北京市海淀区2013-2014学年高一数学上学期期末考试试题

合集下载

北京市海淀区2013-2014学年高二上学期期末考试数学文科

北京市海淀区2013-2014学年高二上学期期末考试数学文科

海淀区高二年级第一学期期末练习数学(文科) 2014.01一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求 (1)抛物线22y x =的准线方程是 ( ) (A ) 12y =-(B )1y =- (C )12x =-(D )1x =-(2)若直线10x ay ++=与直线20x y ++=平行,则实数a = ( ) (A )12-(B )2- (C )12 (D )2(320y +-=与圆224x y +=相交所得的弦的长为 ( ) (A) (B) (C(D(4)已知双曲线221x ay -=的两条渐近线方程为y =,那么此双曲线的虚轴长为( )(A) (B )2 (C(D )1(5)已知函数()f x 的导函数为'()f x ,那么“0'()0f x =”是“0x 是函数()f x 的一个极值点”的 ( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(6)已知命题:p 函数3()f x x =是增函数,命题:q x R $ ,1x的导数大于0,那么 ( ) (A )p q ∧是真命题 (B )p q ∨是假命题 (C )p ⌝是真命题 (D )q ⌝是真命题(7)函数2e 1x y x =-的部分图象为 ( )(B (C ) (D )(8)在平面直角坐标系xOy 中,已知集合{}2()001x,y y x ,x ≤≤≤≤且所表示的图形的面积为31,若集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N ,则N M 所表示的图形面积为( ) (A )31 (B )32 (C )1 (D )34二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上. (9)已知()cos f x x x =,则'()f x = .(10)过点(1,1)且与圆2220x x y -+=相切的直线的方程是 .(11)曲线2y ax b =+在1x =处的切线方程为41y x =-,则a =______,b =______.(12)已知抛物线C :24y x =,O 为坐标原点,F 为C 的焦点,P 是C 上一点. 若OPF ∆是等腰三角形,则PO = .(13)已知点12,F F 是双曲线C 的两个焦点,过点2F 的直线交双曲线C 的一支于,A B 两点,若1ABF ∆为等边三角形,则双曲线C 的离心率为 .(14)如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .给出下列四个结论:①存在点E ,使得11A C //平面1BED F ; ②存在点E ,使得1B D ⊥平面1BED F ; ③对于任意的点E ,平面11AC D ⊥平面1BED F ;④对于任意的点E ,四棱锥11B BED F -的体积均不变. 其中,所有正确结论的序号是___________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分)已知函数321()43f x x ax =-+,且2x =是函数()f x 的一个极小值点. (Ⅰ)求实数a 的值;(Ⅱ)求)(x f 在区间[1,3]-上的最大值和最小值.F ED 1C 1B 1A 1DCA(16)(本小题共11分)已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 交抛物线C 于点P ,Q . (Ⅰ)若3PF =(点P 在第一象限),求直线l 的方程;(Ⅱ)求证:OP OQ ⋅为定值(点O 为坐标原点).(17)(本小题共11分)已知椭圆M :22221(0)x y a b a b+=>>经过点(1,-,(0,1). (Ⅰ)求椭圆M 的方程;(Ⅱ)设椭圆M 的左、右焦点分别为12,F F ,过点2F 的直线交椭圆M 于, A B 两点,求1ABF ∆面积的最大值.(18)(本小题共11分)已知函数22()2ln (0)f x x a x a =->. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为M ,求证:1M ≤.海淀区高二年级第一学期期末练习数学(文科)参考答案及评分标准 2014.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分.(9)cos sin x x x - (10)10y -= (11)2,1(12)32或1 (13 (14)①③④ 注:(11)题每空2分;(12)题少一个答案扣2分.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分11分)解:(Ⅰ)2'()2f x x ax =-. ………………………2分2x =是函数()f x 的一个极小值点,∴'(2)0f =.即440a -=,解得1a =. ………………………4分 经检验,当1a =时,2x =是函数()f x 的一个极小值点.∴ 实数a 的值为1. ………………………5分(Ⅱ)由(Ⅰ)知,321()43f x x x =-+.2'()2(2)f x x x x x =-=-.令'()0f x =,得0x =或2x =. ………………………6分 当x 在[1,3]-上变化时,()'(),f x f x 的变化情况如下:当1x =-或2x =时,()f x 有最小值83; 当0x =或3x =时,()f x 有最大值4. ………………………11分(16)(本小题满分11分)解:(Ⅰ)设00(,)P x y ,由题意,00x >且00y >.点P 在抛物线C 上,且3PF =,∴点P 到准线1x =-的距离为3.∴013x +=,02x =. ………………………2分又 2004y x =,00y >,∴0y =∴(2,P .(1,0)F , ………………………4分 ∴直线l的方程为1)y x =-,即y =-. ………………………5分(Ⅱ)由题意可设直线l 的方程为:1x my =+.由21,4x my y x=+⎧⎨=⎩得214y my =+,即2440y my --=. ………………………7分显然216160m ∆=+>恒成立.设11(,)P x y ,22(,)Q x y ,则12124,4.y y m y y +=⎧⎨⋅=-⎩ ………………………9分∴1212OP OQ x x y y ⋅=+1212(1)(1)my my y y =+++21212(1)()1m y y m y y =++++224(1)41m m =-+++3=-.即3OP OQ ⋅=-为定值. ………………………11分(17)(本小题满分11分)解:(Ⅰ)由题意1b =,椭圆M 的方程为2221(1)x y a a+=>. ………………………1分将点(1,-代入椭圆方程,得21112a +=,解得22a =. 所以 椭圆M 的方程为2212x y +=. ………………………3分(Ⅱ)由题意可设直线AB 的方程为:1x my =+.由221,22x my x y =+⎧⎨+=⎩得22(2)210m y my ++-=. 显然 2244(2)0m m ∆=++>.设11(,)A x y ,22(,)B x y ,则1221222,21.2m y y m y y m -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩………………………7分因为 1ABF ∆的面积12121||(||||)2S F F y y =+,其中120y y <. 所以 12121||||2S F F y y =-. 又22121212()()4y y y y y y -=+-22221422m m m --⎛⎫⎛⎫=- ⎪ ⎪++⎝⎭⎝⎭22288(2)m m +=+, 12(1,0),(1,0)F F -. ………………………9分∴2212()S y y =-2222211118[]8()222(2)22m m m =-=--+≤+++.当0m =时,上式中等号成立.即当0m =时,1ABF ∆. ………………………11分(18)(本小题满分11分) 解:(Ⅰ)22()2ln (0)f x x a x a =->的定义域为(0,)+∞.22'()2a f x x x =-2222x a x -=2()()x a x a x+-=. ………………………2分 令'()0f x =,解得x a =或x a =-(舍).当x 在(0,)+∞内变化时,()'(),f x f x 的变化情况如下:由上表知,()f x 的单调递增区间为(,)a +∞;()f x 的单调递减区间为(0,)a .………………………5分(Ⅱ)由(Ⅰ)知,()f x 的最小值222ln M a a a =-. ………………………6分 令22()2ln (0)g x x x x x =->,则'()24ln 24ln g x x x x x x x =--=-.令'()0g x =,解得1x =. ………………………8分 当x 在(0,)+∞内变化时,()'(),g x g x 的变化情况如下:所以 函数()g x 的最大值为1,即()1g x ≤.因为0a >,所以 222ln 1M a a a =-≤. ………………………11分注:对于其它正确解法,相应给分.。

