步步高2015高三物理(新课标)一轮讲义:4.4万有引力与航天

合集下载

步步高高考物理一轮复习(新课标)同步测试:第4章 曲线运动万有引力与航天 章末

步步高高考物理一轮复习(新课标)同步测试:第4章  曲线运动万有引力与航天 章末

第四章 章末检测1.一辆静止在水平地面上的汽车里有一个小球从高处自由下落,下落一半高度时汽车突然向右匀加速运动,站在车厢里的人观测到小球的运动轨迹是图中的( )解析 开始时小球相对观察者是做自由落体运动,当车突然加速时,等效成小球相对汽车向左突然加速,刚开始加速时,水平方向的相对速度较小,随着时间的延长,水平方向的相对速度逐渐增大,故观察者看到的小球的运动轨迹应该是C 图。

答案C2.中国女排享誉世界排坛,曾经取得辉煌的成就.如图1所示,在某次比赛中,我国女排名将冯坤将排球从底线A 点的正上方以某一速度水平发出,排球正好擦着球网落在对方底线的B 点上,且AB 平行于边界CD .已知网高为h ,球场的长度为s ,不计空气阻力且排球可看成质点,则排球被发出时,击球点的高度H 和水平初速度v 分别为( ).图1A .H =43hB .H =32hC .v =s 3h 3ghD .v =s 4h 6gh 解析 由平抛知识可知12gt 2=H ,H -h =12g ⎝ ⎛⎭⎪⎫t 22得H =43h ,A 正确、B 错误.由v t =s ,得v =s 4h 6gh ,D 正确、C 错误.答案 AD3.“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图2所示,表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变,摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H ,侧壁倾斜角度α不变,则下列说法中正确的是( ).图2A .摩托车做圆周运动的H 越高,向心力越大B .摩托车做圆周运动的H 越高,线速度越大C .摩托车做圆周运动的H 越高,向心力做功越多D .摩托车对侧壁的压力随高度H 变大而减小解析 经分析可知摩托车做匀速圆周运动的向心力由重力及侧壁对摩托车弹力的合力提供,由力的合成知其大小不随H 的变化而变化,A 错误;因摩托车和演员整体做匀速圆周运动,所受合外力提供向心力,即F 合=m v 2r ,随H 的增高,r 增大,线速度增大,B 正确;向心力与速度方向一直垂直,不做功,C 错误;由力的合成与分解知识知摩托车对侧壁的压力恒定不变,D 错误. 答案 B4.如图所示,一小钢球从平台上的A 处以速度v 0水平飞出.经t 0时间落在山坡上B 处,此时速度方向恰好沿斜坡向下,接着小钢球从B 处沿直线自由滑下,又经t 0时间到达坡上的C 处.斜坡BC 与水平面夹角为30°,不计摩擦阻力和空气阻力,则小钢球从A 到C 的过程中水平、竖直两方向的分速度v x 、v y 随时间变化的图像是( )解析 小钢球从A 到C 的过程中水平方向的分速度vx ,先是匀速直线运动,后是匀加速直线运动,A 、B 错误;小钢球从A 到C 的过程中竖直方向的分速度vy ,显示加速度为g 的匀加速直线运动,后是加速度为g/4的匀加速直线运动,C 错误、D 正确。

步步高·2015高三物理总复习(江苏专用)【课件】:第4章 曲线运动万有引力与航天 第4课时 万有引力与航天

步步高·2015高三物理总复习(江苏专用)【课件】:第4章 曲线运动万有引力与航天 第4课时 万有引力与航天
2 r 1 v2 1 后的轨道半径之比为 = 2= ,选项 r2 v1 4
D 错误
Mm 根据 G 2 =ma,得卫星变轨前、后的 r a1 r2 2 16 向心加速度大小之比为 = 2= ,选 a2 r 1 1 项 A 错误
A.向心加速度大小之比为 4∶1 B.角速度大小之比为 2∶1 C.周期之比为 1∶8 D.轨道半径之比为 1∶2
卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的 轨道稳定运行时由 v= GM r速度突然减小时, G 2 >m r ,即万有引力大于所需要的向 r
心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星 进入新的轨道稳定运行时由 v= 大. GM r 可知其运行速度比原轨道时增
卫星变轨问题分析
道1的运行速率为7.7 km/s,则下列说法中正
确的是( ) A.卫星在2轨道经过A点时的速率一定大 于7.7 km/s B.卫星在2轨道经过B点时的速率一定小 于7.7 km/s C.卫星在3轨道所具有的机械能小于在2 轨道所具有的机械能 D.卫星在3轨道所具有的最大速率小于在 2轨道所具有的最大速率 图3
课堂探究 考点二 卫星运行参量的比较与运算
第4课时
万有引力与航天
1.卫星的各物理量随轨道半径变化的规律
题组扣点
课堂探究
学科素养培养
高考模拟
课堂探究 2.极地卫星和近地卫星
第4课时
万有引力与航天
(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫 星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星, 其运行的轨道半径可近似认为等于地球的半径,其运行线速度约 为 7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心.

步步高2015届高考物理大一轮复习配套课件(新课标):第三章精选课件

步步高2015届高考物理大一轮复习配套课件(新课标):第三章精选课件

题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第三章 第2课时
【突破训练 1】 某人在静止的湖面上竖直上抛一小铁球(可看
成质点),小铁球上升到最高点后自由下落,穿过湖水并陷
入湖底的淤泥中一定的深度.不计空气阻力,取向上为正
方向,在下列 v-t 图象中,最能反映小铁球运动过程的速
度—时间图线的是
()
第三章 第2课时
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
【例 1】 (2013·海南单科·2)一质点受多个力
的作用,处于静止状态,现使其中一个力
的大小逐渐减小到零,再沿原方向逐渐恢
到原来的大小.在此过程中,其他力保持不
变,则质点的加速度大小 a 和速度大小 v
的变化情况是
(C)
A.a 和 v 都始终增大
的足够长的固定的斜面上,有一质量 为 m=1 kg 的物体,物体与斜面间动 摩擦因数 μ=0.2,物体受到沿平行于
上的速度减为零,受力分析如图所示 由牛顿第二定律和运动学公式 mgsin θ+μmgcos θ=ma2 0-v1=-a2t2
斜面向上的轻细绳的拉力 F=9.6 N 的 解得:a2=7.6 m/s2
FN
FN Ff
FN F
Ff
mg
Ff
mg
mg
思路点拨
F-mgsin θ-μmgcos θ=ma1 mgsin θ+μmgcos θ=ma2
mgsin θ-μmgcos θ=ma3 要注意整个过程有3个阶段
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
【例 3】如图 4 所示,在倾角 θ=30°的固 定斜面的底端有一静止的滑块,滑块 可视为质点,滑块的质量 m=1 kg,滑 块与斜面间的动摩擦因数 μ= 63,斜 面足够长.某时刻起,在滑块上作用 一平行于斜面向上的恒力 F=10 N,恒 力作用时间 t1=3 s 后撤去.求:从力 F 开始作用时起至滑块返回斜面底端 所经历的总时间 t 及滑块返回底端时 速度 v 的大小(g=10 m/s2).

