大工《人工智能》大作业参考题目及要求【内容仅供参考】647
大工20秋《生产实习(人工智能专业)》大作业及要求

大工20秋《生产实习(人工智能专业)》大作业及要求一、背景介绍《生产实(人工智能专业)》是大工20秋学期的一门重要课程,旨在帮助学生将所学知识应用到实际生产中。
本课程将为学生提供一个机会,通过完成大作业来展示他们在人工智能领域的能力和实践经验。
二、大作业要求大作业的主要目的是让学生能够综合运用所学的人工智能知识,解决实际问题并提出创新性的解决方案。
具体要求如下:1. 选择一个与人工智能相关的实际问题或挑战,并提出明确的研究目标和问题陈述。
2. 设计和实施一个合适的人工智能算法和模型来解决所选择的问题。
学生可以使用现有的开源框架或自行开发算法。
但请确保学术诚信,不得抄袭他人成果。
3. 收集和整理相关的数据集,并对数据进行预处理和分析。
确保数据集的合法性和准确性。
4. 设计一个实验方案,验证所提出的算法和模型的有效性和性能。
合理选择评价指标,并进行实验结果的分析和讨论。
5. 撰写一份详细的实报告,并呈现在实践展示会上。
报告需要包含问题陈述、算法设计、数据处理和分析、实验设计和结果分析等内容。
三、评分标准大作业将根据以下标准进行评分:1. 问题的挑战性和创新性:是否选择了一个具有一定难度和挑战性的问题,并提出了创新的解决方案。
2. 算法和模型的设计和实现:算法和模型是否合理且有效地解决了问题,是否使用了合适的数据集和评价指标。
3. 数据处理和分析:是否正确地收集、整理和预处理了数据,并对数据进行了合理的分析。
4. 实验设计和结果分析:实验方案是否严谨,结果是否具有说服力,分析是否深入。
5. 实报告和实践展示:报告是否完整、详细,并能清晰地表达研究过程和结果,展示会演示是否准备充分并能回答问题。
四、提交要求大作业的提交包括以下内容:1. 一份完整的实报告,包含问题陈述、算法设计、数据处理和分析、实验设计和结果分析等内容。
2. 代码实现和相关文档。
3. 选定的实际问题的相关背景介绍和数据集说明。
请在规定时间内将大作业提交到指定的邮箱或平台,并按照要求命名文件和邮件主题。
大工23春《人工智能》大作业题目及要求

大工23春《人工智能》大作业题目及要求引言概述:人工智能(Artificial Intelligence,简称AI)是一门关注于使机器能够模仿人类智能行为的科学与技术。
在大工23春的《人工智能》课程中,学生们将面临一项重要的大作业。
本文将介绍大工23春《人工智能》大作业的题目和要求。
正文内容:1. 题目一:机器学习算法的实现与应用1.1 算法选择:学生需选择并实现一个机器学习算法,如决策树、支持向量机、神经网络等。
1.2 数据集准备:学生需准备一个合适的数据集,用于训练和测试所选择的机器学习算法。
1.3 算法实现:学生需要编写代码,实现所选择的机器学习算法,并对数据集进行训练和测试。
2. 题目二:自然语言处理应用开发2.1 文本处理:学生需要选择一个自然语言处理任务,如文本分类、情感分析等,并准备相应的文本数据集。
2.2 特征提取:学生需要设计并实现合适的特征提取方法,将文本数据转化为机器学习算法可以处理的形式。
2.3 模型训练与应用:学生需要选择并实现一个适当的机器学习算法,对提取的特征进行训练,并应用于所选择的自然语言处理任务。
3. 题目三:计算机视觉应用开发3.1 图像处理:学生需要选择一个计算机视觉任务,如图像分类、目标检测等,并准备相应的图像数据集。
3.2 特征提取:学生需要设计并实现合适的特征提取方法,将图像数据转化为机器学习算法可以处理的形式。
3.3 模型训练与应用:学生需要选择并实现一个适当的机器学习算法,对提取的特征进行训练,并应用于所选择的计算机视觉任务。
4. 题目四:强化学习算法的实现与应用4.1 算法选择:学生需选择并实现一个强化学习算法,如Q-learning、Deep Q Network等。
4.2 环境建模:学生需要设计一个适当的环境,用于训练所选择的强化学习算法。
4.3 算法实现:学生需要编写代码,实现所选择的强化学习算法,并对环境进行训练和测试。
5. 题目五:深度学习模型的实现与应用5.1 模型选择:学生需选择并实现一个深度学习模型,如卷积神经网络、循环神经网络等。
人工智能大作业

