平移旋转与轴对称练习

合集下载

图形的对称、平移和旋转专项训练题

图形的对称、平移和旋转专项训练题

图形的对称、平移和旋转专项训练题一.选择题(共9小题)1.以下是几所知名大学的校徽,其中是轴对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形也是中心对称图形的有()A.4个B.3个C.2个D.1个3.如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕AD.将△ABC再次折叠,使BC边落在BA边上,展开后得到折痕BE,BE,AD交于点O.则以下结论一定成立的是()A.AO=2OD B.S△ABO=S四边形ODCEC.点O到△ABC三边的距离相等D.点O到△ABC三个顶点的距离相等4.下列各式中,是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.6.把点P(2,﹣5)向上平移3个单位后再关于原点对称的点的坐标是()A.(5,﹣5)B.(﹣2,2)C.(﹣5,5)D.(2,﹣2)7.如图,△ABC的周长为30cm,将△ABC沿CB向右平移得到△DEF,若平移的距离为4cm,则四边形ACED的周长是()cm.A.34B.36C.38D.408.“会飞的饺子皮”刷爆朋友圈,卡塔尔世界杯吉祥物“拉伊卜”刷爆网络!下面是“拉伊卜”的形象图片,在下面的四个图形中,能由左图经过平移得到的图形是()A.B.C.D.9.通过光的反射定律知道,入射光线与反射光线关于法线成轴对称(图1).在图2中,光线自点P射入,经镜面EF反射后经过的点是()A.点A B.点B C.点C D.点D二.填空题(共8小题)10.“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B'处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB'于点P.若BC=12,则MP+MN=.11.如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则sin∠ADF的值为.12.如图,将△ABC绕点C顺时针旋转30°得到△DEC,边ED,AC相交于点F,若∠A=32°,则∠EFC的度数为°.13.如图,在△ABC中,BC=7,把△ABC沿射线AB方向平移4个单位至△EFG处,EG与BC交于点M.若CM=3,则图中阴影部分的面积为.14.在平面直角坐标系中,将点(1,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是.15.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE交CD于点H,且DH=EH,则AH的长为.16.等腰直角△ABC中,BAC=90°,AB=5,点D是平面内一点,AD=2,连接BD,将BD绕D点逆时针旋转90°得到DE,连接AE,当DAB=(填度数)度时,AE 可以取最大值,最大值等于.17.如图,矩形ABCD的边AD的长为6,将△ADC沿对角线AC翻折得到△AD′C,CD′与AB交于点E,再以CD′为折痕,将△BCE进行翻折,得到△B′CE,若两次折叠后,点B′恰好落在△ADC的边上,则AB的长为.三.解答题(共3小题)18.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位长度,再向下平移2个单位长度,画出△ABC平移后的图形△A1B1C1;(2)以点A为旋转中心,将△ABC按逆时针方向旋转90°,得到△AB2C2,请画出△AB2C2.19.已知O是坐标原点,的坐标分别为(3,1),(2,﹣1).(1)画出绕点O顺时针旋转90°后得到的,并写出A1的坐标为;(2)在y轴的左侧以O为位似中心作的位似图形,使新图与原图相似比为2:1;(3)若点D(a,b)在线段OA上,直接写出变化(2)后点D的对应点D2的坐标为.20.如图,在正方形网格中,△ABC各顶点都在格点上,点A,B,C的坐标分别为(﹣5,1),(﹣5,4),(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1,点A,B,C的对应点分别是A1、B1、C1.(2)画出△ABC关于原点O对称的△A2B2C2,点A,B,C的对应点分别是A2、B2、C2.。

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

三年级上册数学单元测试- 6.平移、旋转和轴对称一、单选题1.下列现象中,既有平移现象又有旋转现象的是()A. 正在工作的电扇叶片B. 行驶中的汽车C. 扔出去的铅球D. 放飞的风筝2.如图。