步步高2015高三物理(新课标)一轮讲义:4.1曲线运动--运动的合成与分解

步步高2015高三物理(新课标)一轮讲义:4.1曲线运动--运动的合成与分解

步步高2015高三物理(新课标)一轮讲义:4.1曲线运动--运动的合成与分解要求考纲解读考点内容运动的合成与分解 Ⅱ 1.平抛运动的规律及其研究方法、圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能结合命制综合类试题. 2.万有引力定律在天体中的应用,的物理题.抛体运动 Ⅱ匀速圆周运动、角速度、线速度、向心加速度 Ⅰ匀速圆周运动的向心力 Ⅱ 离心现象 Ⅰ万有引力定律及其应用、环绕速度 Ⅱ 第二宇宙速度和第三宇宙速度Ⅰ经典时空观和相对论时空观 Ⅰ第1课时曲线运动运动的合成与分解考纲解读1.掌握曲线运动的概念、特点及条件.2.掌握运动的合成与分解法则.1.[对曲线运动性质的理解]一辆轿车正在通过标有如图1所示图标的路段,关于该轿车在转弯的过程中,正确的是()图1A.轿车处于平衡状态B.轿车的速度大小不一定变化C.轿车加速度的方向一定沿运动路线的切线方向D.轿车加速度的方向一定垂直于运动路线的切线方向答案 B2.[对合运动与分运动关系的理解]关于运动的合成,下列说法中正确的是()A.合运动的速度一定比每一个分运动的速度大B.两个分运动的时间一定与它们合运动的时间相等C.只要两个分运动是直线运动,合运动就一定是直线运动D.两个匀变速直线运动的合运动一定是匀变速直线运动答案 B3.[合运动与分运动关系的应用]在一光滑水平面内建立平面直角坐标系,一物体从t=0时刻起,由坐标原点O(0,0)开始运动,其沿x 轴和y轴方向运动的速度—时间图象如图2甲、乙所示,下列说法中正确的是()图2A.前2 s内物体沿x轴做匀加速直线运动B.后2 s内物体继续做匀加速直线运动,但加速度沿y轴方向C.4 s末物体坐标为(4 m,4 m)D.4 s末物体坐标为(6 m,2 m)答案AD解析前2 s内物体在y轴方向速度为0,由题图甲知只沿x轴方向做匀加速直线运动,A 正确;后2 s内物体在x轴方向做匀速运动,在y轴方向做初速度为0的匀加速运动,加速度沿y 轴方向,合运动是曲线运动,B 错误; 4 s 内物体在x 轴方向上的位移是x =(12×2×2+2×2) m =6 m ,在y 轴方向上的位移为y =12×2×2 m =2 m ,所以4 s 末物体坐标为(6 m,2 m),C 错误,D 正确.1.曲线运动(1)速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.(2)运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.(3)曲线运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.2.运动的合成与分解遵循的原则:位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.3.合运动与分运动的关系(1)等时性合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.(2)独立性一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.(3)等效性各分运动的规律叠加起来与合运动的规律有完全相同的效果.考点一物体做曲线运动的条件及轨迹分析1.条件物体受到的合外力与初速度不共线.2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.3.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小;(3)当合外力方向与速度方向垂直时,物体的速率不变.例1质量为m的物体,在F1、F2、F3三个共点力的作用下做匀速直线运动,保持F1、F2不变,仅将F3的方向改变90°(大小不变)后,物体可能做()A.加速度大小为F3m的匀变速直线运动B.加速度大小为2F3m的匀变速直线运动C.加速度大小为2F3m的匀变速曲线运动D.匀速直线运动解析物体在F1、F2、F3三个共点力作用下做匀速直线运动,必有F3与F1、F2的合力等大反向,当F3大小不变,方向改变90°时,F1、F2的合力大小仍为F3,方向与改变方向后的F3夹角为90°,故F合=2F3,加速度a=F合m=2F3m.若初速度方向与F合方向共线,则物体做匀变速直线运动;若初速度方向与F合方向不共线,则物体做匀变速曲线运动,综上所述本题选B、C.答案BC例2如图3所示,光滑水平桌面上,一个小球以速度v向右做匀速运动,它经过靠近桌边的竖直木板ad边时,木板开始做自由落体运动.若木板开始运动时,cd边与桌面相齐,则小球在木板上的投影轨迹是()图3解析木板做自由落体运动,若以木板作参考系,则小球沿竖直方向的运动可视为竖直向上的初速度为零、加速度为g的匀加速直线运动,所以小球在木板上的投影轨迹是B.答案 B1.合外力或加速度指向轨迹的“凹”(内)侧.2.曲线的轨迹不会出现急折,只能平滑变化,且与速度方向相切.突破训练1如图4所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B点的速度与加速度相互垂直,且质点的运动方向是从A 到E,则下列说法中正确的是()图4A.D点的速率比C点的速率大B.A点的加速度与速度的夹角小于90°C.A点的加速度比D点的加速度大D.从A到D加速度与速度的夹角先增大后减小答案 A解析质点做匀变速曲线运动,合力的大小与方向均不变,加速度不变,故C错误;由B 点速度与加速度相互垂直可知,合力方向与B 点切线垂直且向下,故质点由C到D过程,合力做正功,速率增大,A正确;A点的加速度方向与过A的切线方向即速度方向的夹角大于90°,B错误;从A到D加速度与速度的夹角一直变小,D错误.考点二运动的合成及运动性质分析1.运动的合成与分解的运算法则:平行四边形定则.2.合运动的性质判断错误!3.两个直线运动的合运动性质的判断标准:看合初速度方向与合加速度方向是否共线.两个互成角合运动的性质度的分运动两个匀速直匀速直线运动线运动一个匀速直线运动、匀变速曲线运动一个匀变速直线运动两个初速度为零的匀加速直线运动匀加速直线运动两个初速度不为零的匀变速直线运动如果v合与a合共线,为匀变速直线运动如果v合与a合不共线,为匀变速曲线运动例3一个质点受到两个互成锐角的力F1和F2的作用,由静止开始运动,若运动中保持两个力的方向不变,但F1突然增大ΔF,则质点此后()A.一定做匀变速曲线运动B.在相等时间内速度变化一定相等C.可能做变加速曲线运动D.一定做匀变速直线运动解析质点受到两个恒力F1、F2的作用,由静止开始沿两个恒力的合力方向做匀加速直线运动,如图所示,此时运动方向与F合方向相同;当力F1发生变化后,力F1与F2的合力F合′与原合力F合相比,大小和方向都发生了变化,此时合力F合′方向不再与速度方向相同,但是F合′仍为恒力,故此后质点将做匀变速曲线运动,故A正确,C、D错误;由于合力恒定不变,可得Δv 则质点的加速度也恒定不变,由a=ΔvΔt=aΔt,即在相等时间内速度变化也必然相等,则B正确.答案AB突破训练2如图5所示,吊车以v1的速度沿水平直线向右匀速行驶,同时以v2的速度匀速收拢绳索提升物体,下列表述正确的是()图5A.物体的实际运动速度为v1+v2B.物体的实际运动速度为v21+v22C.物体相对地面做曲线运动D.绳索保持竖直状态答案BD解析物体在两个方向均做匀速运动,因此合外力F=0,绳索应在竖直方向,实际速度为v21+v22,因此选项B、D正确.15.运动的合成与分解实例——小船渡河模型小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=d v 1(d 为河宽). ②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1. ③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图6所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=d cos α=v 2v 1d .图6例4已知河水的流速为v1,小船在静水中的速度为v2,且v2>v1,下面用小箭头表示小船及船头的指向,则能正确反映小船在最短时间内渡河、最短位移渡河的情景如图7所示,依次是()图7A.①②B.①⑤C.④⑤D.②③解析船的实际速度是v1和v2的合速度,v1与河岸平行,对渡河时间没有影响,所以v2与河岸垂直即船头指向对岸时,渡河时间最短,式中d为河宽,此时合速度与河为t min=d v2岸成一定夹角,船的实际路线应为④所示;最短位移即为d,应使合速度垂直河岸,则v2应指向河岸上游,实际路线为⑤所示,综合可得选项C正确.答案 C求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动.船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况用三角形法则求极限的方法处理.突破训练3小船横渡一条河,船头始终垂直河岸且船本身提供的速度大小、方向都不变.已知小船的运动轨迹如图8所示,则河水的流速()图8A.越接近B岸水速越大B.越接近B岸水速越小C.由A到B水速先增后减D.水流速度恒定答案 B16.“关联”速度问题——绳(杆)端速度分解模型1.模型特点:沿绳(或杆)方向的速度分量大小相等.2.思路与方法合运动→绳拉物体的实际运动速度v分运动→⎩⎨⎧其一:沿绳(或杆)的速度v 1其二:与绳(或杆)垂直的分速度v 2方法:v 1与v 2的合成遵循平行四边形定则.3.解题的原则:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图9所示.图9例5如图10所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v,绳AO段与水平面的夹角为θ,OB段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的速度多大?图10解析小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果,所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向,分解如图所示,则由图可知v A=vcos θ.答案v cos θ解决此类问题时应把握以下两点:(1)确定合速度,它应是小船的实际速度;(2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转动.应根据实际效果进行运动的分解.高考题组1.(2011·四川·22(1))某研究性学习小组进行如下实验:如图11所示,在一端封闭的光滑细玻璃管中注满清水,水中放一个红蜡做成的小圆柱体R.将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正方向做初速度为零的匀加速直线运动.同学们测出某时刻R的坐标为(4,6),此时R的速度大小为________ cm/s.R在上升过程中运动轨迹的示意图是________.(R 视为质点)图11答案5 D解析红蜡块有水平方向的加速度,所受合外力指向曲线的内侧,所以其运动轨迹应如D 图所示.因为竖直方向匀速,由y=6 cm=v0t知t=2 s,水平方向x=v x2·t=4 cm,所以v x =4 cm/s,因此此时R的速度大小v=v2x+v20=5 cm/s.模拟题组2.一只小船在静水中的速度为3 m/s,它要渡过一条宽为30 m的河,河水流速为4 m/s,则这只船()A.不可能渡过这条河B.可以渡过这条河,而且最小位移为50 m C.过河时间不可能小于10 sD.不能沿垂直于河岸方向过河答案CD3.有一个质量为2 kg的质点在x-y平面上运动,在x方向的速度图象和y方向的位移图象分别如图12甲、乙所示,下列说法正确的是()图12A.质点所受的合外力为3 NB.质点的初速度为3 m/sC.质点做匀变速直线运动D.质点初速度的方向与合外力的方向垂直答案 A解析由题图乙可知,质点在y方向上做匀速运动,v y=x=4 m/s,在xt=1.5 方向上做匀加速直线运动,a=ΔvΔtm/s2,故质点所受合外力F=ma=3 N,A正确.质点的初速度v=v2x0+v2y=5 m/s,B错误.质点做匀变速曲线运动,C错误.质点初速度的方向与合外力的方向不垂直,如图,θ=53°,D错误.(限时:30分钟)►题组1物体做曲线运动的条件及轨迹分析1.在美国拉斯维加斯当地时间2011年10月16日进行的印地车世界锦标赛的比赛中,发生15辆赛车连环撞车事故,两届印第安纳波利斯500赛冠军、英国车手丹·威尔顿因伤势过重去世.在比赛进行到第11圈时,77号赛车在弯道处强行顺时针加速超越是酿成这起事故的根本原因,下面四幅俯视图中画出了77号赛车转弯时所受合力的可能情况,你认为正确的是()答案 B解析做曲线运动的物体,所受的合外力指向轨迹凹的一侧,A、D选项错误;因为顺时针加速,F与v夹角为锐角,故B正确,C错误.2.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图1),与此同时对质点加上沿x轴正方向的恒力F x和沿y轴正方向的恒力F y,则()图1A.因为有F x,质点一定做曲线运动B.如果F y>F x,质点向y轴一侧做曲线运动C.质点不可能做直线运动D.如果F x>F y cot α,质点向x轴一侧做曲线运动答案 D解析若F y=F x tan α,则F x和F y的合力F 与v在同一直线上,此时质点做直线运动.若F x>F y cot α,则F x、F y的合力F与x轴正方向的夹角β<α,则质点向x轴一侧做曲线运动,故正确选项为D.3.一小船在河中xOy平面内运动的轨迹如图2所示,下列判断正确的是()图2A.若小船在x方向始终匀速,则在y方向先加速后减速B.若小船在x方向始终匀速,则在y方向先减速后加速C.若小船在y方向始终匀速,则在x方向先减速后加速D.若小船在y方向始终匀速,则在x方向先加速后减速答案BD解析若小船在x方向始终匀速运动,根据轨迹弯曲方向可知,在相同的x方向位移内,对应y方向的位移先减小后增大故B正确,同理可知D正确.4.质量为m=4 kg的质点静止在光滑水平面上的直角坐标系的原点O处,先用沿+x轴方向的力F1=8 N作用了2 s,然后撤去F1;再用沿+y轴方向的力F2=24 N作用了1 s,则质点在这3 s内的轨迹为()答案 D解析在t1=2 s内,质点沿x轴方向的加速度a1=F1m=2 m/s2,2 s末的速度v1=a1t1=4m/s,位移x1=12a1t21=4 m;撤去F1后的t2=1s内沿x轴方向做匀速直线运动,位移x2=v1t2=4 m.沿y轴方向做初速度为零的匀加速直线运动,加速度a2=F2m =6 m/s2,位移y=12a2t22=3 m,故3 s末质点的坐标为(8,3),故A、B 错误;由于曲线运动中合力指向轨迹的“凹”侧,故C错误,D正确.►题组2小船渡河模型问题的分析5.甲、乙两船在同一条河流中同时开始渡河,河宽为H,河水流速为v0,划船速度均为v,出发时两船相距233H,甲、乙两船船头均与河岸成60°角,如图3所示.已知乙船恰好能垂直到达对岸A点,则下列判断正确的是()图3A.甲、乙两船到达对岸的时间不同B.v=2v0C.两船可能在未到达对岸前相遇D.甲船也在A点靠岸答案BD解析渡河时间均为Hv sin 60°,乙能垂直于河岸渡河,对乙船由v cos 60°=v0得v=2v0,甲船在该段时间内沿水流方向的位移为(v cos60°+v 0)H v sin 60°=233H ,刚好到达A 点,综上所述,A 、C 错误,B 、D 正确.6.如图4所示,两次渡河时船相对水的速度大小和方向都不变.已知第一次实际航程为A至B ,位移为x 1,实际航速为v 1,所用时间为t 1.由于水速增大,第二次实际航程为A至C ,位移为x 2,实际航速为v 2,所用时间为t 2.则( )图4A .t 2>t 1,v 2=x 2v 1x 1B .t 2>t 1,v 2=x 1v 1x 2C .t 2=t 1,v 2=x 2v 1x 1D .t 2=t 1,v 2=x 1v 1x 2答案 C解析 设河宽为d ,船自身的速度为v ,与河岸上游的夹角为θ,对垂直河岸的分运动,过河时间t =d v sin θ,则t 1=t 2;对合运动,过河时间t =x 1v 1=x 2v 2,故C 正确. 7.一艘小船在静水中的速度大小为4 m/s ,要横渡水流速度为5 m/s 的河,河宽为80 m .设船加速启动和减速停止的阶段时间很短,可忽略不计.下列说法正确的是( )A .船无法渡过此河B .小船渡河的最小位移(相对岸)为80 mC .船渡河的最短时间为20 sD .船渡过河的位移越短(相对岸),船渡过河的时间也越短答案 C解析只要在垂直于河岸的方向上有速度就一定能渡过此河,A错.由于水流速度大于静水中船的速度,故无法合成垂直河岸的合速度,B错.当船头垂直河岸航行时,垂直河岸的分运动速度最大,时间最短,t min=804s=20 s,C对,D显然错误.►题组3“关联”速度模型8.人用绳子通过定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图5所示位置时,绳与竖直杆的夹角为θ,则物体A实际运动的速度是()图5 A.v0sin θB.v0 sin θC.v0cos θD.v0 cos θ答案 D解析由运动的合成与分解可知,物体A参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A的实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A的合运动,它们之间的关系如图所示.由几何,所以D项正确.关系可得v=v0cos θ9.如图6所示,套在竖直细杆上的环A由跨过定滑轮且不可伸长的轻绳与重物B相连,由于B的质量较大,在释放B后,A将沿杆上升,当A运动至与定滑轮的连线处于水平位置时,其上升速度为v A≠0,B未落地,这时B的速度v B=________.图6答案0解析环A沿细杆上升的过程中,任取一位置,此时绳与竖直方向的夹角为α.将A的速度v A沿绳方向和垂直于绳的方向进行分解,如图所示,则v1=v A cos α,B下落的速度v B=v1=v A cos α.当环A上升至与定滑轮的连线处于水平位置时α=90°,所以此时B 的速度v B=0.►题组4运动的合成与分解的应用10.某人骑自行车以4 m/s的速度向正东方向行驶,气象站报告当时是正北风,风速也是4 m/s,则骑车人感觉的风速方向和大小分别是()A.西北风,风速4 m/s B.西北风,风速4 2 m/sC.东北风,风速4 m/s D.东北风,风速4 2 m/s答案 D解析若无风,人以4 m/s的速度向东行驶,则相当于人不动,风以4 m/s的速度从东向西刮,而实际风从正北方以4 m/s的速度刮来,所以人感觉到的风速应是这两个速度的合速度(如图所示).所以v合=v21+v22=42+42m/s=4 2 m/s,风向为东北风,D 项正确.11.在第16届亚洲运动会上,10米移动靶团体冠军被我国选手获得.图7为简化的比赛现场图,设移动靶移动的速度为v 1,运动员射出的子弹的速度为v 2,移动靶离运动员的最近距离为d ,忽略空气阻力的影响,要想在最短的时间内射中目标,则运动员射击时离目标的距离应该为( )图7 A.d v 2v 22-v 21B.d v 22+v 21v 2C.d v 1v 2D.d v 2v 1答案 B12.如图8所示,在光滑水平面上有坐标系xOy ,质量为1 kg 的质点开始静止在xOy 平面上。