2013-2014学年北京市海淀区七年级上学期期末考试数学试题及答案word版

2013-2014学年北京市海淀区七年级上学期期末考试数学试题及答案word版

海淀区2013-2014学年七年级第一学期期末数学练习 2014.1一、选择题(本题共36分,每题3分) 1、—6的相反数是A. —6B. 6C. 61- D. 612、下列四个数中,最小的数是A 、|—6|B 、—2C 、0D 、21-3、右图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是A B C D4、据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把数3 120 000用科学记数法表示为A 、51012.3⨯B 、710312.0⨯C 、5102.31⨯D 、61012.3⨯5、若53=x 是关于x 的方程05=-m x 的解,则m 的值为 A 、3 B 、31 C 、-3 D 、31-6、如图,下列说法中不正确...的是 A .直线AC 经过点A B.射线DE 与直线AC 有公共点 C .点B 在直线AC 上 D.直线AC 与线段BD 相交于点A 7、下列运算正确的是A 、42633=-a aB 、532532b b b =+C 、b a ba b a 22245=-D 、ab b a =+ 8、将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是9、若α∠与β∠互为补角, β∠是α∠的2倍,则α∠为 A 、30° B 、40° C 、60° D 、120°10、如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,且︒=∠140BOE , 则BOC ∠为A 、140°B 、100°C 、80°D 、40°A ECBD11、如图,从边长(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则AD 、AB 的长分别是 A. 3、2a+5 B. 5、2a+8 C. 5、2a+3 D. 3、2a+212、在三角形ABC 中,AB=8,AC=9,BC=10.o P 为BC 边上的一点,在边AC 上取点1P ,使得01CP CP =。

北京市海淀区2023-2024学年高一上学期期末考试生物

北京市海淀区2023-2024学年高一上学期期末考试生物

北京市海淀区20232024学年高一上学期期末考试生 物2024.1学校________________ 班级________________ 姓名________________第一部分本部分共 25 题,共 40 分。

在每题列出的四个选项中,选出最符合题目要求的一项。

1.组成下列物质的单体种类最多的是 A .纤维素B .RNAC .淀粉D .胰岛素2.下列有关生物体内元素与化合物(或结构)的匹配,正确的是 A .P 为 ATP 、唾液淀粉酶及肝糖原的组成元素 B .N 为 NADPH 、胰岛素、水通道蛋白的组成元素 C .Mg 为血红蛋白的组成元素,Fe 为叶绿素的组成元素 D .I 为胰蛋白酶的组成元素,Ca 为骨骼及牙齿的组成元素3.泛素是真核细胞内的小分子蛋白质,它可以在酶催化的反应中被结合到目标蛋白上,使目标蛋白被标记。

被泛素标记的蛋白会被引导进入蛋白酶体(含有大量水解酶)中降解。

下列关于泛素的叙述,不.正确..的是 A .含有 C 、H 、O 、N B .含有多个肽键 C .在核糖体上合成D .具有催化功能4.在小鼠细胞内,具有双层膜的结构是 A .线粒体和高尔基体 B .线粒体和叶绿体C .内质网和叶绿体D .线粒体和核膜5.某同学用紫色洋葱的外表皮作为实验材料进行质壁分离及复原实验。

下列叙述正确的是 A .质壁分离复原过程中液泡颜色逐渐加深 B .在质壁分离过程中细胞的吸水能力逐渐减小 C .不需要染色就可观察细胞质壁分离及复原现象 D .处于渗透平衡状态时水分不再进出细胞6.下图是细胞膜的亚显微结构模式图,①~③表示构成细胞膜的物质。

