一次函数图象的应用(1)
一次函数的应用

一次函数的应用(1) 1.已知直线x-2y=-k+6和x+3y=4k+1的交点在第四象限内.(1)求k的取值范围(2)若k为非负整数,△P AO是以OA为底的等腰三角形,点A的坐标为(2,0)点P 在直线x-2y=-k+6上,求点P的坐标.2.已知直线y1= 2x-6与y2= -ax+6在x轴上交于点A,直线y = x与y1、y2分别交于点C、B.(1)求a的值;(2)求三条直线所围成的ΔABC的面积.3.点P按A→B→C→M的顺序在边长为1的正方形边上运动,M是CD边上的中点.设点P经过的路程x为自变量,△APM 的面积为y,求y与x的函数关系式并画出大致图像.4.某长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,其图象如图所示.求:(1)y与x之间的函数关系式(2)旅客最多可免费携带行李的公斤数.5.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从38元/千克下调了x元时,销售量为y千克.(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?6.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件.已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你给设计出来;(2)设生产A、B两种产品获总利润为y (元),其中一种的生产件数为x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?7.我边防局接到情报,近海外有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图所示,图中L1 L2分别表示两船相对于海岸的距离S(海里)与追赶时间(分)之间的关系.根据图象解答下列问题:(1)哪条直线表示B到海岸的距离与追赶时间之间的关系?(2)A、B哪个速度快(3)15分内B能否追上A?(4)当A逃到离海岸12海里的公海时,B将无法对其进行检查,照此速度B能否在A逃入公海前将其拦截?8.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程甲y(千米)、乙y(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了____________小时;(2)甲组的汽车排除故障后,立即提速赶往灾区,请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米.请通过计算说明,按图像所表示的走法是行李票费用(元)行李重量(公斤)【课后练习】1.方程组⎩⎨⎧+==-3214x y y x 的解是 ,则一次函数y =4x -1与y =2x +3的图象交点为 .2.方程2x -y =2的解有 个,用x 表示y 为 ,y 是x 的 函数. 3.函数y =-2x +1与y =3x -9的图象交点坐标为 ,这对数是方程组 的解. 4.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 . 5.有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的.已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q (升)随时间t (分)变化的图象是( )6.设一个等腰三角形的周长为45,一腰为x ,底为y ,⑴写出y 用x 表示函数关系式.确定自变量x 的取值范围.⑵求出当x =15时,y 的值,并指出此时三角形是什么三角形?7.扬州火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5吨万元,用一节B 型货厢的运费是0.8万元.(1)设运输这批货物的总运费为y (万元),用A 型货的节数为x (节),试写出y 与x 之间的函数关系式;(2) 已知甲种货物35吨和乙种货物15吨,可装满一节A 型货厢,甲种货物25吨和乙种货物35吨吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,有哪几种运输方案?请你设计出来.(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?8.某校计划用2300元的限额内,租用汽车送234名学生和6名教师外出活动。
一次函数图象的应用课件

目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。
一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。
2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。
(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。
(3)对于直线,如果,且,那么这两条直线平行,反之也成立。
如果,那么这两条直线相交,反之也成立。
(4)直线y=kx+b可以看作是由直线y=kx平移而来。
(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。
3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。
用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。
(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。
(3)观察图象特征,判定函数类型。
(4)运用得到的经验公式,进一步求得所需要的结果。
例1、已知函数是一次函数,求m的值及函数关系式。
分析:一次函数满足:自变量的次数为1;自变量的系数不为0。
解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。
一次函数的应用1.ppt

左边的刻度表示摄氏温度, 0C
0F
右边的刻度表示华氏温度,
华氏(°F)温度y与摄氏温度
90 30
(℃)x之间的函数关系式为
80
( ).