人工智能大作业人工智能课程考查论文学号姓名系别年级专业人工智能大作业(1)什么是人工智能,人工智能(Artificial Intelligence) ,英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能的定义可以分为两部分,即“人工”和“智能”。
“人工”比较好理解,争议性也不大。
有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。
但总的来说,“人工系统”就是通常意义下的人工系统。
人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。
也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。
这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。
(2)简述人工智能的研究内容与研究目标、人工智能的研究途径和方法、人工智能的研究领域。
A. 人工智能的研究内容:1、搜索与求解:为了达到某一目标而多次地进行某种操作、运算、推理或计算的过程。
事实上,搜索是人在求解问题时而不知现成解法的情况下所采用的一种普遍方法。
许多问题(包括智力问题和实际工程问题)的求解都可以描述为或归结为对某种图或空间的搜索问题。
搜索技术就成为人工智能最基本的研究内容2、学习与发现:学习与发现是指机器的知识学习和规律发现。
人工智能大作业

大作业1、引言
1.1 背景
1.2 目的
1.3 范围
1.4 定义
2、文献综述
2.1 关于的研究历史
2.2 相关研究成果与应用领域
3、问题陈述
3.1 问题描述
3.2 研究的动机和意义
3.3 研究的目标和假设
4、方法ology
4.1 数据收集
4.2 数据处理与清洗
4.3 特征选择与提取
4.4 算法选择与实现
4.5 模型训练与优化
5、实验结果与分析
5.1 数据集描述
5.2 实验设置
5.3 结果分析与讨论
5.4 实验效果评估
6、结论与展望
6.1 主要研究结果总结 6.2 讨论与不足之处
6.3 对未来工作的展望附件:
附件1:数据集来源信息附件2:代码仓库
附件3:实验结果数据表格法律名词及注释:
1、:指通过模拟和模仿人类智能的方法和技术,使计算机系统能够自动执行任务、学习、适应和改进。
2、数据处理与清洗:指对原始数据进行筛选、过滤、去除噪声以及修复缺失值等操作,以提高数据的质量和可用性。
3、特征选择与提取:指从原始数据中选择最相关或最具代表性的特征,或通过计算、变换等方法提取出更具信息量的特征。
4、算法选择与实现:指根据问题的特点和要求,选择合适的算法,并通过编程实现。
5、模型训练与优化:指使用训练数据对选定的算法模型进行训练,并通过调整参数、改进算法等方式优化模型性能。
大工20春《人工智能》大作业题目

专业:计算机科学与技术本文内容仅供思路参考题目:回归算法1.谈谈你对本课程学习过程中的心得体会与建议?1. 人工智能是什么?在哪里?其实,人工智能已经到处都是,什么都做:可以陪人聊天,可以写标准新闻,能画画,能翻译,能开车,能认出人的样子,能在互联网上搜答案,能在仓库搬货,能送快递到家。
人工智能是什么,众说纷纭,一般有以下五种定义(可能有交叉):1) 在某方面特别聪明的计算机程序,比如AlphaGo,下围棋下得特别好,世界冠军也下不过它。
2) 试图像人一样思考的计算机程序。
但这事儿太难,人的意识,连人自己都搞不清楚,更别说教给自己编出来的程序了。
3) 怎么想的不知道,行为方式倒是很像人,比如可以和人聊天的ELIZA。
4) 会自己学习的,刚开始笨笨的,慢慢地就越来越聪明。
AlphaGo也是因为头悬梁锥刺股,苦学了海量棋谱才变得这么厉害的。
5) 根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序。
这五种定义各有根据和局限,也可以认为人工智能首先是感知,包括视觉、语音、语言;然后是决策,根据识别的信息,做出预测和判断;最后是反馈,就像机器人或自动驾驶。
我的理解:人工智能是高性能的计算机程序,或者使用了人工智能的产品、服务和应用。
2.《人工智能》课程设计,从以下5个题目中任选其一作答。
《人工智能》课程设计注意:从以下5个题目中任选其一作答。
总则:不限制编程语言,提交word文档,不要提交压缩包作业提交:大作业上交时文件名写法为:[姓名奥鹏卡号学习中心](如:戴卫东101410013979浙江台州奥鹏学习中心[1]VIP)以附件word文档形式上交离线作业(附件的大小限制在10M以内),选择已完成的作业(注意命名),点提交即可。
如下图所示。
注意事项:独立完成作业,不准抄袭其他人或者请人代做,如有雷同作业,成绩以零分计!题目二:回归算法要求:(1)撰写一份word文档,里面包括(常见的回归算法、基于实例的算法具体细节)章节。
人工智能大作业