下列叙述不正确...的是 A .细胞识别与①有关 B .②能运动、③静止不动1.本试卷共 8 页,共二道大题,31 道小题。

满分 100 分。

考试时间 90 分钟。

2.在试卷和答题纸上准确填写学校名称、班级名称、姓名。

3.答案一律填涂或书写在答题纸上,在试卷上作答无效。

2013-2014海淀区高三数学期末考试文科试卷

2013-2014海淀区高三数学期末考试文科试卷

海淀区高三年级第一学期期末练习数 学 (文)参考答案及评分标准 2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案BACACBDB二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)πcosππ02()2sin 22ππ4422sin cos 4422f =+=+=++. ------------------------3分 (Ⅱ)由sin cos 0x x +≠得ππ,4x k k ≠-∈Z . 因为cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x xx x x-=++ ------------------------------------5分 cos sin x x =+π2sin()4x =+, -------------------------------------7分所以()f x 的最小正周期2πT =. -------------------------------------9分 因为函数sin y x =的对称轴为ππ+,2x k k =∈Z , ------------------------------11分 又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z ,所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .-----------------------------------13分9. 210. 1611. 712. {1,2,4}13. 50,101514. 1-;①②③16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =. ----------------------------------4分(Ⅱ)设事件A 为“甲队员射击,命中环数大于7环”,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10环.所以()0.290.450.010.75P A =++=. ----------------------------------9分 (Ⅲ)甲队员的射击成绩更稳定. ---------------------------------13分 17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,所以//CD AB . ----------------------------1分 又因为CD ⊄平面PAB , -------------------3分 所以//CD 平面PAB . --------------------------4分 (Ⅱ)因为PA PB =,点E 是棱AB 的中点,所以PE AB ⊥. ----------------------------------5分 因为平面PAB ⊥平面ABCD ,平面PAB 平面ABCD AB =,PE ⊂平面PAB ,----------------------------------7分所以PE ⊥平面ABCD , ------------------------------------8分 因为AD ⊂平面ABCD ,所以PE AD ⊥. ------------------------------------9分 (Ⅲ)因为CA CB =,点E 是棱AB 的中点,所以CE AB ⊥. --------------------------------10分 由(Ⅱ)可得PE AB ⊥, ---------------------------------11分 所以AB ⊥平面PEC , --------------------------------13分 又因为AB ⊂平面PAB ,所以平面PAB ⊥平面PEC . --------------------------------14分18.(本小题共13分)解:(Ⅰ)'()(1)e x f x x a =++,x ∈R . -------------------------------2分 因为函数()f x 是区间[3,)-+∞上的增函数,PAEBCD所以'()0f x ≥,即10x a ++≥在[3,)-+∞上恒成立.------------------------------3分 因为1y x a =++是增函数,所以满足题意只需310a -++≥,即2a ≥. -------------------------------5分 (Ⅱ)令'()0f x =,解得1x a =-- -------------------------------6分 (),'()f x f x 的情况如下: x (,1)a -∞--1a --(1,)a --+∞'()f x -0 +()f x↘极小值↗--------------------------------------10分①当10a --≤,即1a ≥-时,()f x 在[0,2]上的最小值为(0)f , 若满足题意只需2(0)e f ≥,解得2e a ≥,所以此时,2e a ≥; --------------------------------------11分②当012a <--<,即31a -<<-时,()f x 在[0,2]上的最小值为(1)f a --, 若满足题意只需2(1)e f a --≥,求解可得此不等式无解,所以a 不存在; ------------------------12分③当12a --≥,即3a ≤-时,()f x 在[0,2]上的最小值为(2)f , 若满足题意只需2(2)e f ≥,解得1a ≥-,所以此时,a 不存在. ------------------------------13分综上讨论,所求实数a 的取值范围为2[e ,)+∞. 19. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =, 所以2a =, ----------------------------------2分所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分可得中点22286(,)4343k kP k k -++, --------------------------------11分由点P 在圆F 上可得2222286(1)()14343k k k k --+=++化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分 所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分 20. (本小题共13分)解:(Ⅰ)只有[]y x =是N 函数. ----------------------------3分 (Ⅱ)函数()[ln ]1g x x =+是N 函数. 证明如下:显然,*x ∀∈N ,*()[ln ]1g x x =+∈N . ---------------------------------------4分不妨设*[ln ]1,x k k +=∈N ,由[ln ]1x k +=可得1ln k x k -≤<, 即11e e k k x -≤≤<.因为*k ∀∈N ,恒有11e e e (e 1)1k k k ---=->成立, 所以一定存在*x ∈N ,满足1e e k k x -≤<, 所以设*k ∀∈N ,总存在*x ∈N 满足[ln ]1x k +=,所以函数()[ln ]1g x x =+是N 函数. ---------------------------------------8分 (Ⅲ)(1)当0b ≤时,有2(2)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ---------------------------9分(2)当0b >时,① 若0a ≤,有(1)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ------------------10分② 若01a <≤,由指数函数性质易得 x b a b a ⋅≤⋅,所以*x ∀∈N ,都有()[][]x f x b a b a =⋅≤⋅所以函数()[]x f x b a =⋅都不是N 函数. -----------------11分③ 若1a >,令12m m b a b a +⋅-⋅>,则2log (1)am b a >⋅-,所以一定存在正整数k 使得 12k k b a b a +⋅-⋅>, 所以*12,n n ∃∈N ,使得112k k b a n n b a +⋅<<<⋅, 所以12()(1)f k n n f k <<≤+.又因为当x k <时,x k b a b a ⋅<⋅,所以()()f x f k ≤; 当1x k >+时,1x k b a b a +⋅>⋅,所以()(1)f x f k ≥+, 所以*x ∀∈N ,都有*1{()|}n f x x ∉∈N ,所以函数()[]x f x b a =⋅都不是N 函数.------------------13分综上所述,对于任意实数,a b ,函数()[]x f x b a =⋅都不是N 函数.。