将图1中的三角形甲平移到图2中所示的位置,与三角形乙拼成一个长方形,那么,下面的平移方法中,正确的是( )。

A. 先向下平移3格,再向右平移1格B. 先向下平移3格.再向右平移2格C. 先向下平移2格,再向F平移2格D. 先向有平移3格.再向F平移2格3.电风扇的运动是()A. 平移B. 旋转C. 既平移又旋转4.图①绕点O()变为图②。

A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°5.一个图形经过平移变换后,有以下几种说法,其中不恰当的说法是( )A. 平移后,图形的形状和大小都不改变B. 平移后的图形与原图形的对应线段、对应角都相等C. 平移后的图形形状不变,但大小可以改变D. 利用基本图形的平移可以设计美丽的图案6.从12时到12时30分,分针绕中心点()。

A. 逆时针旋转了90°B. 顺时针旋转了90°C. 顺时针旋转了180°7.下列哪种运动可以看成平移()A. 升国旗B. 电风扇叶片转动C. 钟摆的运动8.下列每组中的前后两个图形,()组通过平移就可以重合。

A. B. C. D.9.补全轴对称图形的时候,要先找到()A. 边界B. 对称轴C. 端点10.下列现象中,不属于平移的是()A. 乘直升电梯从一楼上到二楼B. 钟表的指针嘀嗒嘀嗒地走C. 火车在笔直的轨道上行驶D. 汽车在平坦笔直的公路上行驶二、判断题11.平移必须在水平方向上移动。

12.收费站转杆打开,旋转了180度。

13.电风扇转动是平移现象。

14.左图是由连续两次向右平移2个方格组成的图案。

15.小朋友们玩跷跷板是平移现象。

三、填空题16.看图回答图形B可以看作图形A绕点________顺时针方向旋转90°得到的。

小学数学 《图形的平移、旋转与轴对称》习题1

小学数学 《图形的平移、旋转与轴对称》习题1
《图形的平移、旋转与轴对称》习题
1、分别画出将平行四边形向下平移4格,向左平移8格后得到的图形。
2、把图形向右平移7格后得到的图形涂上颜色。
3、把图形向左平移5格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画下面的图形向右平移6格后的图形。
6、小汽车向()平移了()格,小船机向()平移了()格,小飞机向()平移了()格。
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图1绕点“O”顺时针旋转()到达图4的位置;
(4)图2绕点“O”顺时针旋转()到达图4的位置;
(5)图2绕点“O”顺时针旋转900到达图()的位置。
10、选择。
(1)时钟从6:00走到18:00是围绕钟面中心旋转()。
(A)180°(B)90°(C)360°
(2)时钟围绕钟面中心旋转()才能从3:00走到9:00。
(A)180°(B)90°(C)360°
11、如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()。
A B C D
12、如图是用纸折叠成的图案,其中是轴对称图形的有()。
A B C
13、下面的图形是轴对称图形吗?如果是,请你画出它们的对称轴。
22、照这样排下去,第26图形是()。
23、有一列数按“654321654321……”排列着,则第34个数字应是()。
24、王兵在家练习硬笔书法时,写“我们爱科学我们爱科学……”依次写下去,那么第23个字应是()。
25、北京奥运北京奥运北京奥运……,根据排列规律,第43个字是(),第84个字是(),第105个字是(),第122个字是()。
7、画出三角形向右平移4格和梯形向左平移2格后的图形。

四年级下册数学单元测试-1.平移、旋转和轴对称 苏教版(含答案)

四年级下册数学单元测试-1.平移、旋转和轴对称 苏教版(含答案)

四年级下册数学单元测试-1。

平移、旋转和轴对称一、单选题1.下面各图形,不是轴对称图形的是()A. B. C.2.下列现象中,()属于旋转.A. 拉衣服的拉链B. 拧瓶盖C. 跳远时的腿部运动3.下面()的运动是旋转。