内蒙古科技大学2012/2013 学年第一学期《人工智能》大作业课程号:67111317考试方式:大作业任课教师:陈淋艳使用专业、年级班级:学号:姓名:一、(15分)智能、智力、能力的含义是什么?什么是人工智能?人类研究人工智能的最终目标是什么?二、(15分)传教士与野人问题:有三个传教士和三个野人来到河边,河边只有一条一次最多可供两个人过河的小船,传教士如何用这条小船过河才能使河两边的野人数目决不会超过传教士的数目?指定状态描述的格式,开始状态和目标状态;画出状态空间图。
(只要画出河两边野人数目不会超过传教士数目的状态即可)。
三、(10分)用谓词公式表示下列语句:因为老百姓授法律管制,所以晁盖劫了生辰纲,触犯了宋王朝的法律,受到官府追究;而达官贵人和恶少不受法律管制,所以高衙内强抢民女,虽然也违法,却可以横行无忌。
四、(20分)什么是演绎推理?他的推理规则是什么?试用谓词演算语句集合表示下面这段话;并用归结反演的方法回答下列问题:设TONY,|MIKE和JOHN属于ALPINE俱乐部,ALPINE俱乐部的成员不是滑雪运动员就是登山运动员。
登山运动员不喜欢下雨,而且任何不喜欢雪的人都不是滑雪运动员。
MIKE讨厌TONY所喜欢的一切东西,而喜欢TONY所讨厌的一切东西。
TONY喜欢雨和雪。
试问有没有ALPINE俱乐部的成员,他是一个登山运动员但不是滑雪运动员。
五、(20分)在主观Bayes推理中,LS和LN的意义是什么?设系统中有如下规则:R1:IF E1THEN (50 0,0.01)H1R2 IF E2THEN (1,100)H1R3:IF E3THEN (1000,1)H2R4:IF H1THEN (20,1)H2并且已知P(H1)=0.1,P(H2)=0.1,P(H3)=0.1,初始证据的概率为P(E1|S1)=0.5 ,P(E2|S2)=0 ,P(E3|S3)=0.8,用主观Bayes方法求H2的后验概率P(H2|S1& S2& S3)。
人工智能大作业

人工智能大作业在当今科技飞速发展的时代,人工智能无疑是最引人瞩目的领域之一。
它以惊人的速度改变着我们的生活,从智能家居到医疗保健,从交通运输到金融服务,其影响力无处不在。
那么,什么是人工智能呢?简单来说,人工智能就是让机器能够像人类一样思考和学习。
它通过对大量数据的分析和处理,从中发现规律和模式,并利用这些知识来做出决策和完成任务。
人工智能的发展并非一蹴而就,而是经历了漫长的历程。
早在上个世纪 50 年代,科学家们就开始了对人工智能的探索。
然而,由于当时技术的限制,进展相对缓慢。
直到近年来,随着计算机性能的大幅提升、数据量的爆炸式增长以及算法的不断优化,人工智能才真正迎来了它的黄金时代。
在众多的人工智能应用中,图像识别技术令人印象深刻。
过去,要让计算机理解和识别图像中的内容是一项极其困难的任务。
但现在,借助深度学习算法,计算机能够以极高的准确率识别出图像中的物体、人物甚至是场景。
这一技术在自动驾驶、安防监控、医疗诊断等领域都发挥着重要作用。
比如,在自动驾驶中,车辆可以通过识别道路上的交通标志、行人和其他车辆,从而做出安全的驾驶决策。
自然语言处理也是人工智能的一个重要分支。
它致力于让计算机理解和生成人类语言。
如今,我们可以与智能语音助手进行对话,让它们为我们提供信息、执行任务,比如查询天气、设置闹钟等。
机器翻译技术也取得了显著的进步,能够在一定程度上打破语言障碍,帮助人们更好地交流。
然而,人工智能的发展也并非一帆风顺。
它面临着许多挑战和问题。
其中之一就是数据偏差。
由于数据的收集和标注往往存在一定的主观性和局限性,可能会导致模型学习到错误的信息,从而产生偏差的结果。
例如,如果用于训练人脸识别模型的数据主要来自特定的种族或群体,那么在对其他种族或群体进行识别时,可能会出现准确率下降的情况。
另外,人工智能的决策过程往往是一个“黑箱”,难以解释。
这就给其应用带来了一定的风险和不确定性。
特别是在一些关键领域,如医疗、法律等,如果无法清楚地解释人工智能的决策依据,可能会引发信任危机。
人工智能大作业