(A)
y=
9 5
x+32
(B) y=x+40
20
70
60
(C) y= 5 x+32 (D) y= 95x+31
9
10
50
3、如果 y mxm28 是正比例函数,而且对于
题:
(1)洗衣机的进水时间是多4少分钟?清洗时洗衣
机中的水量是多4少0 升? y/升
(2)已知洗衣机的排 40
水速度为每分钟19升,
①求排水时y与x之间的
关系式;y=-19x+325 ②如果排水时间为2分
0
4
15
x/分
钟,求排水结束时洗衣机中剩下的水量. 2升
(2005陕西)阅读:我们知道,在数轴上,x=1表示一个 点,而在平面直角坐标系中,x=1表示一条直线;我们还 知道,以二元一次方程2x-y+1=0的所有解为坐标的点组 成的图形就是一次函数y=2x+1的图象,它也是一条直线 ,如图①. 观察图①可以得出:直线=1与直线y=2x+1的 交点P的坐标(1,3)就是方程组的解,所以这个方程组的 解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1 以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域 ,即直线y=2x+1以及它下方的部分,如图③。
l2 l1
1 2 3 4 5 6 7 8 9 10 11 12 t /分
如图,l甲、l乙两条直线分别表示甲走路 与乙骑车(在同一条路上)行走的路程S与时间t的关系, 根据此图,回答下列问题:
一次函数图象的应用(图象共存问题)(人教版)(含答案)

学生做题前请先回答以下问题问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第_______象限;当k0时,图象必过第_______象限;当b0时,图象必过第_______象限;当b0时,图象必过第_______象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质_____________;②验证___________________________________.以下是问题及答案,请对比参考:问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第象限;当k0时,图象必过第象限;当b0时,图象必过第象限;当b0时,图象必过第象限.答:对于一次函数y=kx+b来讲,当k0时,图象必过第一、三象限;当k0时,图象必过第二、四象限;当b0时,图象必过第一、二象限;当b0时,图象必过第三、四象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质;②验证.答:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质判断k,b的符号;②验证另一个函数图象存在的合理性.一次函数图象的应用(图象共存问题)(人教版)一、单选题(共8道,每道12分)1.一次函数y=-ax+4与正比例函数y=2ax(a为常数,且a≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题2.一次函数y=kx-k2与正比例函数y=-kx(k为常数且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题3.一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题4.一次函数y=kx-b与正比例函数y=kbx(k,b为常数,且kb≠0)在同一坐标系内的大致图象不可能的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题5.两条直线与(k,b为常数,且kb≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题6.一次函数y=-kx+4-k与正比例函数y=3kx(k为常数,且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:图象共存问题7.一次函数y=ax-b与y=abx(ab≠0)在同一坐标系中的图象可能是( )A.①②B.③④C.②④D.①③答案:D解题思路:试题难度:三颗星知识点:图象共存问题8.两条直线y=mx-n与y=nx+m(m,n为常数,且mn≠0)在同一坐标系中的图象可能是( )A.①③B.①②C.②③D.③④答案:D解题思路:试题难度:三颗星知识点:图象共存问题。