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

海淀区2023—2024学年第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}1,2,3B =,则()U A B = ð()A .{}2,4,5,6B .{}4,6C .{}2,4,6D .{}2,5,62.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i-B .1-C .3i -D .3-3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则a =()A .1B .1-C .4D .4-4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A .B .4C .5D .5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为4π,则该四棱锥的体积为()A .4B .2C .43D .236.已知22:210C x x y ++-= ,直线()10mx n y +-=与C 交于A ,B 两点.若ABC △为直角三角形,则()A .0mn =B .0m n -=C .0m n +=D .2230m n -=7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A .10B .eC .2D .548.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0->αα”是“120k k >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知{}n a 是公比为q (1q ≠)的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A .{}n a 是递增数列B .{}n a 是递减数列C .{}n S 是递增数列D .{}n S 是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.下图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,GPI IPK ∠=∠KPG =∠=θ10928'≈︒,则上顶的面积为()(参考数据:1cos 3=-θ,tan2=θ)A .B .2C .2D .4第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x ⎫-⎪⎭的展开式中,x 的系数为______.12.已知双曲线221x my -=0y -=,则该双曲线的离心率为______.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=______;点C 到直线AB 的距离为______.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和(1n =,2,…)的一组1a ,d 的值为1a =______,d =______.15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2f x f x a +-=;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝+⎭≠;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(Ⅰ)求证:1C M ∥平面11ADD A ;(Ⅱ)求直线1AC 与平面11MB C 所成角的正弦值.17.(本小题14分)在ABC △中,2cos 2c A b a =-.(Ⅰ)求C ∠的大小;(Ⅱ)若c =ABC △存在,求AC 边上中线的长.条件①:ABC △的面积为条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(Ⅰ)从上述10场比赛中随机选择一场,求甲获胜的概率;(Ⅱ)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(Ⅲ)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.19.(本小题15分)已知椭圆2222:1x y E a b+=(0a b >>)过点()3,0A ,焦距为(Ⅰ)求椭圆E 的方程,并求其短轴长;(Ⅱ)过点()1,0P 且不与x 轴重合的直线l 交椭圆E 于两点C ,D ,连接CO 并延长交椭圆E 于点M ,直线AM 与l 交于点N ,Q 为OD 的中点,其中O 为原点.设直线NQ 的斜率为k ,求k 的最大值.20.(本小题15分)已知函数()2sin f x ax x x b =-+.(Ⅰ)当1a =时,求证:①当0x >时,()f x b >;②函数()f x 有唯一极值点;(Ⅱ)若曲线1C 与曲线2C 在某公共点处的切线重合,则称该切线为1C 和2C 的“优切线”.若曲线()y f x =与曲线cos y x =-存在两条互相垂直的“优切线”,求a ,b 的值.21.(本小题15分)对于给定的奇数m (3m ≥),设A 是由m m ⨯个实数组成的m 行m 列的数表,且A 中所有数不全相同,A 中第i 行第j 列的数{}1,1ij a ∈-,记()r i 为A 的第i 行各数之和,()c j 为A 的第j 列各数之和,其中{},1,2,,i j m ∈⋅⋅⋅.记()()()()2212m r r m f r A -++⋅⋅⋅+=.设集合()()(){}{},00,,1,2,,ij ij H i j a r a c j i m i j =⋅<⋅<∈⋅⋅⋅或,记()H A 为集合H 所含元素的个数.(Ⅰ)对以下两个数表1A ,2A ,写出()1f A ,()1H A ,()2f A ,()2H A 的值;1A 2A (Ⅱ)若()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数.求证:()2H A mt ms ts ≥+-;(Ⅲ)当5m =时,求()()H A f A 的最小值.海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)1.A 2.D 3.B 4.D 5.C 6.A7.D8.B9.B10.D二、填空题(共5小题,每小题5分,共25分)11.5-12.213.1-514.11(答案不唯一)15.②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =.因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =.所以11C D AM ∥,11C D AM =.所以四边形11MAD C 为平行四边形.所以11MC AD ∥.因为1C M ⊄平面11ADD A ,所以1C M ∥平面11ADD A .(Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA AD ⊥.因为1AD B M ⊥,1B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A .所以AD AB ⊥.如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z = ,则1110,0,n C B n MC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20.x z x y -+=⎧⎨+=⎩令2x =,则1y =-,2z =.于是()2,1,2n =-.因为1116cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C 所成角的正弦值为69.17.(共14分)解:(Ⅰ)由正弦定理sin sin sin a b cA B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin sin sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.(Ⅱ)选条件②:1sin sin 2B A -=.由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠.所以2πsin sin sin sin 3B A A A -=--⎛⎫⎪⎝⎭31cos sin sin 22A A A =+-31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以ππ36A -=,即π6A =.所以ABC △是以AC 为斜边的直角三角形.因为c =2πsin sin 3AB AC C ===.所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则()310P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场.所以X 的所有可能取值为0,1,2.()202426C C 10C 15P X ===,()112426C C 81C 15P X ⋅===,()022426C C 22C 5P X ===.所以X 的分布列为X 012P11581525所以()1824012151553E X =⨯+⨯+⨯=.(Ⅲ)()()()213D Y DY D Y >>.19.(共15分)解:(Ⅰ)由题意知3a =,2c =.所以c =,2224b a c =-=.所以椭圆E 的方程为22194x y +=,其短轴长为4.(Ⅱ)设直线CD 的方程为1x my =+,()11,C x y ,()22,D x y ,则()11,M x y --.由221941x y x my ⎧+=⎪⎨⎪=+⎩,得()22498320m y my ++-=.所以122849m y y m -+=+.由()3,0A 得直线AM 的方程为()1133y y x x =-+.由()11331y y x x x my ⎧=-⎪+⎨⎪=+⎩,得11123y y x my -=+-.因为111x my =+,所以12y y =-,112122y my x m ⎛⎫⎭-=⎪⎝- =+.所以112,22my y N --⎛⎫ ⎪⎝⎭.因为Q 为OD 的中点,所以221x my =+,所以221,22my y Q +⎛⎫⎪⎝⎭.所以直线NQ 的斜率()212212221212884922128112912249m y y y y m m k my my m m y y m m -+++====+--+-+--+.当0m ≤时,0k ≤.当0m >时,因为912m m+≥=,当且仅当2m =时,等号成立.所以281299m k m =≤+.所以当2m =时,k取得最大值9.20.(共15分)解:(Ⅰ)①当1a =时,()()2sin sin f x x x x b x x x b =-+=-+.记()sin g x x x =-(0x ≥),则()1cos 0g x x '=-≥.所以()g x 在[)0,+∞上是增函数.所以当0x >时,()()00g x g >=.所以当0x >时,()()sin f x x x x b b =-+>.②由()2sin f x x x x b =-+得()2sin cos f x x x x x '=--,且()00f '=.当0x >时,()()1cos sin f x x x x x '=-+-.因为1cos 0x -≥,sin 0x x ->,所以()0f x '>.因为()()f x f x ''-=-对任意x ∈R 恒成立,所以当0x <时,()0f x '<.所以0是()f x 的唯一极值点.(Ⅱ)设曲线()y f x =与曲线cos y x =-的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121k k =-.因为()cos sin x x '-=,所以1212sin sin 1x x k k ⋅==-.所以{}{}12sin ,sin 1,1x x =-.不妨设1sin 1x =,则1π2π2x k =+,k ∈Z .因为()1111112sin cos k f x ax x x x '==--,由“优切线”的定义可知111112sin cos sin ax x x x x --=.所以1124ππa x k ==+,k ∈Z .由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-,所以0b =.当24ππa k =+,k ∈Z ,0b =时,取1π2π2x k =+,2π2π2x k =--,则()11cos 0f x x =-=,()22cos 0f x x =-=,()11sin 1f x x ='=,()22sin 1f x x ='=-,符合题意.所以24ππa k =+,k ∈Z ,0b =.21.(共15分)解:(Ⅰ)()110f A =,()112H A =;()212f A ,()215H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变.因为m 为奇数,{}1,1ij a ∈-,所以()1r ,()2r ,…,()r m ,()1c ,()2c ,…,()c m 均不为0.(Ⅱ)当{}0,s m ∈或{}0,t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =⋅⋅⋅.若0t =,结论显然成立;若0t ≠,不妨设()0c j >,1,2,,j t =⋅⋅⋅,则(),i j H ∈,1,2,,i m =⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()H A mt ≥,结论成立.当{}0,s m ∉且{}0,t m ∉时,不妨设()0r i >,1,2,,i s =⋅⋅⋅,()0c j >,1,2,,j t =⋅⋅⋅,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <.因为当1,2,,i s =⋅⋅⋅,1,2,,j t t m =++⋅⋅⋅时,()0r i >,()0c j <,所以()()()()()()20ij ij ij a r i a c j a r i c j ⋅=⋅⋅⋅<⋅.所以(),i j H ∈.同理可得:(),i j H ∈,1,2,,m i s s =++⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()()()2H A s m t m s t mt ms st ≥-+-=+-.(Ⅲ)当5m =时,()()H A f A 的最小值为89.对于如下的数表A ,()()89H A f A =.下面证明:()()89H A f A ≥.设()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数,{},0,1,2,3,4,5s t ∈.①若{}0,5s ∈或{}0,5t ∈,不妨设0s =,即()0r i <,1,2,,5i =⋅⋅⋅.所以当1ij a =时,(),i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且()()()()251252r r r f A +++⋅⋅⋅+=()252252a a a +--==,()H A a ≥.所以()()819H A f A ≥>.②由①设{}0,5s ∉且{}0,5t ∉.若{}2,3s ∈或{}2,3t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为()()()()251250122r r r f A -++⋅⋅⋅+<=≤,所以()()118129H A f A ≥>.③由①②设{}0,2,3,5s ∉且{}0,2,3,5t ∉.若{}{},1,4s t =,则由(Ⅱ)中结论知:()25817H A ≥-=.因为()012f A <≤,所以()()178129H A f A ≥>.若s t =,{}1,4s ∈,不妨设1s t ==,()10r >,()10c >,且()()1H A f A<,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a ({},2,3,4,5i j ∈)为1,将其替换为1-后得到数表A '.因为()()1H A H A '=-,()()1f A f A '≥-,所以()()()()()()11H A H A H A f A f A f A '-≤<'-.所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小.所以不妨设1ij a =-(,2,3,4,5i j =).因为()5528H A ≥+-=,()9f A ≤,。