人工智能大作业课程人工智能实验名称动物专家系统算法的实现专业班级计算机0803 姓名宋喜新学号 0304080328专家系统在动物识别领域内的应用一:专家系统概念1.1专家系统(expert system)是人工智能领域应用研究最活跃和最广泛的课题之一。
第一个专家系统是在1956年由Allen Newell、Herbert Simon及J. C. Shaw 所发展。
其后,许多专家系统也纷纷随之建立,但在前期多半是属于研究性质的雏形系统。
1970年代之后,人工智能与专家系统专用的程序语言及软件开发工具逐渐开始发展,而各种知识表示法及算法也被广泛地研究,使得专家系统的建构与发展方式产生了不小的改变。
在1980年代后期开始,专家系统便能够逐渐脱离实验室的研究而广泛应用于各行业中[。
专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题[1]。
1.2 专家系统的结构专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。
专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。
机构中的知识库包括两个部分,一是与当前问题有关的数据信息,二是进行推理时要用到的一般知识和领域知识。
专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,所以知识库中知识的质量和数量决定着专家系统的质量水平;而推理机用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调的工作,它能够根据知识进行推理并导出结论,而不是简单的搜索现成的答案;综合数据库用于存储领域或问题的厨师数据和推理过程中得到的中间数据,即被处理对象的一些当前事实;解释器能够向用户解释专家的行为,包括解释推理结论的正确性以及系统输出其他候选解的原因;人机交互界面能够使系统与用户进行对话,用户能够输入必要数据、提出问题和了解推理过程及推理结果,而系统则通过此界面要求用户回答问题,或回答用户提出的问题并作必要解释[1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:人工智能
1.谈谈你对本课程学习过程中的心得体会与建议?
人工智能是研究如何利用计算机来模拟人脑所从事的感知、推理、学习、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能的科学。
掌握人工智能的基本概念、基本原理、知识的表示、推理机制和求解技术,以及机器学习的技术方法,掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。
人工智能的定义可以分为两部分,即“人工”和“智能”。
“人工”比较好理解,争议性也不大。
有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。
但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。
这涉及到其它诸如意识、自我、思维等等问题。
人唯一了解的智能是人本身的智能,这是普通人认可的观点。
但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。
2.《人工智能》课程设计,从以下5个题目中任选其一作答。
《人工智能》课程设计
题目三:深度优先搜索算法
要求:(1)撰写一份word文档,里面包括(算法思路、算法程序框图、主要函数代码)章节。
(2)算法思路:简单介绍该算法的基本思想,至少100字。
(3)算法程序框图:绘制流程图或原理图,从算法的开始
到结束的程序框图。
(4)主要函数代码:列出算法的具体代码。
(5)简单描述在人工智能的哪些领域需要使用深度优先搜
索算法。
答:深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。
一般用堆数据结构来辅助实现DFS算法。
1.深度优先遍历图算法步骤:
(1)访问顶点v;
(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
上述描述可能比较抽象,举个实例:
DFS在访问图中某一起始顶点v后,由v出发,访问它的任一邻接顶点w1;再从w1出发,访问与w1邻接但还没有访问过的顶点w2;然后再从w2出发,进行类似的访问,......如此进行下去,直至到达。