A. 旋转的呼啦圈B. 观光电梯C. 拨算珠4.下面()是顺时针旋转一周后的图形。

A. B. C. D.二、判断题5.数学“3”是轴对称图形。

()6.旋转改变了图形的大小和形状.()7.平移不改变图形的大小,只改变图形的位置.()8.圆绕中心点无论旋转多少度都与原来的图形重合,旋转一周可以重合无数次。

()三、填空题9.下列现象哪些是平移,画“√”;哪些是旋转,画“○”。

________ ________________ ________10.把一个图形绕某个点旋转,会得到一个新的图形,新图形与原图形的________和________完全相同。

11.下面的图案各是从哪张纸上剪下来的,连一连。

________ A、________ B、________ C、________ D、四、解答题12.解决问题如图,正方体中哪些线段可经由线段AB平移得到?线段AD可以由FB平移得到吗?13.(1)沿虚线画出图形的另一半,使它成为一个轴对称图形。

(2)图中的小船是经过向________平移________格,再向________平移________格得来的。

(3)先将三角形向左平移三格,然后绕A点逆时针旋转90°,在方格纸中画出旋转后的图形。

五、应用题14.在下面的方格纸上:①用数对表示三角形A三个顶点的位置.(,)(,)(,)②画出图形A向右平移8格后得到图形B;然后再以MN为对称轴,画出B的轴对称图形.参考答案一、单选题1.【答案】C【解析】【解答】平行四边形不是轴对称图形。

故答案为:C。

【分析】如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。

初中数学图形的平移,对称与旋转的经典测试题附答案

初中数学图形的平移,对称与旋转的经典测试题附答案

初中数学图形的平移,对称与旋转的经典测试题附答案一、选择题1.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .43B .6C .33D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质2.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A .线段BE 的长度B .线段EC 的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.a a>,那么3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.6.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b ,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b =0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.9.下列四个交通标志图中,是轴对称图形的是( )A .B .C .D .【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.11.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.13.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.14.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.16.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.17.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .5C .6D .26【答案】D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】Q绕点A顺时针旋转90︒到ABFADE∆∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴==,AD DC25Q,2DE=∴∆中,2226Rt ADE=+=AE AD DE故选:D.【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.18.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC22'+22BC BD+.故选B.3419.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.20.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.。

西师版五年级数学上册图形的平移、旋转与轴对称练习题

西师版五年级数学上册图形的平移、旋转与轴对称练习题

西师版五年级数学上册图形的平移、旋转与轴对称练习题2.1 图形的平移1.一个边长为6厘米的正方形,连续向右平移6次后,这个正方形的边长是多少厘米?2.方格中的图形向左平移了几个格?3.图形先由位置①向上平移几个格,到位置②;再由位置②向右平移几个格,到位置③。