【步步高】(新课标)高考物理大一轮复习 第四章 第4课时 万有引力与航天(含解析)

【步步高】(新课标)高考物理大一轮复习 第四章 第4课时 万有引力与航天(含解析)

第4课时 万有引力与航天考纲解读 1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.1.[对开普勒三定律的理解](2013·江苏单科·1)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此B 错;太阳在这些椭圆的一个焦点上,因此A 错; 在相同时间内,某个确定的行星与太阳连线在相同时间内扫过的面积相等,因此D 错,本题答案为C. 2.[对万有引力定律的理解]关于万有引力公式F =Gm 1m 2r 2,以下说法中正确的是 ( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于0时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中引力常量G 的值是牛顿规定的 答案 C解析 万有引力公式F =Gm 1m 2r,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C.3.[第一宇宙速度的计算]美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒—22b”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于( )A .3.3×103m/s B .7.9×103m/s C .1.2×104 m/sD .1.9×104m/s 答案 D解析 由该行星的密度和地球相当可得M 1R 31=M 2R 32,地球第一宇宙速度v 1= GM 1R 1,该行星的第一宇宙速度v 2=GM 2R 2,联立解得v 2=2.4v 1=1.9×104m/s ,选项D 正确. 4.[对人造卫星及卫星轨道的考查]a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图1所示.下列说法中正确的是( )图1A .a 、c 的加速度大小相等,且大于b 的加速度B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞的危险 答案 A解析 由G Mm r 2=m v 2r =mr ω2=mr 4π2T2=ma ,可知B 、C 、D 错误,A 正确.一、万有引力定律及其应用1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式:F =Gm 1m 2r2,G 为引力常量:G =6.67×10-11 N·m 2/kg 2. 3.适用条件(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 二、环绕速度1.第一宇宙速度又叫环绕速度.推导过程为:由mg =mv 21R =GMmR2得:v 1=GMR=gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.特别提醒 1.两种周期——自转周期和公转周期的不同2.两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度 3.两个半径——天体半径R 和卫星轨道半径r 的不同 三、第二宇宙速度和第三宇宙速度1.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 2.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.考点一 天体质量和密度的计算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR2=mg (g 表示天体表面的重力加速度). 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r3GT 2;②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G,选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,B 项正确.对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动参量,无法求出它的质量和密度,C 、D 项错误. 答案 AB突破训练1 (2012·福建·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( )A.mv 2GN B.mv 4GN C.Nv 2GmD.Nv 4Gm答案 B解析 设卫星的质量为m ′由万有引力提供向心力,得G Mm ′R 2=m ′v 2R①m ′v 2R=m ′g②由已知条件:m 的重力为N 得N =mg ③由③得g =N m ,代入②得:R =mv 2N代入①得M =mv 4GN,故B 项正确.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心.深化拓展 (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其他量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定. (2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.例2 (2012·天津理综·3)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的14,不考虑卫星质量的变化,则变轨前、后卫星的( )A .向心加速度大小之比为4∶1B .角速度大小之比为2∶1C .周期之比为1∶8D .轨道半径之比为1∶2 解析 根据E k =12mv 2得v =2E km ,所以卫星变轨前、后的速度之比为v 1v 2=21.根据G Mmr2=m v 2r ,得卫星变轨前、后的轨道半径之比为r 1r 2=v 22v 21=14,选项D 错误;根据G Mm r 2=ma ,得卫星变轨前、后的向心加速度大小之比为a 1a 2=r 22r 21=161,选项A 错误;根据G Mm r2=m ω2r ,得卫星变轨前、后的角速度大小之比为ω1ω2=r 32r 31=81,选项B 错误;根据T =2πω,得卫星变轨前、后的周期之比为T 1T 2=ω2ω1=18,选项C 正确.答案 C突破训练2 2013年6月13日,神州十号与天宫一号成功实现自动交会对接.对接前神州十号与天宫一号都在各自的轨道上做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .由神州十号运行的周期和轨道半径可以求出地球的质量B .由神州十号运行的周期可以求出它离地面的高度C .若神州十号的轨道半径比天宫一号大,则神州十号的周期比天宫一号小D .漂浮在天宫一号内的宇航员处于平衡状态答案 A例3 地球赤道地面上有一物体随地球的自转而做圆周运动,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略)所受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3;地球表面重力加速度为g ,第一宇宙速度为v ,假设三者质量相等,则下列结论正确的是( )A .F 1=F 2>F 3B .a 1=a 2=g >a 3C .v 1=v 2=v >v 3D .ω1=ω3<ω2解析 在赤道上随地球自转的物体所受的向心力由万有引力和支持力的合力提供,即F 1=G Mm 1R 2-F N ,绕地球表面附近做圆周运动的卫星向心力由万有引力提供,F 2=GMm 2R2,同步卫星的向心力F 3=GMm 3R +h2,所以F 2>F 1,F 2>F 3,A 错误;地面附近mg =G Mm R2,F 1<mg ,所以a 1<g ,F 2=mg ,所以a 2=g ,F 3<mg ,所以a 3<g ,即a 1<a 2=g >a 3,B 错误;GMm R 2=m v 2R ,F 1<GMm R 2,所以v 1<v ,F 2=GMm R 2,所以v 2=v ,F 3<GMmR2,所以v 3<v ,v 1<v 2=v >v 3,C 错误;地球自转角速度ω=v 1R,赤道上随地球自转的物体和同步卫星的角速度与地球相同,所以ω1=ω3=ω,ω2=v R,v >v 1,所以ω2>ω,ω1=ω3<ω2,D 正确.答案 D同步卫星的六个“一定”突破训练3 已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( )A .卫星距地面的高度为 3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR2D .卫星运行的向心加速度小于地球表面的重力加速度 答案 BD解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 万=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 万=GMmR2=mg (R 为地球半径),设同步卫星离地面高度为h ,则F 万=GMmR +h2=F 向=ma 向<mg ,所以C 错误,D 正确.由GMmR +h 2=mv 2R +h 得,v = GM R +h < GM R ,B 正确.由GMm R +h2=4π2m R +hT2,得R +h = 3GMT 24π2,即h = 3GMT 24π2-R ,A 错误.考点三 卫星变轨问题分析当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增大时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GMr可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速度比原轨道时增大. 卫星的发射和回收就是利用这一原理.例4 “嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球.如图2所示是绕地飞行的三条轨道,1轨道是近地圆形轨道,2和3是变轨后的椭圆轨道.A 点是2轨道的近地点,B 点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s ,则下列说法中正确的是( )图2A .卫星在2轨道经过A 点时的速率一定大于7.7 km/sB .卫星在2轨道经过B 点时的速率一定小于7.7 km/sC .卫星在3轨道所具有的机械能小于在2轨道所具有的机械能D .卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率解析 卫星在1轨道做匀速圆周运动,由万有引力定律和牛顿第二定律得G Mm r 2=m v 21r ,卫星在2轨道A 点做离心运动,则有G Mm r 2<m v 22Ar ,故v 1<v 2A ,选项A 正确;卫星在2轨道B点做近心运动,则有G Mm r 2B >m v 22B r B ,若卫星在经过B 点的圆轨道上运动,则G Mm r 2B =m v 2Br B ,由于r <r B ,所以v 1>v B ,故v 2B <v B <v 1=7.7 km/s ,选项B 正确;3轨道的高度大于2轨道的高度,故卫星在3轨道所具有的机械能大于在2轨道所具有的机械能,选项C 错误;卫星在各个轨道上运动时,只有万有引力做功,机械能守恒,在A 点时重力势能最小,动能最大,速率最大,故卫星在3轨道所具有的最大速率大于在2 轨道所具有的最大速率,选项D 错误. 答案 AB突破训练4 2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.如图3所示,一块陨石从外太空飞向地球,到A 点刚好进入大气层,之后由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( )图3A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大D .进入大气层后,陨石的机械能渐渐变大 答案 C解析 由于万有引力做功,陨石正加速飞向A 处,选项A 错误.陨石绕地球运转时,因轨道半径渐渐变小,则角速度渐渐变大,速度渐渐变大,选项B 错误,C 正确.进入大气层后,由于受到空气阻力的作用,陨石的机械能渐渐变小,选项D 错误. 考点四 宇宙速度的理解与计算1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度. 2.第一宇宙速度的求法:(1)GMm R 2=m v 21R ,所以v 1=GMR. (2)mg =mv 21R,所以v 1=gR .3.第二、第三宇宙速度也都是指发射速度.例5 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围.