给您举个应用例题讲解讲解哈。
比如说,在一个音频放大电路中,咱们就用场效应管来放大声音信号。
首先,根据输入信号的大小和频率,选择合适的场效应管型号。
然后呢,设计好电路的参数,像偏置电压、负载电阻啥的。
哇!通过合理的调试和优化,就能让声音变得更加清晰、响亮。
还有在电源管理方面,场效应管也大有用处呀!比如说,在直流-直流转换器中,它可以高效地控制电流的流动,提高电源的转换效率。
哎呀,这可不得了!
在通信领域呢,场效应管也是不可或缺的哟!比如在手机的射频
放大器中,它能让信号传输更加稳定和可靠。
哇哦!
总之呀,场效应管的结构、工作原理以及应用真是太重要、太广泛啦!咱们可得好好掌握,才能在电子电路的世界里畅游无阻呢!您说是不是呀?。
《场效应管》课件

场效应管的主要参数和特性曲 线
了解场效应管的主要参数和特性曲线对于正确应用和设计电路非常重要。我 们将深入研究栅极阈值电压,沟道电阻,最大电流等参数,并讨论它们的影 响和相互关系。
场效应管应用领域和发展趋势
场效应管在现代电子领域中有广泛的应用,从放大器到开关电路,再到模拟 和数字电路。本节将探索场效应管在不同领域中的应用和未来发展的趋势。
《场效应管》PPT课件
在这个PPT课件中,我们将深入探讨场效应管的基本概念和分类,工作原理和 特性,构造和制造工艺,主要参数和特性曲线,应用领域和发展趋势等方面。 让我们一起来了解这个重要的电子元件!
场效应管的基本概念和分类
场效应管是一种重要的半导体器件,通过控制电场来控制电流的流动。它根据不同的工作方式和结构特 点可以分为多种类型,如增强型,耗尽型和绝缘栅型场效应管等。
场效应管的工作原理和特性
这里将详细介绍场效应管的工作原理,包括栅极电压对电流的控制、沟道导 电机制和输出特性等内容。我们将深入探讨它在电路中的重要作用和特点。
场效应管的构造和制造工艺
场效应管的构造和制造工艺对其性能和可靠性有重要影响。本节将介绍不同类型场效应管的构造和制管的比较
场效应管与普通晶体管各有优点和特点。我们将对它们的工作原理,输入输 出特性和应用进行比较和分析,帮助您选择最合适的器件。
场效应管的输入输出特性
场效应管的输入输出特性直接影响电路的性能和工作稳定性。本节将重点讨 论输入输出电阻,增益,线性范围等关键特性,并介绍如何优化设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优选场效应管工作原理与应用 ppt
概述
场效应管是另一种具有正向受控作用的半导体器件。 它体积小、工艺简单,器件特性便于控制,是目前制造 大规模集成电路的主要有源器件。
场效应管分类:
MOS 场效应管 结型场效应管
场效应管与三极管主要区别:
• 场效应管输入电阻远大于三极管输入电阻。 • 场效应管是单极型器件(三极管是双极型器件)。
ID/mA VDS = VGS – VGS(th)
条件: 特点:
VGS > VGS(th) V DS < VGS – VGS(th)
VGS = 5 V
4.5 V 4V 3.5 V
ID 同时受 VGS 与 VDS 的控制。O
VDS /V
当 VGS为常数时,VDSID 近似线性,表现为一种电阻特性;
当 VDS为常数时,VGS ID ,表现出一种压控电阻的特性。
3
3.1 MOS 场效应管
MOSFET
增强型(EMOS) 耗尽型(DMOS)
N 沟道(NMOS) P 沟道(PMOS) N 沟道(NMOS) P 沟道(PMOS)
N 沟道 MOS 管与 P 沟道 MOS 管工作原理相似, 不同之处仅在于它们形成电流的载流子性质不同,因此 导致加在各极上的电压极性相反。
因此预夹断后: VDS →ID 基本维持不变。
9
▪ 若考虑沟道长度调制效应 则 VDS →沟道长度 l →沟道电阻 Ron略 。 因此 VDS →ID 略 。 由上述分析可描绘出 ID 随 VDS 变化的关系曲线:
ID VGS一定
O VGS –VGS(th)
VDS
曲线形状类似三极管输出特性。
N+
P+
N+
N+
P
P
由图
VGD = VGS - VDS
▪ VDS 很小时 → VGD VGS 。此时 W 近似不变,即 Ron 不变。
因此
VDS→ID 线性 。
▪ 若 VDS →则 VGD → 近漏端沟道 → Ron增大。
此时
Ron →ID 变慢。
8
▪ 当 VDS 增加到使 VGD = VGS(th) 时 → A 点出现预夹断