2020-2021学年八年级数学人教版下册第19章一次函数应用之图像专题 (一)

2021 -2021学年人教版八年级|数学下册第19章一次函数应用之图像专题 (一 )1.小明家所在地的供电公司实行 "峰谷电价〞 ,峰时 (8:00~21:00 )电价为0.5元/度 ,谷时 (21:00~8:00 )电价为0.3元/度.为了解空调制暖的耗能情况 ,小明记录了家里某天0时~24时内空调制暖的用电量 ,其用电量y (度 )与时间x (h )的函数关系如下图.(1 )小明家白天不开空调的时间共h ;(2 )求小明家该天空调制暖所用的电费;(3 )设空调制暖所用电费为w 元 ,请画出该天0时~24时内w 与x 的函数图象. (标注必要数据 )2.如图 ,l 1表示振华商场一天的某型电脑销售额与销售量的关系 ,l 2表示该商场一天的销售本钱与电脑销售量的关系.观察图象 ,解决以下问题:(1 )当销售量x =2时 ,销售额=万元 ,销售本钱=万元;(2 )一天销售台时 ,销售额等于销售本钱;当销售量时 ,该商场实现赢利 (收入大于本钱 );(3 )分别求出l 1和l 2对应的函数表达式;(4 )直接写出利润w 与销售量x 之间的函数表达式 ,并求出当销售量x 是多少时 ,每天的利润到达5万元 ?3.敦煌到格尔木铁路开通后 ,l 1与l 2分别是从敦煌北开往格尔木的动车和从格尔木站开往敦煌北的高铁到敦煌北的距离与行驶时间的图象 ,两车同时出发 ,设动车离敦煌北的距离为y 1 (千米 ) ,高铁离敦煌北的距离为y 2 (千米 ) ,行驶时间为t (小时 ) ,y 1和y 2与t 的函数关系如下图:(1 )高铁的速度为km /h ;(2 )动车的速度为km /h ;(3 )动车出发多少小时与高铁相遇 ?(4 )两车出发经过多长时间相距50千米 ?4.甲、乙两地相距300千米 ,一辆货车和一辆轿车先后从甲地出发向乙地 ,轿车比货车晚出发1.5小时 ,如图 ,线段OA 表示货车离甲地的距离y (千米 )与时间x (小时 )之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米 )与时间x (时 )之间的函数关系 ,请根据图象解答以下问题:(1 )轿车到达乙地时 ,求货车与甲地的距离;(2 )求线段CD对应的函数表达式;(3 )在轿车行进过程 ,轿车行驶多少时间 ,两车相距15千米.5.为落实 "精准扶贫〞精神 ,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收 ,上市20天全部销售完 ,专家对销售情况进行了跟踪记录 ,并将记录情况绘成图象 ,日销售量y (单位:千克 )与上市时间x (单位:天 )的函数关系如下图.(1 )观察图示 ,直接写出日销售量的最|大值为.(2 )根据图示 ,求李大爷家百香果的日销售量y与上市时间x的函数解析式 ,并求出第15天的日销售量.6.如图 ,自行车与摩托车从甲地开往乙地 ,OA与BC分别表示自行车、摩托车与甲地距离s (千米 )和自行车出发时间t (小时 )的关系.根据图象答复:(1 )摩托车每小时行驶千米 ,自行车每小时行驶千米;(2 )自行车出发后小时 ,两车相遇;(3 )求摩托车出发多少小时时 ,两车相距15千米 ?7.甲乙两位老师同住一小区 ,该小区与学校相距2000米.甲从小区步行去学校 ,出发10分钟后乙再出发 ,乙从小区先骑公共自行车 ,骑行假设干米到达还车点后 ,立即步行走到学校.乙骑车的速度为170米/分 ,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分 ) ,图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米 )与甲步行时间x(分 )的函数关系的图象;图2表示甲、乙两人之间的距离s(米 )与甲步行时间x (分 )的函数关系的图象 (不完整 ).