此后在t 秒内绕木星运行N 圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N 圈都是绕木星在同一个圆周上运行,其运行速率为v ,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图4所示),设木星为一球体.求:图4(1)木星探测器在上述圆形轨道上运行时的轨道半径; (2)木星的第一宇宙速度.解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r ,由v =2πrT可得:r =vT2π由题意,T =t N联立解得r =vt2πN(2)探测器在圆形轨道上运行时,万有引力提供向心力,G mM r 2=m v 2r. 设木星的第一宇宙速度为v 0,有,G m ′M R 2=m ′v 20R联立解得:v 0=rRv 由题意可知R =r sin θ2,解得:v 0=vsinθ2.答案 (1)vt2πN(2)vsinθ2突破训练5 随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后回到出发点.已知月球的半径为R ,万有引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R2GtC .宇航员在月球表面获得v 0Rt的速度就可能离开月球表面围绕月球做圆周运动D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 0答案 B解析 根据竖直上抛运动可得t =2v 0g ,g =2v 0t ,A 项错误;由GMm R 2=mg =m v 2R =m (2πT)2R可得:M =2v 0R2Gt ,v =2v 0Rt,T =2πRt2v 0,故B 项正确,C 、D 项错误.20.双星系统模型问题的分析与计算绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图5所示,双星系统模型有以下特点:图5(1)各自需要的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L2=m 2ω22r 2 (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1(5)双星的运动周期T =2πL 3G m1+m 2(6)双星的总质量公式m 1+m 2=4π2L3T 2G例6 宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用相互绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统A 、B 绕其连线上的O 点做匀速圆周运动,如图6所示.若AO >OB ,则( )图6A .星球A 的质量一定大于B 的质量B .星球A 的线速度一定大于B 的线速度C .双星间距离一定,双星的质量越大,其转动周期越大D .双星的质量一定,双星之间的距离越大,其转动周期越大解析 设双星质量分别为m A 、m B ,轨道半径分别为R A 、R B ,两者间距为L ,周期为T ,角速度为ω,由万有引力定律可知:Gm A m B L2=m A ω2R A① Gm A m B L 2=m B ω2R B②R A +R B =L③由①②式可得m A m B =R B R A, 而AO >OB ,故A 错误.v A =ωR A ,v B =ωR B ,B 正确.联立①②③得G (m A +m B )=ω2L 3, 又因为T =2πω,故T =2π L 3G m A +m B,可知C 错误,D 正确.答案 BD高考题组1.(2013·新课标Ⅰ·20)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 答案 BC解析 地球所有卫星的运行速度都小于第一宇宙速度,故A 错误.轨道处的稀薄大气会对天宫一号产生阻力,不加干预其轨道会缓慢降低,同时由于降低轨道,天宫一号的重力势能一部分转化为动能,故天宫一号的动能可能会增加,B 、C 正确;航天员受到地球引力作用,此时引力充当向心力,产生向心加速度,航天员处于失重状态,D 错误. 2.(2013·新课标Ⅱ·20)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( )A .卫星的动能逐渐减小B .由于地球引力做正功,引力势能一定减小C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减小 答案 BD解析 在卫星轨道半径逐渐变小的过程中,地球引力做正功,引力势能减小;气体阻力做负功,机械能逐渐转化为内能,机械能减小,选项B 正确,C 错误.卫星的运动近似看作是匀速圆周运动,根据G Mm r 2=m v 2r 得v =GMr,所以卫星的速度逐渐增大,动能增大,选项A 错误.减小的引力势能一部分用来克服气体阻力做功,一部分用来增加动能,故D 正确. 模拟题组3.假设地球是一半径为R ,质量分布均匀的球体.已知质量分布均匀的球壳对壳内物体的引力为零,不考虑地球自转的影响,距离地球球心为r 处的重力加速度大小可能为如下图象中的哪一个( )答案 A解析 当r =R 时,G MmR 2=mg 0,所以g 0=GM R 2;r <R 时,g =GM 1r 2,M =ρ·43πR 3,M 1=ρ·43πr 3,联立可得g 0=43πG ρR ,g =43πG ρr ,即g =r R g 0;当r >R 时,GMm R 2=mg 0,GMm r 2=mg ,即g =R 2g 0·1r2,综上可得g -r 的图象如A 所示,A 正确.4.2010年10月1日,嫦娥二号卫星发射成功.作为我国探月工程二期的技术先导星,嫦娥二号的主要任务是为嫦娥三号实现月面软着陆开展部分关键技术试验,并继续进行月球科学探测和研究.如图7所示,嫦娥二号卫星的工作轨道是100 km 环月圆轨道Ⅰ,为对嫦娥三号的预选着陆区——月球虹湾地区(图中B 点正下方)进行精细成像,北京航天飞行控制中心对嫦娥二号卫星实施了降轨控制,嫦娥二号在A 点轨道变为椭圆轨道Ⅱ,使其近月点在虹湾地区正上方B 点,距月面大约15公里.下列说法正确的是( )图7A .嫦娥二号卫星在A 点的势能大于在B 点的势能 B .嫦娥二号卫星变轨前后的机械能不相等C .嫦娥二号卫星在轨道Ⅰ上的速度大于月球的第一宇宙速度D .嫦娥二号卫星在轨道Ⅱ上A 点的向心加速度大于在轨道Ⅰ上A 点的向心加速度 答案 AB解析 因为A 点高度大于B 点的高度,所以卫星在A 点的势能大于在B 点的势能,A 项正确;因为变轨瞬间卫星点火减速,做向心运动,则其机械能变小,B 项正确;因为轨道Ⅰ的半径大于月球半径,所以卫星在轨道Ⅰ上的速度小于月球的第一宇宙速度,C 项错;由a =GM r2知,D 项错误.5.已知月球的半径为R ,某登月飞船在接近月球表面的上空做匀速圆周运动时,周期为T .飞船着陆后,宇航员用绳子拉着质量为m 的仪器箱在平坦的“月面”上运动,已知拉力大小为F ,拉力与水平面的夹角为θ,箱子做匀速直线运动.引力常量为G ,求: (1)月球的质量.(2)箱子与“月面”间的动摩擦因数μ. 答案 (1)4π2R 3GT 2 (2)T 2F cos θ4π2mR -T 2F sin θ解析 (1)G Mm 0R 2=m 0R ·4π2T 2,由此解得M =4π2R3GT 2(2)以箱子为研究对象受力分析,由平衡条件得: 水平方向F cos θ=μF N 竖直方向F sin θ+F N =mgGMmR 2=mg解得:μ=T 2F cos θ4π2mR -T 2F sin θ6.有一极地卫星绕地球做匀速圆周运动,该卫星的运动周期为T 0/4,其中T 0为地球的自转周期.已知地球表面的重力加速度为g ,地球半径为R .求: (1)该卫星一昼夜经过赤道上空的次数n 为多少?试说明理由. (2)该卫星离地面的高度H .答案 (1)8次 (2)14 3gR 2T 2π2-R解析 (1)由于一个周期通过赤道上空两次,卫星在一昼夜共四个周期,故通过8次.(2)GMmR +H 2=m ⎝ ⎛⎭⎪⎪⎫2πT 042(R +H ) m 0g =GMm 0R2H =14 3gR 2T 20π2-R(限时:30分钟)►题组1 万有引力定律及应用1.(2012·新课标全国·21)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC .(R -d R)2D .(RR -d)2答案 A解析 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =43πR 3ρ.因质量分布均匀的球壳对壳内物体的引力为零,所以矿井下以(R -d )为半径的地球的质量为M ′=43π(R -d )3ρ,解得M ′=(R -d R )3M ,则矿井底部的重力加速度g ′=GM ′R -d2,则矿井底部的重力加速度和地面处的重力加速度大小之比为g ′g =1-dR,选项A 正确. 2.如图1所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( )图1A .地球对一颗卫星的引力大小为GMmr -R2B .一颗卫星对地球的引力大小为GMm r C .两颗卫星之间的引力大小为Gm 23r2D .三颗卫星对地球引力的合力大小为3GMmr2答案 BC解析 地球对一颗卫星的引力等于一颗卫星对地球的引力,由万有引力定律得其大小为GMmr 2,故A 错误,B 正确;任意两颗卫星之间的距离L =3r ,则两颗卫星之间的引力大小为Gm 23r2,C 正确;三颗卫星对地球的引力大小相等且三个引力互成120°,其合力为0,故D 选项错误.3.2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图2所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )图2A .图中E 到D 过程,弹道导弹机械能不断增大B .图中E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s 答案 BC解析 弹道导弹从E 到D 靠惯性飞行,只受地球的引力作用,机械能守恒,选项A 错误;弹道导弹从E 到D ,与地心的距离R 增大,万有引力F =GM 地mR 2减小,弹道导弹的加速度a =Fm减小,选项B 正确;由开普勒第一定律知,选项C 正确;D 点在远地点,弹道导弹的速度最小,由v = GMr可知,D 点到地心的距离r 大于地球的半径R 0,所以弹道导弹的速度v =GMr小于第一宇宙速度v 宇= GMR 0=7.9 km/s ,选项D 错误. ►题组2 天体质量和密度的计算4.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v 贴近行星表面匀速飞行,测出运动的周期为T ,已知引力常量为G ,则可得( )A .该行星的半径为vT2πB .该行星的平均密度为3πGT2C .无法求出该行星的质量D .该行星表面的重力加速度为4π2v2T2答案 AB解析 由T =2πR v 可得:R =vT 2π,A 正确;由GMm R 2=m v 2R 可得:M =v 3T 2πG ,C 错误;由M =43πR 3ρ得:ρ=3πGT 2,B 正确;由GMm R 2=mg 得:g =2πv T,D 错误.5.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处,已知该星球的半径与地球半径之比R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面重力加速度为g ′,地球的质量为M 地,该星球的质量为M 星.空气阻力不计.则 ( ) A .g ′∶g =5∶1B .g ′∶g =1∶5C .M 星∶M 地=1∶20D .M 星∶M 地=1∶80。

高考物理一轮复习:4-4《万有引力与航天》ppt课件

高考物理一轮复习:4-4《万有引力与航天》ppt课件
基础自测 教材梳理 考点突破 题型透析 学科培优 素能提升 课时训练 规范解答 首页 上页 下页 尾页 并通过掷硬币和掷骰子的试验,引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和
基础自测 教材梳理
基础自测
教材梳理
பைடு நூலகம்
1.(开普勒三定律的理解)火星和火木星星和沿木星在椭圆轨道上运行,太阳位
各自的椭圆轨道绕太阳运行,根于据椭开圆普轨道的一个焦点上,选项 A错误;
勒行星运动定律可知
由(于火C 星) 和木星在不同的轨道上运行,
A.太阳位于木星运行轨道的中且心是椭圆轨道,速度大小不断变化,火 B始.终火相星等和木星绕太阳运行速度内星 选的容和 项大木小B星错的误运;行由速开度普大勒小第不三一定定律相可等知,, C.火星与木星公转周期之比的Ta平3火火2 =方Ta等3木2木=k,即TT2火 木2 =aa3火 3木,选项 C 正确;
基础自测 教材梳理
基础自测
教材梳理
2.(万有引力定律的理解)(多选)如图所 示,P、Q为质量均为m的两个质点, 分别置于地球表面上的不同纬度上,如
果把地球看成一个均匀球体,P、Q两
质点随地球自转做匀速圆周运动,内则容下
列说法正确的是
( AC )
A.P、Q受地球引力大小相等
B.P、Q做圆周运动的向心力大小相等
高基三础自物测理一轮复习
教材梳理
第四章
曲线运动
万有引基础力自测与航天 教材梳理