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析

2023-2024学年北京市海淀区高一下学期7月期末考试数学试题一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若复数z满足,则z的虚部为()A. B.2 C. D.i2.已知向量,则()A.0B.C.D.3.函数的部分图象如图所示,则其解析式为()A. B.C. D.4.若,且,则()A. B. C. D.75.在中,点D满足,若,则()A. B. C.3 D.6.已知,则下列直线中,是函数对称轴的为()A. B. C. D.7.在平面直角坐标系xOy中,点,点,其中若,则()A. B. C. D.8.在中,已知则下列说法正确的是()A.当时,是锐角三角形B.当时,是直角三角形C.当时,是钝角三角形D.当时,是等腰三角形9.已知是非零向量,则“”是“对于任意的,都有成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.定义域为、的函数的图象的两个端点分别为点是的图象上的任意一点,其中,点N满足向量,点O为坐标原点.若不等式恒成立,则称函数在上为k函数.已知函数在上为k函数,则实数k的取值范围是()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。

11.知复数z满足,则__________,__________.12.在中,,P满足,则__________.13.在中,若,则k的一个取值为__________;当时,__________.14.一名学生想测算某风景区山顶上古塔的塔尖距离地面的高度,由于山崖下河流的阻碍,他只能在河岸边制定如下测算方案:他在河岸边设置了共线的三个观测点A,B,如图,相邻两观测点之间的距离为200m,并用测角仪器测得各观测点与塔尖的仰角分别为,,,根据以上数据,该学生得到塔尖距离地面的高度为___________________15.已知函数,给出下列四个结论:①对任意的,函数是周期函数;②存在,使得函数在上单调递减;③存在,使得函数的图象既是轴对称图形,又是中心对称图形;④对任意的,记函数的最大值为,则其中所有正确结论的序号是__________.三、解答题:本题共4小题,共48分。

2013-2014学年高一上学期期末数学试题_Word版含答案

2013-2014学年高一上学期期末数学试题_Word版含答案

2013-2014学年度第一学期高一级期末考试一.选择题(每小题5分,共50分,每小题只有一个选项是正确的) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |0<x <3}C {x |-1<x <3}D {x |1<x <3}2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题 ①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥; ③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ;其中正确的命题个数是( )A .1B .2C .3D .4 3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则其侧面积是( ) A .4. 函数()23xf x x =+的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,25. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( ) A. 30° B. 45° C.90° D.60°6. 已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ) A . ()1,2B . ()2,3C . (]2,3D . ()2,+∞7. 如图在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD的体积是 ( )243D. 123C. 242B. 122.A8. 函数y =log 2(1-x )的图象是( )俯视图正视图 侧视图9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-x B .42+x C .2)4(+x D . 2)4(-x10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33二.填空题(每小题5分,共20分)11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .12. 已知函数()()223f x x m x =+++是偶函数,则=m .13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭,恒有()0f x >,则()f x 的单调递增区间是三.解答题(本大题共6小题,共80分。

北京市2014届高三理科数学一轮复习试题选编31:几何证明(.

北京市2014届高三理科数学一轮复习试题选编31:几何证明(.