根据图1和图2中所给的信息 ,解答以下问题:(1 )求甲步行的速度和乙出发时甲离开小区的路程;(2 )求直线BC的解析式;(3 )在图2中 ,画出当20≤x≤25时 ,s关于x的函数的大致图象.8.甲乙两人沿相同的路线同时登山 ,甲、乙两人距地面的高度y(米 )与登山时间x(分钟 )之间的函数图象如下图 ,根据图象所提供的信息解答以下问题:=.(1 )甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为:y甲(2 )假设乙提速后 ,乙的速度是甲登山速度的3倍 ,登山多长时间时 ,乙追上了甲 ?此时乙距A地的高度为多少米 ?9.某市端午节期间 ,甲、乙两队举行了赛龙舟比赛 ,两队在比赛时的路程s(米 )与时间t (分钟 )之间的图象如下图 ,请你根据图象 ,答复以下问题:(1 )这次龙舟赛的全程是多少米 ?哪队先到达终点 ?(2 )求甲与乙相遇时甲、乙的速度.10.某种机器工作前先将空油箱加满 ,然后停止加油立即开始工作.当停止工作时 ,油箱中油量为5L ,在整个过程中 ,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如下图.(1 )机器每分钟加油量为L ,机器工作的过程中每分钟耗油量为L.(2 )求机器工作时y关于x的函数解析式 ,并写出自变量x的取值范围.(3 )直接写出油箱中油量为油箱容积的一半时x的值.11.一辆慢车和一辆快车沿相同的路线由甲地到乙地匀速前进 ,甲、乙两地之间的路程为200km ,他们离甲地的路程y (km )与慢车出发后的时间x (h )的函数图象如下图.(1 )慢车的平均速度是km/h;(2 )分别求出表示快车、慢车所行驶的路程y (km )与时间x (h )的函数关系式; (不要求写出自变量的取值范围 )(3 )求慢车出发后多长时间两车第|一次相遇 ?(4 )快车到达乙地后 ,慢车距乙地还有多远 ?12.书籍是人类进步的台阶.为了鼓励全民阅读 ,某图书馆开展了两种方式的租书业务:一种是使用租书卡 ,另一种是使用会员卡 ,图中l1 ,l2分别表示使用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的关系.(1 )直接写出用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式;(2 )小红准备租某本名著50天 ,选择哪种租书方式比拟合算 ?小明准备花费90元租书 ,选择哪种租书方式比拟合算 ?13.小明来到奥体中|心观看比赛.进场时 ,发现门票还在家里 ,此时离比赛开始还有25分钟 ,于是立即步行回家取票 ,同时 ,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票 ,两人在途中相遇 ,相遇后爸爸立即骑自行车把小明送回奥体中|心.如图 ,线段AB、OB分别表示父子俩送票、取票过程中 ,离奥体中|心的距离S(米 )与所用时间t (分钟 )之间关系的图象 ,结合图象解答以下问题 (假设骑自行车和步行的速度始终保持不变 ):(1 )从图中可知 ,小明家离奥体中|心米 ,爸爸在出发后分钟与小明相遇.(2 )求出父亲与小明相遇时离奥体中|心的距离 ?(3 )小明能否在比赛开始之前赶回奥体中|心 ?请计算说明.14.一条笔直的公路上有甲、乙两地相距2400米 ,|王明步行从甲地到乙地 ,每分钟走96米 ,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发 ,运动的时间为t (分 ) ,与乙地的距离为s (米 ) ,图中线段EF ,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1 )李越骑车的速度为米/分钟;F点的坐标为;(2 )求李越从乙地骑往甲地时 ,s与t之间的函数表达式;(3 )求|王明从甲地到乙地时 ,s与t之间的函数表达式;(4 )求李越与|王明第二次相遇时t的值.15.一列快车从甲地匀速驶往乙地 ,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系 ,根据图象解决以下问题:(1 )甲、乙两地的距离为km;(2 )慢车的速度为km/h ,快车的速度为km/h;(3 )求当x为多少时 ,两车之间的距离为500km ,请通过计算求出x的值.