2015高三物理一轮:4-4万有引力与航天

2015高三物理一轮:4-4万有引力与航天

[限时训练][限时45分钟,满分100分]1.(6分)火星的质量和半径分别约为地球的110和12,地球表面的重力加速度为g 地,则火星表面的重力加速度约为A .0.2g 地B .0.4g 地C .2.5g 地D .5g 地解析 在星球表面有G MmR 2=mg ,故火星表面的重力加速度与地球表面的重力加速度之比为g 火g 地=M 火R 2地M 地R 2火=0.4,故B 正确.答案 B2.(6分)(2014·苏北四市调研)2012年2月25日我国成功地将第十一颗北斗导航卫星送入太空预定轨道——地球同步轨道,使之成为地球同步卫星.关于该卫星,下列说法正确的是A .相对于地面静止,离地面高度为在R ~4R (R 为地球半径)之间的任意值B .运行速度大于7.9 km/sC .角速度大于静止在地球赤道上物体的角速度D .向心加速度大于静止在地球赤道上物体的向心加速度解析 地球同步卫星周期T =24 h ,离地面高度为定值,选项A 错;同步卫星运行速度小于7.9 km/s ,选项B 错;角速度等于静止在地球赤道上物体的角速度,选项C 错;由a =rω2知,选项D 对.答案 D3.(2014·四川省成都市诊断)2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P ,这个行星围绕某恒星Q 做匀速圆周运动.测得P 的公转周期为T ,公转轨道半径为r ,已知引力常量为G .则A .恒星Q 的质量约为4π2r 3GT 2B .行星P 的质量约为4π2r 3GT 2C .以7.9 km/s 的速度从地球发射的探测器可以到达该行星表面D .以11.2 km/s 的速度从地球发射的探测器可以到达该行星表面解析 设恒星Q 的质量为M ,行星P 的质量为m ,由万有引力提供向心力得:G Mmr2=mr (2πT )2得M =4π2r 3GT 2无法求出m ,选项A 对、B 错;以16.7 km/s 的速度从地球发射的探测器可以到达该行星表面,选项C 、D 错.答案 A4.金星一直被视为是生命最不可能生存的地方,然而近年来科学家的研究和推测发现,地球上的生命可能来自金星.这一研究和发现,再一次引起了人们对金星的极大兴趣.金星的半径为6 052 km ,密度与地球十分接近.已知地球半径R =6 400 km ,地球表面重力加速度为g .则A .金星表面的重力加速度与地球表面重力加速度之比为6 40026 0522B .金星表面的重力加速度与地球表面重力加速度之比为6 0526 400C .金星的第一宇宙速度与地球的第一宇宙速度之比为6 0526 400D .金星的第一宇宙速度与地球的第一宇宙速度之比为1∶1解析 物体在天体表面万有引力等于重力,有G Mm R 2=mg ,即GMR 2=g ,且g =4πρG 3R ,g 金星g 地球=R 金星R 地球=6 0526 400.A 错、B 对;由万有引力充当向心力得mg =m v 2R ,即v =gR ,v 金星v 地球=R 金星g 金星R 地球g 地球=6 0526 400,D 错、C 对.答案 BC5.(2014·九江统考)冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍 解析 设两星轨道半径分别为r 1、r 2,由GMm L2=Mω2r 1=mω2r 2,故r 1∶r 2=m ∶M =1∶7,选项A 正确;由于双星周期相同,由ω=2πT 知角速度相同,选项B 错误;线速度v =ωr ,知v 1∶v 2=1∶7,选项C 错误;根据a =ω2r 知a 1∶a 2=1∶7,选项D 错误.答案 A6.(2014·徐州高三上学期摸底)我国“北斗”卫星导航定位系统由5颗静止轨道卫星(同步卫星)和30颗非静止轨道卫星组成,30颗非静止轨道卫星中有27颗是中轨道卫星,中轨道卫星轨道高度约为2.15×104 km ,静止轨道卫星的高度约为3.60×104 km.下列说法正确的是A .中轨道卫星的线速度大于7.9 km/sB .静止轨道卫星的线速度大于中轨道卫星的线速度C .静止轨道卫星的运行周期大于中轨道卫星的运行周期D .静止轨道卫星的向心加速度大于中轨道卫星的向心加速度解析 中轨道卫星的线速度小于7.9 km/s ,静止轨道卫星的线速度小于中轨道卫星的线速度,选项A 、B 错误;静止轨道卫星的运行周期大于中轨道卫星的运行周期,静止轨道卫星的向心加速度小于中轨道卫星的向心加速度,选项C 正确、D 错误.答案 C7.(2014·烟台模拟)2012年2月25日0时12分,西昌卫星发射中心用“长征三号丙”运载火箭,成功将第11颗北半导航卫星送入了太空预定轨道.这是一颗地球同步卫星,若卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则A.a 1a 2=r RB.a 1a 2=R 2r 2C.v 1v 2=R 2r 2D.v 1v 2=Rr解析 同步卫星的角速度等于静止在地球赤道上物体的角速度,由a =rω2得,a 1a 2=rR ,选项A 对而B 错;万有引力充当向心力,由v =GMr 得,v 1v 2=Rr,选项D 对. 答案 AD8.(2013·广东理综)如图,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大解析 由GMm r 2=ma 知a =GMr2,因M 甲=M ,M 乙=2M ,r 甲=r 乙,故a 甲<a 乙,A 项正确.由GMm r 2=m ·4π2T 2·r 知T 2=4π2r 3GM ,据已知条件得T 甲>T 乙,B 项错误.由GMm r2=mω2r知ω2=GM r 3,据已知条件得ω甲<ω乙,C 项错误.由GMm r2=m v 2r 知v 2=GMr ,据已知条件得v 甲<v 乙,D 项错误.答案 A9.(2013·浙江理综)如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是A .地球对一颗卫星的引力大小为GMm(r -R )2B .一颗卫星对地球的引力大小为GMmr 2C .两颗卫星之间的引力大小为Gm 23r2D .三颗卫星对地球引力的合力大小为3GMmr2解析 根据万有引力定律,地球对一颗卫星的引力大小F 万=G Mmr 2,A 项错误,由牛顿第三定律知B 项正确.三颗卫星等间距分布,任意两星间距为3r ,故两星间引力大小F 万′=G m 23r 2, C 项正确.任意两星对地球引力的夹角为120°,故任意两星对地球引力的合力与第三星对地球的引力大小相等,方向相反,三星对地球引力的合力大小为零,D 项错误.答案 BC10.我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T .若以R 表示月球的半径,则A .卫星运行时的向心加速度为4π2RT 2B .物体在月球表面自由下落的加速度为4π2RT 2C .卫星运行时的线速度为2πRT D .月球的第一宇宙速度为2πR (R +h )3TR解析 卫星运行时的轨道半径为r =R +h ,其向心加速度为 a =4π2r T 2=4π2(R +h )T 2,A 错.运行时的线速度为v =2πr T =2π(R +h )T ,C 错.由G Mm(R +h )2=m (R +h )4π2T 2得GM =4π2(R +h )3T 2所以g =GM R 2=4π2(R +h )3R 2T 2,其第一宇宙速度v 1=GM r =2πR (R +h )32R,B 错、D 正确.答案 D11.2011年12月24日,美国宇航局宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、适合居住的行星“开普勒-22b(Kepler —22b)”,该行星距离地球约600光年,体积是地球的2.4倍,质量约是地球的18.5倍,它像地球绕太阳运行一样每290天环绕一恒星运行,由于恒星风的影响,该行星的大气不断被吸引到恒星上.据估计,这颗行星每秒丢失至少10 000 t 物质,已知地球半径为6 400 km ,地球表面的重力加速度为9.8 m/s 2,引力常量G 为6.67×10-11N ·m 2·kg -2,则由上述信息A .可估算该恒星密度B .可估算该行星密度C .可判断恒星对行星的万有引力增大D .可判断该行星绕恒星运行周期大小不变解析 由地球半径和地球表面的重力加速度可得地球质量,从而得出该行星质量和半径,可估算该行星密度,选项B 正确.该行星绕恒星运行的向心力由万有引力提供,则有GMmr 2=m (2πT )2r ,即GM =4π2T 2r 3,T =4π2r 3GM ,由题知,行星质量m 减少,恒星质量M 增大,但Mm 减小,故恒星对行星的万有引力F =GMmr 2减小,周期T 减小,故选项C 、D 错.设该恒星密度ρ,则ρ=3πr 3GT 2R3,该恒星半径未知,故不能估算其密度,选项A 错.答案 B12.天宫一号变轨到距离地面约362千米的近似圆轨道,这是考虑到受高层大气阻力的影响,轨道的高度会逐渐缓慢降低.通过这样轨道的降低,预计可以使天宫一号在神舟八号发射时,轨道高度自然降到约343千米的交会对接轨道,从而尽量减少发动机开机,节省燃料.假设天宫一号从362千米的近似圆轨道变到343千米的圆轨道的过程中,没有开启发动机.则A .天宫一号的运行周期将增大B .天宫一号的运行的加速度将增大C .天宫一号的运行的线速度将增大D .天宫一号的机械能将增大解析 根据人造卫星的运行规律可得天宫一号的线速度和周期:v =GMr,T =2πr 3GM,r 减小,所以天宫一号的周期将减小,线速度将增大,C 正确、A 错误,天宫一号的加速度a =G Mr 2将增大,B 正确.由于该运动过程天宫一号需克服大气阻力做功,其机械能将减小.D 错误.答案 BC13.(2014·杭州模拟)“嫦娥二号”卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km ,周期为118 min 的工作轨道,开始对月球进行探测,则A .卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度小B .卫星在轨道Ⅲ上经过P 点的速度比在轨道Ⅰ上经过P 点时大C .卫星在轨道Ⅲ上运行的周期比在轨道Ⅰ上短D .卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大 解析 由G Mmr2=m v 2r 得v =GMr,故卫星在轨道Ⅲ上的运行速度比月球的第一宇宙速度小,选项A 正确;卫星在轨道Ⅰ上经过P 点时做近心运动,其速度比在轨道Ⅲ上经过P 点时大,选项B 错误;由开普勒第三定律可知R 3T 2为定值,故卫星在轨道Ⅲ上运行的周期比在轨道Ⅰ上短,选项C 正确;卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大,选项D 正确.答案 ACD 二、计算题(共22分)14.(2014·四川省名校模拟)火星表面特征非常接近地球,适合人类居住.近期我国宇航员王跃正与俄罗斯宇航员一起进行“模拟登火星”实验活动.宇航员为了测定火星球表面的重力加速度,做了如下探究:将直径为d 的光滑环形轨道竖直固定在火星表面,让小滑块在轨道内做圆周运动,如图所示,当小滑块经过轨道最低点速度为v 0时,恰能通过轨道最高点.已知火星球的半径为R 星. (1)试求火星表面的重力加速度g ;(2)若给火星球发射一颗人造卫星,试计算卫星运行周期应满足的条件. 解析 (1)小滑块在轨道内做圆周运动时机械能守恒,有 12m v 20=mg ·2R +12m v 2① 由于滑块恰能通过轨道最高点,所以有 mg =m v 2R ②R =d 2③联立①②③解得g =2v 205d④(2)卫星运动时万有引力等于向心力,有 G Mmr 2=m 4π2T2r ⑤ 在星球表面,万有引力近似等于其重力,即 G MmR 2星=mg ⑥ 联立⑤⑥解得T =2πr 3R 2星g⑦ 当卫星贴近星球表面运动时,r ≈R 星,此时运行周期最短,故T≥2πR星g⑧代入④式得T≥πv010R星d.答案见解析。