4.图形平移的过程中对应点间的距离都保持不变,图形平移后周长和面积不变。

5.下列图形中,由原图平移得到的图形是哪一个?2.2 图形的旋转1.一个边长为6厘米的等腰三角形,连续顺时针旋转4次后,和原图形重合。

2.分针从6:30到6:45,旋转了多少度?3.把图形绕着O点顺时针旋转90°后,得到的图形是哪一个?A。

B。

C。

D.4.旋转不能改变图形的形状,可以改变图形的位置。

5.时钟从3:00到6:00,时针顺时针旋转了多少度?2.3 轴对称图形1.直角梯形是轴对称图形。

2.下面交通标志图案中,是轴对称图形的是哪一个?A。

B。

C.3.下面的图形中,哪一个不是轴对称图形?A。

B。

C.4.正方形对称轴有无数条。

5.下面图形中,哪一个对称轴最多?A。

正方形 B。

等边三角形 C。

圆 D。

长方形2.4 设计图案1.图形的平移、旋转和对称都是图形的变换方式。

2.如图的图形中,哪一个是由旋转得到的?A。

B。

C。

D.3.平移和旋转不能改变图形的形状,可以改变图形的位置。

4.下面的图案是通过哪种变换得到的?5.下图的图案,既可以通过平移得到,又可以通过旋转得到。

A。

B。

C.2.5 探索规律1.看图填空。

摆1个平行四边形需要几根小棒。

摆2个平行四边形需要几根小棒。

摆3个平行四边形需要几根小棒。

2.观察下图第4个图形中有几个三角形。

3.摆1个三角形需要3根小棒;摆2个三角形至少需要几根小棒?4.第五个图形有多少个圆点?5.数一数梯形的个数。

二、下面的实线图形是通过怎样的平移得到的虚线图形的。

平行四边形向右平移5格;三角形向下平移2格;长方形向上平移3格;六边形向左平移4格。

第一单元 平移、旋转和轴对称( 能力提升练)-四年级数学下册单元测试卷(苏教版) (2)

第一单元 平移、旋转和轴对称( 能力提升练)-四年级数学下册单元测试卷(苏教版)  (2)
【详解】轴对称图形是沿某条直线对折后两边能够完全重合的图形。
15.1 2
【分析】根据表盘上指针的位置,判断盘秤里物品的重量;由图可知,1kg物品可以使指针顺时针旋转90°,那么指针顺时针旋转180°需要有2千克的物品物品。
【详解】根据指针位置可以看出:盘秤上已有1千克的物品;
1kg物品可以使指针顺时针旋转90°;
【点睛】此题主要考查了平移问题。解答此题的关键是弄清楚平移前后的图形的位置关系,以及对应点之间的距离。
4.C
【分析】正六边形有6条对称轴,正方形有4条对称轴,圆有无数条对称轴,据此解答。
【详解】据分析可知,正六边形、正方形和圆中,圆有无数条对称轴,对称轴的数量最多。
故答案为:C
【点睛】本题考查的是常见图形对称轴数量的掌握和运用。
【详解】
【点睛】本题主要考查学生对画旋转、平移图形方法的掌握和灵活运用。
24.见详解
【分析】补齐轴对称图形:根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可补全这个轴对称图形;
作平移图形:根据平移的特征,把这个图形的各顶点分别向右平移6格,然后依次连结即可得到平移后的图形。
【详解】风车转动是旋转现象,推木箱是平移现象,抬桌子是平移现象。则不属于平移的是风车转动。
【点睛】平移和旋转都是物体或图形的位置发生变化而形状、大小不变。区别在于,平移时物体沿直线运动,本身方向不发生改变;旋转是物体绕着某一点或轴运动,本身方向发生了变化。
13.○ √ ○ √
【详解】略
14.(l)(2)(6)
3×30°=90°,时针在这段时间旋转了90°。
所以判断为正确。
【点睛】解决本题的关键是明确钟面上每个大格子所对的角度是360°÷12=30°,再根据旋转的格子数确定角度即可。