北京市2014届高三理科数学一轮复习试题选编31:几何证明一、选择题1 .(北京市海淀区2013届高三上学期期末考试数学理试题如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是( A .BEC ∆∽DEA ∆ B .ACE ACP ∠=∠C .2DE OE EP =⋅D .2PC PA AB =⋅2 .(顺义区2013届高三第一次统练数学理科如图,AC AB ,分别与圆O 相切于点ADE C B ,,是⊙O 的割线,连接CE BE BD CD ,,,.则(A .DE AD AB ⋅=2B .CE AC DE CD ⋅=⋅ C .CE BD CD BE ⋅=⋅ D .CD BD AE AD ⋅=⋅3 .(2012北京理5.如图.90=∠ACB ,AB CD ⊥于点D ,以BD 为直径的圆与BC 交于点E .则(A .DB AD CB CE ⋅=⋅ B .AB AD CB CE ⋅=⋅C .2CD AB AD =⋅ D .2CD CB CE =⋅4 .(北京市石景山区2013届高三一模数学理试题如图,直线AM 与圆相切于点M , ABC 与ADE 是圆的两条割线,且AD BD ⊥,连接EC MD ,.则下面结论中,错误..的结论是 ( A .90=∠ECAB .DBA DMA CEM ∠+∠=∠C .AE AD AM ⋅=2D .BC AB AE AD ⋅=⋅5 .(北京市东城区普通校2013届高三3月联考数学(理试题如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =, 2PB =,则PC 的长是(A .3B.C .2D6 .(2011年高考(北京理如图,,,AD AE BC 分别于圆O 切于点,,D E F ,延长AF 与圆O 交于点G ,给出下列三个结论:①AD AE AB BC CA +=++;②AF AG AD AE ⋅=⋅; ③AFB ∆∽ADG ∆,其中正确的结论的序号是 ( A .①② B .②③ C .①③ D .①②③BABCOP7 .(2013北京房山二模数学理科试题及答案如图,,,,A B C D 是⊙O 上的四个点,过点B 的切线与DC 的延长线交于点E .若110BCD ︒∠=,则DBE ∠= (A .75︒B .70︒C .60︒D .55︒二、填空题D C B PAO9. (2013北京丰台二模数学理科试题及答案如图,已知⊙O 的弦AB 交半径OC 于点D ,若4=AD ,3=BD ,4=OC ,则CD 的长为______.19.(海淀区北师特学校13届高三第四次月考理如图,BC 是半径为2的圆O 的直径,点P 在BC 的延长线上,PA 是圆O 的切线,点A 在直径BC 上的射影是OC 的中点,则ABP ∠= ;PB PC ⋅= .14. (2013北京朝阳二模数学理科如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,,4=PC 8=PB ,则=∠COP tan _______,△OBC 的面积是_________.F26.(2013届北京丰台区一模理科如图,已知直线PD 切⊙O 于点D ,直线PO 交⊙O 于点F E ,.若21PF PD =+=,则⊙O的半径为 ;EFD ∠= .27.(2013北京高考数学(理如图,AB 为圆O 的直径,PA 为圆O 的切线, PB 与圆O相交于D.若3=PA ,916PD DB =::,则PD =_________;AB =___________.(20题图等22. (2013北京昌平二模数学理科圆O 于点A ,AC 为圆北京市2014届高三理科数学一轮复习试题选编31:几何证明参考答案一、选择题 1. 【答案】D解:由切割线定理可知2PC PA PB =⋅,所以D 错误,所以选D.2. 答案C 由切线长定理知2AB AD AE =⋅,所以A 错误.选C.3. 【解析】在ACB ∆中,∠ACB=90º,CD ⊥AB 于点D,所以DB AD CD ∙=2,由切割线定理的CB CE CD ∙=2,所以CE ·CB=AD ·DB.【答案】A 4. D 5. B6. 【答案】A【命题立意】本题考查了平面几何问题,圆以及圆的切线问题的研究,通过圆的切线所具有的性质反映出平面几何中的转化思想以及三角形的相似关系.【解析】因为,,AD AE BC 都是圆的切线,所以B D B E=,CE CF =,所以A B B C C A A++=+++,所以①正确;因为,,AD AE BC 都是圆的切线,所以AD AE =,由切割线定理得2AF AG AD AD AE ⋅==⋅,所以②正确; 由切线定理知ACD BDF BFD ∠=∠=∠,ABF BDF BFD ∠=∠+∠,所以③错误,选择A. 7. B二、填空题8. 2459. 2; 11. 【答案】5【解析】取BD 的中点,连结OM ,则O M B D ⊥,因为8BD =,所以4,549DM MB AM ===+=,所以22290819OM AO AM =-=-=,所以半径5OB ====,即5OC =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高一年级第一学期期末练习数 学2014.1学校 班级 姓名 成绩 本试卷共100分.考试时间90分钟.一.选择题:本大题共8小题, 每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4},{1,2},{2,3},U A B ===则 ( )U A B =ð ( )A.{2,3}B.{1,2,3}C.{2,3,4}D.{1,2,3,4}2.代数式sin120cos210的值为 ( )A.34-C.32-D.143.已知向量2(1,1),(,2),x x ==+a b 若,a b 共线,则实数x 的值为 ( ) A.1-B.2C.1或2-D.1-或2 4.函数1()lg 1f x x =-的定义域为 ( )A.(0,)+∞B.(0,1)(1,)+∞C.(1,)+∞D.(0,10)(10,)+∞5.如图所示,矩形ABCD 中,4,AB = 点E 为AB 中点,若DE AC ⊥,则||DE = ( )A.52B. C.3 D.6.函数41()log 4x f x x =-的零点所在的区间是 ( )A.(10,2)B.(1,12) C.(1,2) D.(2,4)7.下列四个函数中,以π为最小正周期,且在区间π(,π)2上为减函数的是 ( )EDCBAA.2|sin |y x =B.sin2y x =C.2|cos |y x =D.cos2y x =8.已知函数||()||x af x x a -=-,则下列说法中正确的是 ( )A.若0a ≤,则()1f x ≤恒成立B.若()1f x ≥恒成立,则0a ≥C.若0a <,则关于x 的方程()f x a =有解D.若关于x 的方程()f x a =有解,则01a <≤二.填空题:本大题共6小题, 每小题4分,共24分.把答案填在题中横线上. 9. 已知角α的顶点在坐标原点,始边在x轴的正半轴,终边经过点(1,,则 cos ____.α=10.比较大小:sin1 cos1(用“>”,“<”或“=”连接). 11.已知函数()13,(,1)x f x x =-∈-∞,则()f x 的值域为 . 12.如图,向量1,4BP BA =若+,OP xOA yOB = 则____.x y -= 13.已知sin tan 1αα⋅=,则cos ____.α=14.已知函数π()sin 2f x x =,任取t ∈R ,记函数()f x 在区间[,1]t t +上的最大值为,t M 最小值为 t m ,记()t t h t M m =-. 则关于函数()h t 有如下结论: ①函数()h t 为偶函数; ②函数()h t的值域为[1-; ③函数()h t 的周期为2;④函数()h t 的单调增区间为13[2,2],22k k k ++∈Z .