步步高2015高三物理(新课标)一轮讲义:实验04验证牛顿第二定律

步步高2015高三物理(新课标)一轮讲义:实验04验证牛顿第二定律

实验四探究加速度与力、质量的关系考纲解读 1.学会用控制变量法研究物理规律.2.学会灵活运用图象法处理物理问题的方法.3.探究加速度与力、质量的关系,并验证牛顿第二定律.考点一对实验原理与注意事项的考查例1(2013·天津·9(2))某实验小组利用图1所示的装置探究加速度与力、质量的关系.图1①下列做法正确的是________(填字母代号)A.调节滑轮的高度,使牵引木块的细绳与长木板保持平行B.在调节木板倾斜度平衡木块受到的滑动摩擦力时,将装有砝码的砝码桶通过定滑轮拴在木块上C.实验时,先放开木块再接通打点计时器的电源D.通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度②为使砝码桶及桶内砝码的总重力在数值上近似等于木块运动时受到的拉力,应满足的条件是砝码桶及桶内砝码的总质量________木块和木块上砝码的总质量.(选填“远大于”、“远小于”或“近似等于”)③甲、乙两同学在同一实验室,各取一套图2所示的装置放在水平桌面上,木块上均不放砝码,在没有平衡摩擦力的情况下,研究加速度a与拉力F的关系,分别得到图9中甲、乙两条直线.设甲、乙用的木块质量分别为m甲、m乙,甲、乙用的木块与木板间的动摩擦因数分别为μ甲、μ乙,由图可知,m甲________m乙,μ甲________μ乙.(选填“大于”、“小于”或“等于”)图2解析①在探究加速度与力、质量的关系的实验中,平衡摩擦力时木块不通过定滑轮挂砝码桶,而要挂纸带,并且改变质量时不需要重新平衡摩擦力;在实验时应先接通电源再放开木块,故选项A、D均正确,B、C均错误.②选木块和木块上砝码(设总质量为M)、砝码桶及桶内的砝码(设总质量为m)为研究对象,则mg=(M+m)a选砝码桶及桶内的砝码为研究对象则mg-F T=ma联立解得:F T=mg-m2gM+m要使F T=mg,需要m2gM+m→0,即M≫m③对质量为m的木块由牛顿第二定律得:F-μmg=ma即a=1m F-μg.上式与题图结合可知:1m甲>1m乙,μ甲g>μ乙g.即:m甲<m乙,μ甲>μ乙答案①AD②远小于③小于大于考点二 对实验步骤和数据处理的考查例2 为了探究加速度与力的关系,使用如图3所示的气垫导轨装置进行实验.其中G 1、G 2为两个光电门,它们与数字计时器相连,当滑行器通过G 1、G 2光电门时,光束被遮挡的时间Δt 1、Δt 2都可以被测量并记录,滑行器同上面固定的一条形挡光片的总质量为M ,挡光片宽度为D ,两光电门间距离为x ,牵引砝码的质量为m .回答下列问题:图3(1)实验开始应先调节气垫导轨下面的螺钉,使气垫导轨水平,在不增加其他仪器的情况下,如何判定调节是否到位?答:___________________________________________________________________. (2)若取M =0.4 kg ,改变m 的值,进行多次实验,以下m 的取值不合适的一个是________. A .m =5 g B .m =15 g C .m =40 g D .m =400 g(3)在此实验中,需要测得每一个牵引力对应的加速度,写出该加速度的表达式:________________.(用Δt 1、Δt 2、D 、x 表示)答案 (1)取下牵引砝码,M 放在任意位置都不动;或取下牵引砝码,轻推滑行器M ,数字计时器记录两个光电门的光束被挡的时间Δt 相等 (2)D (3)a =⎝⎛⎭⎫D Δt 22-⎝⎛⎭⎫D Δt 122x创新实验设计例3 某实验小组在“探究加速度与物体受力的关系”实验中,设计出如下的实验方案,其实验装置如图4所示.已知小车质量M =214.6 g ,砝码盘质量m 0=7.8 g ,所使用的打点计时器交流电频率f =50 Hz.其实验步骤是:图4A.按图中所示安装好实验装置;B.调节长木板的倾角,轻推小车后,使小车能沿长木板向下做匀速运动;C.取下细绳和砝码盘,记下砝码盘中砝码的质量m;D.将小车置于打点计时器旁,先接通电源,再放开小车,打出一条纸带,由纸带求得小车的加速度a;E.重新挂上细绳和砝码盘,改变砝码盘中砝码的质量,重复B-D步骤,求得小车在不同合外力F作用下的加速度.回答下列问题:(1)按上述方案做实验,是否要求砝码和砝码盘的总质量远小于小车的质量?________(填“是”或“否”).(2)实验中打出的其中一条纸带如图5所示,由该纸带可求得小车的加速度a=________ m/s2.图5(3)某同学将有关测量数据填入他所设计的表格中,如下表,________________________________________________________________________,从该图线延长线与横轴的交点可求出的物理量是________________________,其大小为________.图6答案(1)否(2)0.88(3)在计算小车所受的合外力时未计入砝码盘的重力(只要涉及“未考虑砝码质量的因素”就算正确)砝码盘的重力0.08 N解析 (1)取下砝码盘后,小车加速运动时所受的合外力即为砝码和砝码盘的总重力,而实验中的研究对象是小车,因此,实验中不必使砝码及砝码盘的质量远小于小车的质量.(2)a =(8.64+7.75)-(6.87+6.00)4×(0.1)2×10-2 m /s 2=0.88 m/s 2. (3)实验中本应有(m 0+m )g =Ma ,由于实验中未计入砝码盘质量m 0,测得的图象与真实图象相比沿F 轴左移m 0g ,图象将不过原点.由图象及上述分析可知,m 0g =0.08 N.14.物理实验思想方法之近似法、控制变量 法、平衡摩擦力法和化曲为直法1.近似法:在探究加速度与力、质量的关系实验中,近似法是指绳对小车的拉力近似等于绳另一端连接的小盘和砝码的总重力,近似法要在小盘和砝码的总重力远小于小车的重力的情况下才能用.2.控制变量法:控制变量法是指分别研究加速度与力、加速度与质量关系时用到的方法,在实验中的具体体现是:研究加速度与力的关系时,保持小车质量不变;研究加速度与质量的关系时,保持小盘和砝码的总重力不变.3.平衡摩擦力法:平衡摩擦力法是指通过调整斜面倾角,让小车重力沿斜面的分力与摩擦力抵消,使小车受到的合外力等于绳对小车的拉力,体现在实验中是让小车不挂小盘时能在斜面上匀速运动.4.化曲为直法:化曲为直法是指处理数据时,不作a -m 图象而作a -1m 图象,反映在图象中就是把原来的曲线变成倾斜的直线.例4 某实验小组欲以图7所示实验装置“探究加速度与物体受力和质量的关系”.图中A为小车,B 为装有砝码的小盘,C 为一端带有定滑轮的长木板,小车通过纸带与电磁打点计时器相连,小车的质量为m 1,小盘(及砝码)的质量为m 2.图7(1)下列说法正确的是()A.实验时先放开小车,再接通打点计时器的电源B.每次改变小车质量时,应重新平衡摩擦力C.本实验中应满足m2远小于m1的条件D.在用图象探究小车加速度与受力的关系时,应作a-m1图象(2)实验中,得到一条打点的纸带,如图8所示,已知相邻计数点间的时间间隔为T,且间距x1、x2、x3、x4、x5、x6已量出,则打点计时器打下F点时小车的瞬时速度的计算式为v F=________,小车加速度的计算式a=________.图8(3)某同学平衡好摩擦阻力后,在保持小车质量不变的情况下,通过多次改变砝码重力,作出小车加速度a与砝码重力F的图象如图9所示.若牛顿第二定律成立,重力加速度g =10 m/s 2,则小车的质量为__________kg ,小盘的质量为________kg.图9(4)实际上,在砝码的重力越来越大时,小车的加速度不能无限制地增大,将趋近于某一极限值,此极限值为________m/s 2.解析 (1)实验时应先接通电源,再放开小车,A 项错;每次改变小车质量时,没必要重新平衡摩擦力,B 项错;实验要求m 2≪m 1,C 项对;D 项中应作a -m 2或a -F 图象,D 错.(2)v F =v t2=v =x 5+x 62T ,由逐差法知a =x 4+x 5+x 6-x 3-x 2-x 19T 2.(3)由题图中的a -F 图线可知:a =F m +0.3,即图线的斜率k =1m ,可求解得m =2.0 kg.当F =0时,a =0.3 m/s 2,此时a =F 0m =m 0gm,所以m 0=0.06 kg.(4)当砝码重力越来越大时,a =(m +m 0)gm +m 0+M ,即m 无限大时,a 趋向于g . 答案 (1)C (2)x 5+x 62T x 4+x 5+x 6-x 3-x 2-x 19T 2(3)2.0 0.06 (4)101.用如图10所示装置探究影响加速度的因素,提供的器材有长木板、铁架台、米尺、计时仪器、小车(可视为质点)、砝码等,进行以下探究活动:图10(1)探究加速度与质量的关系①测量木板长度l,将木板一端放在铁架台的支架上.②让小车从静止开始由顶端滑到底端,测出下滑时间t,则小车运动的加速度可表示为a=________.③保持木板倾角不变,向小车内加入砝码,再使其从静止开始由顶端滑到底端,测出下滑时间t′.④在实验误差允许范围内小车两次下滑的加速度a与a′的关系为a____a′.(填“>”、“<”或“=”)⑤据此能否得出加速度与质量的关系?______(填“能”或“不能”)(2)探究加速度与合外力的关系①若不计摩擦,小车质量为M ,木板长度为l ,木板两端高度差为h ,重力加速度为g ,则小车沿木板下滑受到的合外力为F =______.②改变木板倾角,测出每次木板两端的高度差h 和小车下滑的时间t .③为了寻求a 与F 的关系,可以作出与变量h 、t 相关的图象,当两坐标轴的物理量分别为________和________时,得到的图象才是直线.答案 (1)②2l t 2 ④= ⑤不能 (2)①Mg h l ③h 1t 2(或“t 2 1h”) 2.“探究加速度与物体质量、物体受力的关系”的实验装置如图11所示.图11(1)在平衡摩擦力后,挂上砝码盘,打出了一条纸带如图12所示.计时器打点的时间间隔为0.02 s .从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离(图中已标出),该小车的加速度a =________ m/s 2.(结果保留两位有效数字)图12(2)平衡摩擦力后,将5个相同的砝码都放在小车上.挂上砝码盘,然后每次从小车上取一个砝码添加到砝码盘中,测量小车的加速度.小车的加速度a与砝码盘中砝码总重力F的实验数据如下表:坐标原点,请说明主要原因是什么?答案(1)0.17 m/s2(2)未计入砝码盘的重力3.如图13为“用DIS(位移传感器、数据采集器、计算机)研究加速度和力的关系”的实验装置.图13(1)在该实验中必须采用控制变量法,应保持__________不变,用钩码所受的重力作为____________,用DIS测小车的加速度.(2)改变所挂钩码的数量,多次重复测量,在某次实验中根据测得的多组数据可画出a -F关系图线(如图14所示).图14①分析此图线的OA段可得出的实验结论是______________________________.②此图线的AB段明显偏离直线,造成此误差的主要原因是________.A.小车与轨道之间存在摩擦B.导轨保持了水平状态C.所挂钩码的总质量太大D.所用小车的质量太大答案 (1)小车的总质量 小车所受的外力(2)①在质量不变的情况下,加速度与外力成正比 ②C解析 (1)因为要探究“加速度和力的关系”,所以应保持小车的总质量不变,钩码所受的重力作为小车所受的外力.(2)由于OA 段a -F 关系图线为一倾斜的直线,所以在质量不变的条件下,加速度与外力成正比;由实验原理:mg =Ma 得:a =mg M =F M ,而实际上a ′=mg M +m,可见AB 段明显偏离直线是没有满足M ≫m 造成的.4.某同学在用如图15甲所示的装置做“探究加速度与物体受力的关系”实验时.(1)该同学在实验室找到了一个小正方体木块,用实验桌上的一把游标卡尺测出正方体木块的边长,示数如图乙所示,则正方体木块的边长为________ cm ;图15(2)接着用这个小正方体木块把小车轨道的一端垫高,通过速度传感器发现小车刚好做匀速直线运动.设小车的质量为M ,正方体木块的边长为a ,并用刻度尺量出图中AB 的距离l (a ≪l ,且已知θ很小时tan θ≈sin θ),则小车向下滑动时受到的摩擦力为________.(3)然后用细线通过定滑轮挂上重物让小车匀加速下滑,不断改变重物的质量m ,测出对应的加速度a ,则下列图象中能正确反映小车加速度a 与所挂重物质量m 的关系的是________.答案 (1)3.150 (2)Mga l(3)C 5.(2011·课标·23)利用图16所示的装置可测量滑块在斜面上运动的加速度.一斜面上安装有两个光电门,其中光电门乙固定在斜面上靠近底端处,光电门甲的位置可移动.当一带有遮光片的滑块自斜面上滑下时,与两个光电门都相连的计时器可以显示出遮光片从光电门甲滑至乙所用的时间t.改变光电门甲的位置进行多次测量,每次都使滑块从同一点由静止开始下滑,并用米尺测量甲、乙之间的距离s,记下相应的t值;所得数据如下表所示.