三年级数学平移旋转和对称试题

三年级数学平移旋转和对称试题

三年级数学平移旋转和对称试题1.电梯的升降是现象,钟面上时针和分针的运动是现象,拉开抽屉时,抽屉做运动.【答案】平移,旋转,平移.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心,所以,它并不一定是绕某个轴的,根据平移与旋转定义判断即可.解答:解:电梯的升降是平移现象,钟面上时针和分针的运动是旋转现象,拉开抽屉时,抽屉做平移运动;故答案为:平移,旋转,平移.点评:本题是考查图形的平移与旋转的意义,关键是看方向是否改变.2.推拉窗户的运动是;风车的运动是.【答案】平移,旋转.【解析】(1)平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;(2)旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心,所以,它并不一定是绕某个轴的;依此根据平移与旋转定义判断即可.解:推拉窗户的运动是平移;风车的运动是旋转;故答案为:平移,旋转.【点评】此题是对平移与旋转理解及在实际当中的运用.3.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:下列图形中,不是轴对称图形的是,其它三个选项中的图形都是轴对称图形;故选:D.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.4.周一升国旗时,国旗的上升是现象;拧水龙头是现象.【答案】平移,旋转.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;然后根据平移与旋转定义判断即可.解:周一升国旗时,国旗的上升是平移现象;拧水龙头是旋转现象;故答案为:平移,旋转.【点评】本题是考查图形的平移与旋转.平移与旋转关键是看图形的方向是否改变,平移不改变方向,旋转改变方向.5.在横线里填上“平移”或“旋转”.(1)自行车车轮的转动是现象,人骑车前行是现象;(2)风扇叶片的运动是现象;(3)钟面上分针不停地走动是现象;(4)升国旗时,国旗的升降运动是现象;(5)拉开抽屉是现象,拧水龙头是现象.【答案】旋转,平移;旋转;旋转;平移;平移,旋转.【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;由此根据平移与旋转定义判断即可.解:(1)自行车车轮的转动是旋转现象,人骑车前行是平移现象;(2)风扇叶片的运动是旋转现象;(3)钟面上分针不停地走动是旋转现象;(4)升国旗时,国旗的升降运动是平移现象;(5)拉开抽屉是平移现象,拧水龙头是旋转现象.故答案为:旋转,平移;旋转;旋转;平移;平移,旋转.【点评】此题是对平移与旋转理解及在实际当中的运用.6.下列现象属于平移现象的是()A.风扇转动B.写字C.晃动呼啦圈D.转动风车【答案】B【解析】根据平移不改变图形的形状、大小和方向,结合图形对选项进行一一分析,选出正确答案.解:A.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误;B.图形的形状和大小没有变化,符合平移的性质,属于平移得到,故本选项正确;C.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误;D.图形的方向发生变化,不符合平移的性质,不属于平移得到,故本选项错误.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.7.“里,一,五”都是轴对称的汉字.(判断对错)【答案】错误【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.解:根据轴对称图形的意义可知:“里,一”都是轴对称的汉字,而“五”不是轴对称图形;故答案为:错误.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.8.动手画一画、比一比在方格中画出一个轴对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平移、旋转与轴对称练习
1.将图1所示的图案通过平移后可以得到的图案是( )
2、如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )
A .先向下平移3格,再向右平移1格;
B .先向下平移2格,再向右平移1格
C .先向下平移2格,再向右平移2格;
D .先向下平移3格,再向右平移2格
3、下列四个图案中,可以通过右图平移得到的是( )
4、如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为( )
A .6
B 。

8 C. 10 D.12. 5、将线段AB 平移1cm ,得到线段A B '',则对应点A 与A '
的距离为
_____________cm .
6、下列几何图形中,即是中心对称图形又是轴对称图形的是( )
A .正三角形
B .等腰直角三角形
C .等腰梯形
D .正方形
7、下列图形中,既是轴对称图形,又是中心对称图形的是( ).
8、观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )
A .1个
B .2个
C .3个
D .4个
9、下列图形中,既是轴对称图形又是中心对称图形的有( )
A .4个
B .3个
C .2个
D .1个
10、下列图形中,中心对称图形有( ).
A .1个
B .2个
C .3个
D .4个
11、下列图形中既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
. B . C . D .
12、右上图中,不是中心对称图形的是( )
13、已知如图1所示的四张牌,若将其中一张牌旋转180O 后得到图2,则旋转的牌是( )
9、把下列每个字母都看成一个图形,那么中心对称图形有( )
E H I N A
A 2个
B 3个
C 4个
D 5个
10、如下所示的4组图形中,左边图形与右边图形成中心对称的有( )
A .1组
B .2组
C .3组
D .4组
11、我们已经学习了:①等边三角形;②等腰梯形;③平行四边形;④等腰三角形;⑤圆.在
以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 .
12、如图,已知BC 为等腰三角形纸片ABC 的底边,90AD BC BAC ⊥∠≠,°.将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出中心对称图形 个.
13、图①、图②均为76⨯的正方形网格,点A B C 、、在格点上.
(1)在图①中确定格点D ,并画出以A B C D 、、、为顶点的四边形,使其为轴对称图形.(画一个即可)
① ② ③ ④ A B C D
图1
图2
、、、为顶点的四边形,使其为中心对称(2)在图②中确定格点E,并画出以A B C E
图形.(画一个即可)
14、如图,△ABC与△A`B`C`关于直线l对称,且∠A=78°,∠C`=48°,
则∠B的度数为()
A.48°B.54°C.74°D.78°
15、下列四个图形中,不是轴对称图形的是()
A.B.C.D.
16、下列图形是轴对称图形是()
17、如下书写的四个汉字,其中为轴对称图形的是( ).
A.B. C. D.
18、将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线(直角三角形的中位线)
剪去上面的小直角三角形
将留下的纸片展开,得到的图形是()
A.B.C.D.
19、下列图形中,轴对称图形的个数是().
A.1B.2C.3D.4
20、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们
把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()
A.对应点连线与对称轴垂直B.对应点连线被对称轴平分
C.对应点连线被对称轴垂直平分D.对应点连线互相平行
21、请写出一个是轴对称图形的图形名称.答:.
22、从下列图形中是轴对称图形的为。