其中正确的结论有____________.(填上所有正确的结论序号)POB A三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)已知函数2()f x x bx c =++,其中,b c 为常数. (Ⅰ)若函数()f x 在区间[1,)+∞上单调,求b 的取值范围;(Ⅱ)若对任意x ∈R ,都有(1)(1)f x f x -+=--成立,且函数()f x 的图象经过点(,)c b -,求,b c 的值.16.(本小题满分12分)y11 xO 已知函数()sin(2)3f x x π=-.(Ⅰ)请用“五点法”画出函数()f x 在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图); (Ⅱ)求函数()f x 的单调递增区间;(Ⅲ)当[0,]2x π∈时,求函数()f x 的最大值和最小值及相应的x 的值.17.(本小题满分12分)已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点.(Ⅰ)求证:APB ∠恒为锐角;(Ⅱ)若四边形ABPQ 为菱形,求BQ AQ ⋅的值.18.(本小题满分10分)已知函数()f x 的定义域为[0,1],且()f x 的图象连续不间断. 若函数()f x 满足:对于给定的m (m ∈R 且01m <<),存在0[0,1]x m ∈-,使得00()()f x f x m =+,则称()f x 具有性质()P m .(Ⅰ)已知函数21()()2f x x =-,[0,1]x ∈,判断()f x 是否具有性质1()3P ,并说明理由;(Ⅱ)已知函数 141, 0,413()41, ,44345, 1.4x x f x x x x x ⎧-+≤≤⎪⎪⎪=-<<⎨⎪⎪-+≤≤⎪⎩若()f x 具有性质()P m ,求m 的最大值;(Ⅲ)若函数()f x 的定义域为[0,1],且()f x 的图象连续不间断,又满足(0)(1)f f =,求证:对任意*k ∈N 且2k ≥,函数()f x 具有性质1()P k.海淀区高一年级第一学期期末练习数 学参考答案及评分标准 2014.1一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共4小题,每小题4分)三、解答题(本大题共6小题,共80分) 15.(本小题满分10分)解:(I)因为函数2()f x x bx c =++,所以它的开口向上,对称轴方程为2bx =- ………………2分 因为函数()f x 在区间[,)2b -+∞上单调递增,所以12b-≤,所以2b ≥- ………………………4分(Ⅱ)因为(1)(1)f x f x -+=--, 所以函数()f x 的对称轴方程为1x =-,所以2b = ………………………6分又因为函数()f x 的图象经过点(,)c b -,所以有 222c c c ++=- ………………………8分即2320c c ++=,所以2c =-或1c =- ………………………10分9.12 10. > 11. (2),1-12.21-13. 14.③④说明:14题答案如果只有③ 或④,则给2分,错写的不给分16.(本小题满分12分) 解:(I ) 令23X x π=-,则1()23x X π=+.填表:………………………2分………………4分(Ⅱ)令222(232k x k ππππ-≤-Z ………………………6分解得()1212k x k k π5ππ-≤≤π+∈Z 所以函数sin(2)3y x π=-的单调增区间为5[,]()1212k k k πππ-π+∈Z ………………………8分(Ⅲ)因为[0,]2x π∈,所以2[0,]x ∈π,(2)[,]333x ππ2π-∈- ………………10分 所以当233x ππ-=-,即0x =时,in(2)3y s x π=-取得最小值2- 当232x ππ-=,即12x 5π=时,sin(2)3y x π=-取得最大值1 ……………………12分17.(本小题满分12分)解:(Ⅰ)因为点(,)P x y 在直线1y x =-上,所以点(,1)P x x - ………………………1分所以(1,1),(,2)PA x x PB x x =---=--, 所以1O yx1222132222(1)=2[()]24PA PB x x x x x ⋅=-+=-+-+>………………………3分所以c |P PP⋅<………………………4分若,,A P B 三点在一条直线上,则//PA PB ,得到(1)(2)(1)0x x x x +---=,方程无解,所以0APB ∠≠ …………………5分 所以APB ∠恒为锐角. ………………………6分 (Ⅱ)因为四边形ABPQ 为菱形, 所以|A B B P=,即………………………8分化简得到2210x x -+=,所以1x =,所以(1,0)P ………………………9分设(,)Q a b ,因为PQ BA =, 所以(1a b -=--,所以01a b =⎧⎨=-⎩………………………11分(0,2)(1,1)2BQ AQ ⋅=-⋅-=………………………12分18.(本小题满分10分)解:(Ⅰ)设01[0,1]3x ∈-,即02[0,]3x ∈ 令001()()3f x f x =+, 则2200111()()232x x -=+- 解得013x =2[0,]3∈, 所以函数()f x 具有性质1()3P ………………………3分 (Ⅱ)m 的最大值为12首先当12m =时,取012x =则01()()12f x f ==,011()()(1)122f x m f f +=+==所以函数()f x 具有性质1()2P ………………………5分 假设存在112m <<,使得函数()f x 具有性质()P m则1012m <-<当00x =时,01(,1)2x m +∈,00()1,()1f x f x m =+>,00()()f x f x m ≠+当0(0,1]x m ∈-时,01(,1]2x m +∈,00()1,()1f x f x m <+≥,00()()f x f x m ≠+所以不存在0[0,1]x m ∈-,使得00()()f x f x m =+ 所以,m的最大值为12………………………7分 (Ⅲ)任取*,2k k ∈≥N设1()()()g x f x f x k =+-,其中1[0,]k x k-∈ 则有 1(0)()(0)g f f k=-121()()()g f f k k k=-232()()()g f f k k k =- (1)()()()t ttg f f k k k k =+-……11()(1)()k k g f f k k --=-以上各式相加得:11(0)()...()...()(1)(0)0t k g g g g f f k k k -+++++=-= 当11(0),(),...,()k g g g k k -中有一个为0时,不妨设为()0,{0,1,2,...,1}ig i k k =∈-,即1()()()0i i ig f f k k k k =+-=则函数()f x 具有性质1()P k 当11(0),(),...,()k g g g k k -均不为0时,由于其和为0,则必然存在正数和负数, 不妨设()0,()0,i jg g k k >< 其中i j ≠,,{0,1,2,...,1}i j k ∈-由于()g x 是连续的,所以当j i >时,至少存在一个0(,)i jx k k ∈(当j i <时,至少存在一个0(,)i jx k k ∈)使得0()0g x =, 即0001()()()0g x f x f x k =+-=所以,函数()f x 具有性质1()P k ………………………10分说明: 若有其它正确解法,请酌情给分,但不得超过原题分数.。

相关文档
最新文档