图16(1)若滑块所受摩擦力为一常量,滑块加速度的大小a、滑块经过光电门乙时的瞬时速度v t、测量值s和t四个物理量之间所满足的关系式是______________;(2)根据表中给出的数据,在图17给出的坐标纸上画出st-t图线;图17(3)由所画出的s t-t 图线,得出滑块加速度的大小为a =__________m/s 2(保留2位有效数字). 答案 (1)s =v t t -12at 2或s t =v t -12at (2)见解析图 (3)2.0 解析 可认为滑块从乙到甲做匀减速直线运动,根据运动学公式有s =v t t -12at 2,得s t =v t -12at ,根据所给数据描点并连线如图所示,图线的斜率为-12a ,根据图象得-12a =-1.0,则a =2.0 m/s 2(注意保留2位有效数字).6.用如图18所示的实验装置可以探究加速度与力、质量的关系.小车上固定一个盒子(图中未画出),盒子内盛有砂子,小车的总质量(包括车、盒子及盒内砂子)记为M ,砂桶的总质量(包括桶以及桶内砂子)记为m .图18(1)验证“在质量不变的情况下,加速度与合外力成正比”.从盒子中取出一些砂子,装入砂桶中,称量并记录砂桶的总重力mg ,将该力视为合外力F ,对应的加速度a 则从打点纸带中计算得到.多次改变合外力F 的大小,每次都会得到一个相应的加速度.以合外力F 为横轴、加速度a 为纵轴画出a -F 图象,图象是一条过原点的直线. ①a -F 图象斜率的物理意义是_________________________________________. ②你认为把砂桶的总重力mg 当作合外力F 是否合理?答:________(填“合理”或“不合理”).(2)验证“在合外力不变的情况下,加速度与质量成反比”.本次实验中,保持桶内的砂子质量不变,故系统所受的合外力不变.用图象法处理数据时,以加速度a 为纵轴,以________为横轴,才能保证图象是一条过原点的直线.答案 (1)①1m +M ②合理 (2)1m +M解析 (1)本题是对课本中已有的“验证牛顿第二定律”实验方案的创新.本题中“从盒子中取出一些砂子,装入砂桶中”说明小车的质量是变化的,而此项操作是要求验证“在质量不变的情况下,加速度与合外力成正比”,显然研究对象不再是小车,仔细审题后不难发现,研究对象应该是小车与砂桶所组成的系统,是系统的总质量(m +M )保持不变.a -F 图象的斜率表示1m +M,故把砂桶的总重力mg 当作(系统所受的)合外力F 是合理的. (2)此项操作中明确说明了“系统所受的合外力不变”,因此,应以系统总质量的倒数即1m +M 为横轴,以加速度a 为纵轴,画出a -1m +M图象,图象才是一条过原点的直线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时 万有引力与航天考纲解读1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.1.[对开普勒三定律的理解]火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此B 错;太阳在这些椭圆的一个焦点上,因此A 错; 在相同时间内,某个确定的行星与太阳连线在相同时间内扫过的面积相等,因此D 错,本题答案为C.2.[对万有引力定律的理解]关于万有引力公式F =G m 1m 2r2,以下说法中正确的是( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于0时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中引力常量G 的值是牛顿规定的 答案 C解析 万有引力公式F =G m 1m 2r ,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C.3.[第一宇宙速度的计算]美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒—22b ”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于( ) A .3.3×103 m/s B .7.9×103 m/s C .1.2×104 m/s D .1.9×104 m/s 答案 D解析 由该行星的密度和地球相当可得M 1R 31=M 2R 32,地球第一宇宙速度v 1=GM 1R 1,该行星的第一宇宙速度v 2=GM 2R 2,联立解得v 2=2.4v 1=1.9×104 m/s ,选项D 正确. 4.[对人造卫星及卫星轨道的考查]a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图1所示.下列说法中正确的是( )图1A .a 、c 的加速度大小相等,且大于b 的加速度B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞的危险 答案 A解析 由G Mm r 2=m v 2r =mrω2=mr 4π2T2=ma ,可知B 、C 、D 错误,A 正确.一、万有引力定律及其应用1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式:F =Gm 1m 2r 2,G 为引力常量:G =6.67×10-11 N·m 2/kg 2.3.适用条件(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 二、环绕速度1.第一宇宙速度又叫环绕速度.推导过程为:由mg =m v 21R =GMmR 2得:v 1=GMR=gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.特别提醒 1.两种周期——自转周期和公转周期的不同2.两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度 3.两个半径——天体半径R 和卫星轨道半径r 的不同 三、第二宇宙速度和第三宇宙速度1.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 2.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.考点一 天体质量和密度的计算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度). 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( ) A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22 C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,B 项正确.对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动参量,无法求出它的质量和密度,C 、D 项错误. 答案 AB突破训练1 (2012·福建·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( ) A.m v 2GN B.m v 4GN C.N v 2Gm D.N v 4Gm 答案 B解析 设卫星的质量为m ′由万有引力提供向心力,得G Mm ′R 2=m ′v 2R ①m ′v 2R=m ′g ②由已知条件:m 的重力为N 得N =mg ③ 由③得g =Nm ,代入②得:R =m v 2N代入①得M =m v 4GN ,故B 项正确.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心.深化拓展 (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其他量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定. (2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.例2 “嫦娥四号”,专家称“四号星”,计划在2017年发射升空,它是嫦娥探月工程计划中嫦娥系列的第四颗人造探月卫星,主要任务是更深层次、更加全面的科学探测月球地貌、资源等方面的信息,完善月球档案资料.已知月球的半径为R ,月球表面的重力加速度为g ,月球的平均密度为ρ,“嫦娥四号”离月球中心的距离为r ,绕月周期为T .根据以上信息下列说法正确的是( ) A .月球的第一宇宙速度为grB .“嫦娥四号”绕月运行的速度为 gr 2RC .万有引力常量可表示为3πr 3ρT 2R3D .“嫦娥四号”必须减速运动才能返回地球解析 根据第一宇宙速度的定义有:mg =m v 2R ,v =gR ,A 错误;根据G Mmr 2=m v 2r 和G MmR2=mg 可以得到“嫦娥四号”绕月运行的速度为v = R 2g r ,B 错误;根据G Mm r2=m 4π2T 2r 和M =ρ43πR 3可以知道万有引力常量可表示为3πr 3ρT 2R 3,C 正确;“嫦娥四号”必须先加速离开月球,再减速运动才能返回地球,D 错误. 答案 C突破训练2 2013年6月13日,神州十号与天宫一号成功实现自动交会对接.对接前神州十号与天宫一号都在各自的轨道上做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .由神州十号运行的周期和轨道半径可以求出地球的质量B .由神州十号运行的周期可以求出它离地面的高度C .若神州十号的轨道半径比天宫一号大,则神州十号的周期比天宫一号小D .漂浮在天宫一号内的宇航员处于平衡状态 答案 A例3 如图2所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )图2A.a 1a 2=r RB.a 1a 2=(Rr )2C.v 1v 2=r R D.v 1v 2= Rr解析 本题中涉及三个物体,其已知量排列如下: 地球同步卫星:轨道半径r ,运行速率v 1,向心加速度a 1; 地球赤道上的物体:轨道半径R ,随地球自转的向心加速度a 2; 近地卫星:轨道半径R ,运行速率v 2.对于卫星,其共同特点是万有引力提供向心力,有G Mmr 2=m v 2r ,故v 1v 2=Rr. 对于同步卫星和地球赤道上的物体,其共同点是角速度相等,有a =ω2r ,故a 1a 2=rR .答案 AD同步卫星的六个“一定”突破训练3 已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( ) A .卫星距地面的高度为 3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR2D .卫星运行的向心加速度小于地球表面的重力加速度 答案 BD解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 万=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 万=GMmR 2=mg (R 为地球半径),设同步卫星离地面高度为h ,则F 万=GMm(R +h )2=F 向=ma 向<mg ,所以C 错误,D 正确.由GMm(R +h )2=m v 2R +h得,v =GMR +h< GM R ,B 正确.由GMm (R +h )2=4π2m (R +h )T 2,得R +h = 3GMT 24π2,即h = 3GMT 24π2-R ,A 错误.考点三 卫星变轨问题分析当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GMr可知其运行速度比原轨道时减小. (2)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GMr可知其运行速度比原轨道时增大. 卫星的发射和回收就是利用这一原理.例4 “嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球.如图3所示是绕地飞行的三条轨道,1轨道是近地圆形轨道,2和3是变轨后的椭圆轨道.A 点是2轨道的近地点,B 点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s ,则下列说法中正确的是( )图3A .卫星在2轨道经过A 点时的速率一定大于7.7 km/sB .卫星在2轨道经过B 点时的速率一定小于7.7 km/sC .卫星在3轨道所具有的机械能小于在2轨道所具有的机械能D .卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率解析 卫星在1轨道做匀速圆周运动,由万有引力定律和牛顿第二定律得G Mm r 2=m v 21r ,卫星在2轨道A 点做离心运动,则有G Mm r 2<m v 22Ar ,故v 1<v 2A ,选项A 正确;卫星在2轨道B 点做近心运动,则有G Mm r 2B >m v 22Br B ,若卫星在经过B 点的圆轨道上运动,则G Mm r 2B=m v 2Br B,由于r <r B ,所以v 1>v B ,故v 2B <v B <v 1=7.7 km/s ,选项B 正确;3轨道的高度大于2轨道的高度,故卫星在3轨道所具有的机械能大于在2轨道所具有的机械能,选项C 错误;卫星在各个轨道上运动时,只有万有引力做功,机械能守恒,在A 点时重力势能最小,动能最大,速率最大,故卫星在3轨道所具有的最大速率大于在2 轨道所具有的最大速率,选项D 错误. 答案 AB突破训练4 2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.如图4所示,一块陨石从外太空飞向地球,到A 点刚好进入大气层,之后由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( )图4A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大D .进入大气层后,陨石的机械能渐渐变大 答案 C解析 由于万有引力做功,陨石正加速飞向A 处,选项A 错误.陨石绕地球运转时,因轨道半径渐渐变小,则角速度渐渐变大,速度渐渐变大,选项B 错误,C 正确.进入大气层后,由于受到空气阻力的作用,陨石的机械能渐渐变小,选项D 错误. 考点四 重力加速度和宇宙速度的求解1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMm R 2=m v 21R,所以v 1=GMR. (2)mg =m v 21R,所以v 1=gR .3.第二、第三宇宙速度也都是指发射速度.例5 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围.此后在t 秒内绕木星运行N 圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N 圈都是绕木星在同一个圆周上运行,其运行速率为v ,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:图5(1)木星探测器在上述圆形轨道上运行时的轨道半径; (2)木星的第一宇宙速度.解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r ,由v =2πr T可得:r =v T2π由题意,T =tN联立解得r =v t2πN(2)探测器在圆形轨道上运行时,万有引力提供向心力, G mMr 2=m v 2r. 设木星的第一宇宙速度为v 0,有,G m ′M R 2=m ′v 20R联立解得:v 0=rRv 由题意可知R =r sin θ2,解得:v 0=v sin θ2.答案 (1)v t2πN(2)vsin θ2突破训练5 随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后回到出发点.已知月球的半径为R ,万有引力常量为G ,则下列说法正确的是( ) A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R 2GtC .宇航员在月球表面获得v 0Rt的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 0答案 B解析 根据竖直上抛运动可得t =2v 0g ,g =2v 0t ,A 项错误;由GMm R 2=mg =m v 2R =m (2πT )2R可得:M =2v 0R 2Gt,v =2v 0Rt,T =2π Rt2v 0,故B 项正确,C 、D 项错误.20.双星系统模型问题的分析与计算绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统模型有以下特点:图6(1)各自需要的向心力由彼此间的万有引力相互提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2 (2)两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1(5)双星的运动周期T =2πL 3G (m 1+m 2)(6)双星的总质量公式m 1+m 2=4π2L 3T 2G例6 冥王星与其附近的星体卡戎可视为双星系统,它们的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知卡戎绕O 点运动的( )A .角速度大小约为冥王星的7倍B .向心力大小约为冥王星的1/7C .轨道半径约为冥王星的7倍D .周期与冥王星周期相同 答案 CD解析 对于双星系统,任意时刻均在同一条直线上,故转动的周期、角速度都相同.彼此给对方的万有引力提供向心力,故向心力大小相同,由m 1ω2r 1=m 2ω2r 2,得r 2r 1=m 1m 2=7,故C 、D 项正确.高考题组1.(2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3kT C. n 2kT D.n kT 答案 B解析 双星靠彼此的万有引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当双星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时T ′=2πn 3L 3Gk (m 1+m 2)=n 3k·T 故选项B 正确.2.(2013·新课标Ⅰ·20)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 答案 BC解析 地球所有卫星的运行速度都小于第一宇宙速度,故A 错误.轨道处的稀薄大气会对天宫一号产生阻力,不加干预其轨道会缓慢降低,同时由于降低轨道,天宫一号的重力势能一部分转化为动能,故天宫一号的动能可能会增加,B 、C 正确;航天员受到地球引力作用,此时引力充当向心力,产生向心加速度,航天员处于失重状态,D 错误. 3.(2013·新课标Ⅱ·20)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( ) A .卫星的动能逐渐减小B .由于地球引力做正功,引力势能一定减小C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减小 答案 BD解析 在卫星轨道半径逐渐变小的过程中,地球引力做正功,引力势能减小;气体阻力做负功,机械能逐渐转化为内能,机械能减小,选项B 正确,C 错误.卫星的运动近似看作是匀速圆周运动,根据G Mmr 2=m v 2r得v =GMr,所以卫星的速度逐渐增大,动能增大,选项A 错误.减小的引力势能一部分用来克服气体阻力做功,一部分用来增加动能,故D 正确. 模拟题组4.我校某同学在学习中记录了一些与地球月球有关的数据资料如表中所示,利用这些数据计算地球表面与月球表面之间的距离s ,则下列运算公式中不正确的是( )A.v 2g ′-R -r B.v T2π-R -rC. 3g 0R 2T 24π2-R -r D.ct2 答案 A5.为了探测X 星球,某探测飞船先在以该星球中心为圆心,高度为h 的圆轨道上运动,随后飞船多次变轨,最后围绕该星球做近表面圆周飞行,周期为T .引力常量G 已知.则( )A .变轨过程中必须向运动的反方向喷气B .变轨后与变轨前相比,飞船的机械能增大C .可以确定该星球的质量D .可以确定该星球的平均密度 答案 D6.据报道,嫦娥三号将于近期发射.嫦娥三号接近月球表面的过程可简化为三个阶段:距离月球表面15 km 时打开反推发动机减速,下降到距月球表面H =100 m 高度时悬停,寻找合适落月点;找到落月点后继续下降,距月球表面h =4 m 时速度再次减为0;此后,关闭所有发动机,使它做自由落体运动落到月球表面.已知嫦娥三号质量为140 kg ,月球表面重力加速度g ′约为1.6 m/s 2,月球半径为R ,引力常量G .求: (1)月球的质量;(用题给字母表示)(2)嫦娥三号悬停在离月球表面100 m 处时发动机对嫦娥三号的作用力; (3)嫦娥三号从悬停在100 m 处到落至月球表面,发动机对嫦娥三号做的功. 答案 (1)g ′R 2G (2)224 N (3)-21 504 J解析 (1)在月球表面G MmR 2=mg ′解得:M =g ′R 2G(2)因受力平衡,有F =mg ′解得:F =224 N(3)从悬停在高100 m 处到达高4 m 处过程由动能定理 mg ′(H -h )+W 1=0从高4 m 处释放后嫦娥三号机械能守恒,发动机不做功.W 2=0 解得:W =W 1+W 2=-21 504 J(限时:30分钟)►题组1 万有引力定律及应用1.(2012·新课标全国·21)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC .(R -d R )2D .(R R -d )2答案 A解析 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =43πR 3ρ.因质量分布均匀的球壳对壳内物体的引力为零,所以矿井下以(R -d )为半径的地球的质量为M ′=43π(R -d )3ρ,解得M ′=(R -d R )3M ,则矿井底部的重力加速度g ′=GM ′(R -d )2,则矿井底部的重力加速度和地面处的重力加速度大小之比为g ′g =1-dR,选项A 正确.2.(2013·浙江·18)如图1所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( )图1A .地球对一颗卫星的引力大小为GMm(r -R )2B .一颗卫星对地球的引力大小为GMmr 2C .两颗卫星之间的引力大小为Gm 23r2D .三颗卫星对地球引力的合力大小为3GMmr 2答案 BC解析 地球对一颗卫星的引力等于一颗卫星对地球的引力,由万有引力定律得其大小为GMmr 2,故A 错误,B 正确;任意两颗卫星之间的距离L =3r ,则两颗卫星之间的引力大小为Gm 23r 2,C 正确;三颗卫星对地球的引力大小相等且三个引力互成120°,其合力为0,故D 选项错误.3.2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图2所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )图2A .图中E 到D 过程,弹道导弹机械能不断增大B .图中E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s 答案 BC解析 弹道导弹从E 到D 靠惯性飞行,只受地球的引力作用,机械能守恒,选项A 错误;弹道导弹从E 到D ,与地心的距离R 增大,万有引力F =G M 地mR 2减小,弹道导弹的加速度a =Fm减小,选项B 正确;由开普勒第一定律知,选项C 正确;D 点在远地点,弹道导弹的速度最小,由v = GMr可知,D 点到地心的距离r 大于地球的半径R 0,所以弹道导弹的速度v = GMr小于第一宇宙速度v 宇= GMR 0=7.9 km/s ,选项D 错误.►题组2 天体质量和密度的计算4.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v 贴近行星表面匀速飞行,测出运动的周期为T ,已知引力常量为G ,则可得( ) A .该行星的半径为v T2πB .该行星的平均密度为3πGT 2C .无法求出该行星的质量D .该行星表面的重力加速度为4π2v 2T 2答案 AB解析 由T =2πR v 可得:R =v T 2π,A 正确;由GMmR 2=m v 2R 可得:M =v 3T 2πG ,C 错误;由M=43πR 3ρ得:ρ=3πGT 2,B 正确;由GMmR 2=mg 得:g =2πv T,D 错误. 5.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处,已知该星球的半径与地球半径之比R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面重力加速度为g ′,地球的质量为M 地,该星球的质量为M 星.空气阻力不计.则( ) A .g ′∶g =5∶1 B .g ′∶g =1∶5 C .M 星∶M 地=1∶20 D .M 星∶M 地=1∶80 答案 BD解析 小球以相同的初速度在星球和地球表面做竖直上抛运动,星球上:v 0=g ′·5t 2得,g ′=2v 05t ,同理地球上的重力加速度g =2v 0t ;则有g ′∶g =1∶5,所以A 错误,B 正确.由星球表面的物重近似等于万有引力可得,在星球上取一质量为m 0的物体,则有m 0g ′=G M 星m 0R 2星,得M 星=g ′R 2星G ,同理得:M 地=g ·R 2地G ,所以M 星∶M 地=1∶80,故C 错误,D 正确.►题组3 卫星运行参量的分析与计算。

相关文档
最新文档