23、如图,镜子中号码的实际号码是___________ .
24、星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)
的位置如图所示,此时时针表示的时间是.(按12小时制填写)
25、已知图形B是一个正方形,图形A由三个图形B构成,如图所示,请用图形A与B合
拼成一个轴对称图形并车出来。

26、一节课45分钟,钟表的时针转过的角度是______.
27、用一具三角板(含30°,45°,60°)能作出大于0°而小于180°的角共有()
A.4个B.6个C.11个D.13个
28、若∠1和∠2互为余角,∠1和∠3互为补角,∠2和∠3的和等于周角的三分之一,那么∠1、∠2、∠
3的度数分别为()
A.75○、15○、105○B、60○、30○、120○C.50○、40○、130○D、70○、20○、110○29、已知αβ是两个钝角,计算(α+β)的值,四个同学四种不同的答案分别是24°,148°,276°,
386°,其中只有一个答案是正确的,则正确的答案是()A.386°B.276°C.148°D.24°30、甲同学看乙同学的方向为北偏东60°则乙同学看甲同学的方向为()
A.南偏东30°B.南偏西60°C.东偏南60°D.南偏西30°
31、5点20分时,时钟的时针和分针的夹角为()
A.30°B.40°C.45°D.50°
32、如图1―4-5所示,AC为一条直线,O是AC上
一点,∠AOB=120°,OE、OF分别平分∠AOB和∠BOC,.
(1)求∠EOF的大小;
(2)当OB绕O旋转时,OE、OF仍为∠AOB和∠BOC平分线,
问:OF、OF有怎样的位置关系?你能否用一句话概括出这个命题.
33、下列说法中,正确的是()
A.一个角不是锐角必是钝角B.90°的角叫余角,180°的角叫补角
C.如果一个角有余角,则这个角必是锐角D.如果一个角是补角,则这个角必
是钝角
34、.将一长方形纸片,按图l-4-6的方式折叠,BC、BD为折痕,
则∠CBD的度数为()
A.60°B.75°C.90°D.95°
35、已知∠α和∠β互为补角,且∠β的一半比∠α小30°,求∠α和∠β
36、小亮在镜中看到身后墙上的时钟如图1―4―7所示,你认为实际时间最接近八点的是()
37、将一正方形纸片按如图1―4―8中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是图如图1―4―9中的()
38、用一副三角板可以直接得到30°,45°,60°,90°,四种角,利用一副三角板可以拼出另外一些特殊角,如75°,120°等,请你拼一拼,使用一副三角板还能拼出哪些小于平角的角?这些角的度数是_________.。

相关文档
最新文档