参考答案1.解: (1 )小明家白天不开空调的时间为:18﹣8=10 (h ) ,故答案为:10;(2 )峰时所用电费为:3×3×0.5=4.5 (元 ) ,谷时所用电费为:11×3×0.3=9.9 (元 ) ,所以小明家该天空调制暖所用的电费为:4.5 +9.9=14.4 (元 );(3 )根据题意 ,可得该天0时~24时内w与x的函数图象如下:2.解: (1 )由图象可得 ,当销售量x=2时 ,销售额为2万元 ,销售本钱为3万元 ,故答案为:2 ,3;(2 )由图象可得 ,一天销售4台时 ,销售额等于销售本钱;当销售量大于4台时 ,该商场实现赢利 (收入大于本钱 ) ,故答案为:4 ,大于4台;(3 )设l1的表达式为y1=k1x ,将 (4 ,4 )代入得 ,4k1=4 ,解得k1=1 ,即l1的表达式为y1=x;设l2的表达式为y2=k2x +b ,将 (0 ,2 ) , (4 ,4 )分别代入y2=k2x +b ,得,解得 ,即l2的表达式为y2x +2;(4 )由题意可得 ,利润w与销售量x之间的函数表达式为w=xxx﹣2 ,当wx﹣2 ,解得x=14 ,答:利润w与销售量x之间的函数表达式是wx﹣2 ,当销售量x是14台时 ,每天的利润到达5万元.3.解: (1 )由图象可得 ,高铁的速度为300÷1.5=200 (km/h ) ,故答案为:200;(2 )由图象可得 ,动车的速度为300÷2=150 (km/h ) ,故答案为:150;(3 )设动车出发a小时与高铁相遇 ,200a +150a=300 ,解得a= ,即动车出发小时与高铁相遇;(4 )设两车出发经过b小时相距50千米 ,200a +150a=300﹣50或200a +150a=300 +50 ,解得a =或a =1 ,即两车出发经过小时或1小时相距50千米. 4.解: (1 )由图象可得 ,货车的速度为300÷5=60 (千米/小时 ) ,那么轿车到达乙地时 ,货车与甲地的距离是60×4.5=270 (千米 ) ,即轿车到达乙地时 ,货车与甲地的距离是270千米;(2 )设线段CD 对应的函数表达式是y =kx +b ,∵点C (2.5 ,80 ) ,点D (4.5 ,300 ) ,∴, 解得 ,即线段CD 对应的函数表达式是y =110x ﹣195 (2.5≤x ≤4.5 );(3 )当x =2.5时 ,两车之间的距离为:60×2.5﹣80=70 ,∵70>15 ,∴在轿车行进过程 ,两车相距15千米时间是在2.5~4.5之间 ,由图象可得 ,线段OA 对应的函数解析式为y =60x ,那么|60x ﹣ (110x ﹣195 )|=15 ,解得x 1=3.6 ,x 2=4.2 ,∵轿车比货车晚出发1.5小时 ,3.6﹣1.5=2.1 (小时 ) ,4.2﹣1.5=2.7 (小时 ) , ∴在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米 ,答:在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米.5.解: (1 )由图象可得 ,日销售量的最|大值为960千克 ,故答案为:960千克;(2 )当0≤x ≤12时 ,设y 与x 的函数关系式为y =kx ,12k =960 ,得k =80 ,即当0≤x ≤12时 ,y 与x 的函数关系式为y =80x ;当12<x ≤20时 ,设y 与x 的函数关系式为y =ax +b ,,得 ,即当12<x≤20时 ,y与x的函数关系式为y=﹣120x +2400 ,由上可得 ,y与x的函数关系式为y=;当x=15时 ,y=﹣120×15 +2400=600 ,答:李大爷家百香果的日销售量y与上市时间x的函数解析式为y=,第15天的日销售量是600千克.6.解: (1 )由图象可得 ,摩托车每小时行驶80÷ (5﹣3 )=40 (千米 ) ,自行车每小时行驶80÷8=10 (千米 ) , 故答案为:40 ,10;(2 )设自行车出发后a小时 ,两车相遇 ,10a=40 (a﹣3 ) ,解得 ,a=4 ,即自行车出发后4小时 ,两车相遇 ,故答案为:4;(3 )设摩托车出发b小时时 ,两车相距15千米 ,10 (b +3 )﹣40b=15或40b﹣10 (b +3 )=15 ,解得 ,bb=1.5 ,即摩托车出发0.5小时或1.5小时时 ,两车相距15千米.7.