共源组态特性曲线:
IG 0 VG+-S
ID
+
T VDS
-
输出特性: 转移特性:
ID = f ( VDS ) VGS = 常数 ID = f ( VGS ) VDS = 常数
转移特性与输出特性反映场效应管同一物理过程, 它们之间可以相互转换。
12
➢ NEMOS 管输出特性曲线 非饱和区
沟道预夹断前对应的工作区。
4
3.1.1 增强型 MOS 场效应管
N 沟道 EMOSFET 结构示意图
衬底极 电路符号
源极
US
金属栅极
GD W
D
G S
P+
U
N+
N + P+
l
P
沟道长度
漏极 沟道 宽度
SiO2 绝缘层 P 型硅 衬底
5
N沟道 EMOS 管工作原理
➢ N 沟道 EMOS 管外部工作条件
• VDS > 0 (保证漏衬 PN 结反偏)。 • U 接电路最低电位或与 S 极相连(保证源衬 PN 结反偏)。
16
截止区
ID = 0 以下的工作区域。 条件: VGS < VGS(th) 沟道未形成时的工作区
此时 MOS 管可看成阻值受 VGS 控制的线性电阻器:
Ron
l
n C O XW
VGS
1
VGS (th)
注意:非饱和区相当于三极管的饱和区。
14
饱和区
沟道预夹断后对应的工作区。
ID/mA VDS = VGS – VGS(th)
VGS = 5 V
条件: VGS > VGS(th)
4.5 V
ID
n C O XW
2l
(VGS
VGS (th))2
若考虑沟道长度调制效应,则 ID 的修正方程:
ID
n C O XW
2l
(VGS
VGS(th))2 1
VDS VA
n C O XW
2l
(VGS
VGS (th))2
1
VDS
其中, 称沟道长度调制系数,其值与 l 有关。
通常 = (0.005 ~ 0.03 )V-1
• VGS > 0 (形成导电沟道)
-VDS +
U
S -VGS + G
栅 衬之间相当
D
于以 SiO2 为介质 的平板电容器。
P+
N+
N+
P
6
➢ N 沟道 EMOSFET 沟道形成原理
• 假设 VDS = 0,讨论 VGS 作用
VGS
衬底表面层中 负离子、电子
形成空间电荷区 并与 PN 结相通
VDS = 0 S -VGS + G
-VDS +
-VDS +
S -VGS + G
D
S -VGS + G
D
ห้องสมุดไป่ตู้
U
U
P+
N+
N+ A
P
P+
N+
N+
A P
▪ 若 VDS 继续 →A 点左移 → 出现夹断区
此时
VAS = VAG + VGS = -VGS(th) + VGS (恒定)
若忽略沟道长度调制效应,则近似认为 l 不变(即 Ron不变)。
10
MOSFET 工作原理:
利用半导体表面的电场效应,通过栅源电压 VGS 的变化,改变感生电荷的多少,从而改变感生沟道的 宽窄,控制漏极电流 ID 。 • MOS 管仅依靠一种载流子(多子)导电,故称单极 型器件。
• 三极管中多子、少子同时参与导电,故称双极型器件。
11
伏安特性
由于 MOS 管栅极电 流为零,故不讨论输入特 性曲线。
因此,非饱和区又称为可变电阻区。
13
数学模型:
VDS 很小 MOS 管工作在非饱区时,ID 与 VDS 之间呈线性关系:
ID
n C O XW
2l
[2(VGS
VGS (th))VDS
VD2S ]
n C O XW
l
(VGS
VGS (th))VDS
其中,W、l 为沟道的宽度和长度。
COX (= / OX) 为单位面积的栅极电容量。
V DS > VGS – VGS(th)
4V 3.5 V
特点:
O
VDS /V
ID 只受 VGS 控制,而与 VDS 近似无关,表现出类似 三极管的正向受控作用。
考虑到沟道长度调制效应,输出特性曲线随 VDS 的增加略有上翘。
注意:饱和区(又称有源区)对应三极管的放大区。
15
数学模型:
工作在饱和区时,MOS 管的正向受控作用,服从 平方律关系式:
U
P+
N+
P
反型层
D
N+
VGS 开启电压VGS(th) 表面层 n>>p 形成 N 型导电沟道
VGS 越大,反型层中 n 越多,导电能力越强。
7
• VDS 对沟道的控制(假设 VGS > VGS(th) 且保持不变)
-VDS +
-VDS +
S -VGS + G
D
S -VGS + G
D
U
U
P+
N+