解: (1 )由图可知 ,甲步行的速度为:2000÷25=80 (米/分 ) ,乙出发时甲离开小区的路程是80×10=800 (米 ) ,答:甲步行的速度是80米/分 ,乙出发时甲离开小区的路程是800米;(2 ) (20﹣10 )×170=1700 (米 ) ,那么点C的坐标为 (20 ,1700 ) ,设直线BC对应的解析式为y=kx +b ,,得 ,即直线BC的解析式为y=170x﹣1700;(3 )∵甲步行的速度比乙步行的速度每分钟快5米 ,甲步行的速度是80米/分 ,∴乙步行的速度为80﹣5=75 (米/分 ) ,那么乙到达学校的时间为:20 + (2000﹣1700 )÷75=24 (分钟 ) ,当乙到达学校时 ,甲离学校的距离是:80× (25﹣24 )=80 (米 ) ,那么当20≤x≤25时 ,s关于x的函数的大致图象如以下图所示:=kx+b, 8.解: (1 )设甲距地面的高度y(米 )与登山时间x(分 )之间的函数关系式为y甲∵点 (0 ,100 ) , (20 ,300 )在函数y=kx +b的图象上 ,甲∴ ,解得 ,=10x +100 , 即甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为y甲故答案为:10x +100;(2 )由图象可得 ,甲的速度为: (300﹣100 )÷20=10 (米/分 ) ,∵乙提速后 ,乙的速度是甲登山速度的3倍 ,∴乙提速后的速度为30米/分 ,设乙登山a分钟时追上甲 ,那么15÷1×2 +30× (a﹣2 )=10a +100 ,解得a=6.5 ,当a=6.5时 ,乙距A地的高度为:30× (6.5﹣2 )=135 (米 ) ,即乙提速后 ,乙的速度是甲登山速度的3倍 ,登山6.5分钟时 ,乙追上了甲 ,此时乙距A 地的高度为135米.9.解: (1 )由函数图象可得 ,这次龙舟赛的全程是1000米 ,乙队先到达终点;(2 )由图象可得 ,甲与乙相遇时 ,甲的速度是1000÷4=250 (米/分钟 ) ,乙的速度是: (1000﹣400 )÷(3.8﹣2.2 )=600÷1.6=375 (米/分钟 ) ,即甲与乙相遇时甲、乙的速度分别为250米/分钟、375米/分钟.10.解: (1 )由图象可得 ,机器每分钟加油量为:30÷10=3 (L ) ,机器工作的过程中每分钟耗油量为: (30﹣5 )÷ (60﹣10 )=0.5 (L ) ,故答案为:3 ,0.5;(2 )当10<x≤60时 ,设y关于x的函数解析式为y=ax +b ,,解得 , ,即机器工作时y关于x的函数解析式为yx +35 (10<x≤60 );(3 )当3x=30÷2时 ,得x=5 ,x +35=30÷2时 ,得x=40 ,即油箱中油量为油箱容积的一半时x的值是5或40.11.解: (1 )由图象可得 ,慢车的速度为:200÷5=40 (km/h ) ,故答案为:40;(2 )设慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=kx ,5k=200 ,得k=40 ,即慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=40x;设快车所行驶的路程y (km )与时间x (h )的函数关系式是y=ax +b , ,解得 ,即快车所行驶的路程y (km )与时间x (h )的函数关系式是y=100x﹣200;(3 )令40x=100x﹣200 ,解得x= ,即慢车出发后时两车第|一次相遇;(4 )将x=4代入y=40x ,得y=160 ,200﹣160=40 (km ) ,答:快车到达乙地后 ,慢车距乙地还有40km.12.解: (1 )设直线l对应的函数解析式为y=kx ,1200k=60 ,解得k=0.3 ,对应的函数解析式为yx ,即直线l1对应的函数解析式为y=ax +b ,设直线l2,解得 ,对应的函数解析式为yx +20 ,即直线l2由上可得 ,用租书卡时每本书的租金y(元 )与租书时间x(天 )之间的函数关系式是yx,用会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式是yx +20;(2 )当x=50时 ,租书卡的租金为0.3×50=15 (元 ) ,会员卡的租金为0.2×50 +20=30 (元 ) ,∵15<30 ,∴小红准备租某本名著50天 ,选择租书卡租书方式比拟合算;当y=90时 ,租书卡可以租用90÷0.3=300 (天 ) ,会员卡可以租用 (90﹣20 )÷0.2=350 (天 ) ,∵300<350 ,∴小明准备花费90元租书 ,选择会员卡租书方式比拟合算.13.解: (1 )有图可知 ,小明家离体育馆3600米 ,父子俩在出发后15分钟相遇.其中小明路程与时间的图象用图中的线段OB表示 ,父亲路程与时间的图象用图中的线段AB表示.故答案为3600 ,15;(2 )设小明的速度为x ,父亲的速度为3x ,根据题意得 ,15 (x +3x )=3600 ,∴x=60米/分钟 ,∴小明与父亲相遇时距离体育馆还有60×15=900m ,答:父亲与小明相遇时离奥体中|心的距离为900m;(3 )由 (2 )知 ,小明的速度为60米/分钟 ,∴父亲的速度为180米/分钟 ,∴900÷180=5分钟 ,∴5 +15=20分钟<25分钟 ,∴小明能在比赛开始之前能赶回体育馆.14.解: (1 )由图象可得 ,李越骑车的速度为:2400÷10=240米/分钟 ,2400÷96=25 ,所以F点的坐标为 (25 ,0 ).故答案为:240; (25 ,0 );公众号:惟微小筑(2 )设李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=kt ,2400=10k ,得k=240 ,即李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=240t ,故答案为:s=240t;(3 )设|王明从甲地到乙地时 ,s与t之间的函数表达式为s=kt +2400 ,根据题意得 ,25k +2400=0 ,解得k=﹣96 ,所以|王明从甲地到乙地时 ,s与t之间的函数表达式为:s=﹣96t +2400;(4 )根据题意得 ,240 (t﹣2 )﹣96t=2400 ,解得t=20.答:李越与|王明第二次相遇时t的值为20.15.解: (1 )甲、乙两地的距离为720km ,故答案为:720;(2 )设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意 ,得 ,解得 ,故答案为80 ,120;(3 )由题意 ,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前: (80 +120 )x=720﹣500 ,解得x=1.1 ,相遇后:∵点C (6 ,480 ) ,∴慢车行驶20km两车之间的距离为500km ,∵慢车行驶20km需要的时间是=0.25 (h ) ,∴x=6 +0.25=6.25 (h ) ,故x=1.1 h或6.25 h ,两车之间的距离为500km.。
44第3课时两个一次函数图象的应用

44第3课时两个一次函数图象的应用一、引言一次函数是我们初中数学学科中非常重要的一个内容,它具有简单清晰的数学表达形式,并且在实际生活中有着广泛的应用。
在本次课程中,我们将学习和探究两个一次函数图象的应用,并通过实际的例子来加深对一次函数的理解和应用。
二、函数图象的特点在学习函数图象的应用之前,我们先来回顾一下函数图象的基本特点。
一次函数的一般形式为y=ax+b,其中a和b都是常数。
在平面直角坐标系中,一次函数的图象是一条直线,其特点如下:1.斜率:斜率a代表函数图象的倾斜程度,a的绝对值越大,则图象的斜率越大,图象的倾斜程度越大。
2.截距:截距b代表函数图象与y轴的交点,如果b大于0,则图象在y轴的正半轴上,如果b小于0,则图象在y轴的负半轴上。
3.方向:如果a大于0,则图象从左下向右上斜;如果a小于0,则图象从左上向右下斜。
掌握了这些基本特点,我们就可以更好地应用一次函数图象来解决实际问题。
三、实际案例分析1.人口增长问题通过这个一次函数的表达式,我们可以方便地预测未来几年该城市的人口数量,也可以根据实际的年份来求人口数。
2.汽车行驶问题假设一辆汽车以恒定的速度行驶,行驶过程中计算仪表上所显示的速度与行驶时间之间的关系,可以用一次函数来表示。
假设仪表上显示的速度为y(单位:km/h),行驶的时间为x(单位:小时),那么该关系可以用一次函数y=ax+b来表示。
假设汽车起初的时间为0小时,速度为0km/h;当行驶1小时后,速度为100km/h。
根据这两个条件可以得到两个方程:(1)当x=0时,y=0;(2)当x=1时,y=100;通过求解这两个方程,可以得到a=100,b=0。
所以该一次函数的表达式为y=100x。
通过这个一次函数的表达式,我们可以计算任意时间下汽车的速度,也可以根据速度来推算汽车已经行驶的时间。
四、总结通过对两个实际案例的分析,我们可以看到一次函数图象的应用在生活中的重要性。
无论是人口增长还是车辆行驶,一次函数都可以提供方便快捷的解决方案。
一次函数的应用(第1课时)北师大数学八年级上册PPT课件

探究新知
归纳总结
求一次函数解析式的步骤: (1)设:设一次函数的一般形式 y=kx+b(k≠0)
(2)列:把图象上的点 x1, y1 ,x2 , y2 代入一次
函数的解析式,组成几个__一__次_____方程; (3)解:解几个一次方程得k,b; (4)还原:把k,b的值代入一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(2,0)与(0,6)分别代入y=kx+b,得:
0 2k b 6 b
解得:bk
3 6
这个一次函数的解析式为y=-3x+6.
巩固练习
变式训练
已知一次函数的图象过点(3,5)与(0,-4),求这个 一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(3,5)与(0,-4)分别代入,得:
5 3k b 4 b
解得
k 3 b 4
,
所以这个一次函数的解析式为 y=3x-4.
探究新知 素养考点 2 已知一点利用待定系数法求一次函数的解析式
例2 若一次函数的图象经过点 A(2,0)且与直线y=-x+3平行,
求其解析式.
解:设这个一次函数的解析式为y=kx+b.
因为一次函数图象与直线y= -x+3平行,所以k= -1.
解:(1)设v=kt, 因为(2,5)在图象上, 所以5=2k, k=2.5,即v=2.5t.
(2) v=7.5 米/秒
(2,5)
(2,5)
t/秒
探究新知
例 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当 所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之 间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的关系如图所示:
(1)一箱汽油可供摩托车行使多少千米?
当 y 0时,x 500 ,因此一箱汽油可供摩托车行
使500千米
(2)摩托车每行使100千米消耗多少升汽油?
x 从0增加到100时,y 从10减少到8,减少了2,
因此摩托车每行使100千米消耗2升汽油
6.5 一次函数图象的应用(1)
看图填下表
y
9 8 7
6 5 4 3 2 1
0 12 3456 7
x
x 2 3 4 14
y 4 3 25 2
A、由于持续的高温和连日无雨,某水库的蓄水量随
着时间的增加而减少。干旱持续的时间 t (天)与蓄
水量 V (万米)的关系如下图所示,观察图象,你得 到了什么信息?
(1)干旱持续10天,蓄水量为多少?连续干旱23天呢? 10天时的蓄水量约为1000万米3 ,23天时约为750万米3
(2)蓄水量小于400万米3 时,将发出严重干旱警报, 干旱多少天后将发出严重干旱警报?
约40天 (3)按照这个规律,预计持续干旱多少天水库将干涸?
约60天
B、例1 某种摩托车的油箱最多可储油10升,加满油后,油
(3)油箱中的剩余油量小于1升时,摩托车将自动报 警,行使多少千米后,摩托车将自动报警?
当 y 1 时,x 450,因此行使450千米后,摩
托车将自动报警
C、随堂练习议)
一元一次方程 0.5x 1 0与一次函数 y 0.5x 1
有什么关系
小结:本节课我们通过观察函数图象,获取信息,把图象 与具体的数结合起来,从而解决实际的问题,同学们要体 会“形”与“数”之间的关系,体会方程与函数的关系。
作业:P168 、1.